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Abstract. Recently, several Monte Carlo methods, for example, Markov Chain Monte Carlo (MCMC),
importance sampling and data-augmentation, have been developed for numerical sampling and integration in
statistical inference, especially in Bayesian analysis. As dimension increases, problems of sampling and
integration can become very difficult. In this manuscript, a simple numerical sampling based method is
systematically developed, which is based on the concept of random discretization of the density function with
respect to Lebesgue measure. This method requires the knowledge of the density function (up to a normalizing
constant) only. In Bayesian context, this eliminates the ‘‘conjugate restriction’’ in choosing prior distributions,
since functional forms of full conditionals of posterior distributions are not needed. Furthermore, this method is
non-iterative, dimension-free, easy to implement and fast in computing time. Some benchmark examples in this
area are used to check the efficiency and accuracy of the method. Numerical results demonstrate that this method
performs well for all these examples, including an example of evaluating the small probability values of a high
dimensional multivariate normal distribution. As a byproduct, this method also provides an easy way of
computing maximum likelihood estimates and modes of posterior distributions.

Keywords: random sample generation, Monte Carlo integration, approximate maximum likelihood estimates,
high dimensional distribution, compact support, discretization, contourization, law of large numbers

AMS 1991 Subject Classification: Primary 65C05, 65C60, Secondary 65C10, 62F40, 62F15

1. Introduction
Statistical inferences often involve three types of problems:

1. Generating a set of observations
K = (x(li>,xg), . ,xff)),i =1,2,....m

from a multivariate population F, which has a density function f(x) with respect to
Lebesgue measure y and a support S(f) being a subset of RF.
2. Integrating a function H(x) with respect to a density function f(x), i.e.,

/ H)f ()u(d). (1)
S(f)
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3. Finding the maximizer x, of a function L(x) over a subset A C R, such that

L(xy) = sup L(x).
xeA

These problems are related through the use of sampling-based integration and
optimization methods. Recently, several Monte Carlo methods for problems (1) and (2)
have been developed, e.g., Markov Chain Monte Carlo (MCMC), data-augmentation and
importance sampling. Good introductions and reviews to these topics can be found in, for
example, Tanner (1992), Evans and Swartz (1995, 2000), Chib and Greenberg (1996), as
well as Robert and Casella (1999). Each of these sampling-based methods has advantages
and disadvantages. Compared with numerical analytic methods, the attraction of stochastic
sampling-based methods is their conceptual simplicity and ease of implementation. For a
given integration problem, however, it is well known that the sampling-based methods
may not be as accurate or efficient as numerical analytic methods, especially when the
dimension is low or moderate.

While MCMC methods are general tools for multivariate random sample generation,
once applied to real problems their actual implementations are often quite involved. Major
difficulties are associated with multi-modality of the underlying distribution, ill-shaped
sample space, as well as convergence of the iterative process. Consequently, a
reparameterization or transformation is often needed to ensure the success of a particular
algorithm. The choice of a proper reparameterization or transformation remains a difficult
task. Moreover, as dimension & increases, difficulties of both problems (1) and (2) increase
significantly.

In this manuscript, we focus on an alternative approach to multivariate random sample
generation. This method is based on the combination of numerical and sampling-based
approaches. It involves analytical approximation of the density function, random
discretization and contourization of an empirical space induced by samples from the
uniform distribution on [0, 1], and sampling observations from contours of the empirical
space according to the discretized density function. Theoretically speaking, the foundation
of this approach is based on the concept of randomly discretizing the density function
which is a Radon-Nikodym derivative with respect to Lebesgue measure. One of the great
strengths of this method is that it requires only the knowledge of the functional form of the
density function up to an unknown normalizing constant. Therefore, it applies equally well
to ‘‘well-behaved’’ distributions as to more complicated, multi-modal distributions. It is
dimension-free and non-iterative, which makes it efficient and fast in computation.
Finally, it is very easy to implement and is applicable to most high dimensional
multivariate distributions arising in real applications. While the primary purpose of the
algorithm in this paper is random sample generation, it can also be applied as by-products
to multivariate integration, importance sampling and optimization problems.

The paper is organized as follows: In Section 2, we set up notations and give some
preliminary results which lay down a theoretical foundation for our method. Section 3
presents the algorithm for the method. Section 4 gives some examples to illustrate the
algorithm. In Section 5, the method is applied to several benchmark examples in statistics,
especially in Bayesian analysis. It is also shown here that this method can also be used to
search the maximum likelihood estimates (MLE) and modes of posterior distributions.
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Section 6 discusses some computational aspects and technical issues associated with
random sample generation and integration.

2. Notations and Preliminary Results

We consider a random variable X : (Q, <7, P) — (R*, %, 1), where probability measure P
is absolutely continuous with respect to Lebesgue measure y and the Radon-Nikodym
derivative, or density function, is f =dP/du. Throughout this manuscript,
x = (xX;,%,...,X,) represents a point in R* and the support S(f) of the density function
f(x) is a subset of R,

A function f(x) is called a simple function, if f(x) takes / distinct values on S(f), i.e.,

!
fx) = Z al(x, E;),

where — o0 < a; < a, < --- < a; < o0, the indicator function I(x,E;) = 1, if xe E;, and
zero otherwise, and the u-measurable (Lebesgue measurable) subsets £, E,, . .., E, form a
partition of S(f) in the sense that U! _,E; = S(f) and E; NE; = () for all i # j.

For a density function f : S(f) — (0, c0), there exists a sequence of simple functions,
say {S;}, on S(f), such that

(1) forevery [, S;(x) takes / distinct values 0 < a;; < ap < - -+ < ay, where S;(x) = ay;,
for xeE;, Ul _ E; = S(f); and
(2) for every xeS(f), S;(x) = f(x) as Il > 0.

Since density function f(x) is Lebesgue measurable and integrable, the above results (1)
and (2) are immediate consequences of Theorem 1.17 of Rudin (1966, p. 15). Note that,
the sequence {S;} may not be density functions. However, the modified functions

Si(x) :
gx) =———"——, forxeS(f), 1=1,2,... (2)
i 1 ai(E;)
are simple density functions defined on S(f) and satisfy
g(x) > f(x), asl— oo, forall xeS(f). (3)

In the following, it shows that g;(x) can be constructed in a special way such that it
converges to f(x) uniformly on S(f).

THEOREM 1 Suppose density function f (x) is continuous on a compact support S(f) C R*
(a closed and bounded subset of R*) and satisfies w{xeS(f) : f(x) = b} =0 for any
constant be (0, o). Then the following statements hold.

1. For any given leN, there exists constants inf.csp)f(x)=Dby<by <---
< by <b;=sup,csp)f(x), such that subsets E;={xeS(f):b;_; <f(x) <
by, i=1,2,...,1 form a partition of S(f) and satisfy u(E;) = u(S(f))/L

2. Define
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1
1(E;)

Then the sequence of simple density functions g,(x) = Zﬁzlail(x,Ei) - f(x)
uniformly on S(f) as | - co.

3. If P, is the probability measure corresponding to density g, then the conditional
distribution given E; is a uniform distribution on E; with density

a,-=

/E.f(x)u(dx), fori=1,2,...,L 4)

g(x | E) = (5)

n(S())

Proof:

1. For any given /€N, under the conditions of the theorem, u{xeS(f) : f(x) < b} is
continuous and monotone increasing in b€ (b, b;). It follows that, there exists a
constant by < b;, such that E; ={xeS(f):b,<f(x)<b,} satisfies
w(Ey) = pu[S(f)]/1. Let b; be the smallest number with this property. By the same
reason, there exists a constant b; < b,, such that £, = {xeS(f) : b; <f(x) < b,}
satisfies u(E,) = u[S(f)]/I. Again let b, be the smallest number with this property.
Similarly, constants b, < b3 <---<b;, can be defined. By definition
E.i=1,2,... [satisfy Ul _ |E; = S(f) and E;NE; = ) for all i # j.

2. Since f(x) is continuous and S(f) is compact, constants b;,i = 1,2,...,[ defined
above satisfy max, . ;. ; Ab; = 0, as [ = co. The result follows then from the fact that
|g(x) — £(x)] < max, —; -, Ab; for all xe S(f).

3. Given E;, the result follows immediately from P;(E;) = a;u(E;) and the definition of
the conditional distribution. |

In view of Equation (5), the simple density function g;(x) can be written as
1

i) = Y 1(x, E)PY(E)g(x | E;),xeS(f), (6)
i=1

where I(x,E;) = 1 if xeE; and zero otherwise. The above Equations (5) and (6) lay a
foundation for our algorithm of generating an observation x from g, by, first, generating a
subset E; randomly according to probabilities {P,(E;)}/ _; and, then, generating an
observation x from the uniform distribution on E;. By Theorem 1(2), for very large /,
observation x can be considered approximately as an observation generated from density

fx).

3. The Algorithm

In order to make the algorithm more transparent, we start with the case where density
function f(x) is continuous with a compact support S(f) in R* and the mathematical form
of f(x) is known up to a normalizing constant. Without loss of generality, we assume
S(f) = a, b}k, where —o0 < a < b < co are known. To simplify notation, we also assume
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that u{xe S(f) : f(x) = ¢} = 0 for any constant c € (0, o0). The algorithm consists of the
following three major steps.

3.1. Discretization

First, we generate kn independent points from the uniform distribution on [a,b],

Xi,Xp, ... Xy ~Ula, b]. Then, every k consecutive observations are combined as an
observation in [a,b]". Hence observations x() = (X D 10X = 20 -+ 5 Xji)
Jj=1,2,...,n, are independent, identically and uniformly distributed on [a, b]". Define

S,(f) ={x),j=1,2,... n}.Foragiven large n, set S, (f) can be viewed as a uniformly
and randomly discretized S(f). Theoretically speaking, as n — oo, S,(f) approximates

S(f)-

3.2. Contourization

LetxUl.j=1,2,... nbe the ordered list of x), j =1,2,...,n according to the height of

density function, such that if i > j, then f(xl) > f(xl/]). Clearly S, (f) can also be written

as S,(f) = {xll,j=1,2,...,n}. Given IeN, we partition S, (f) into / contours
E={V:(i—Nu<j<iu},i=1,2,...,1,

where u = n /I which is assumed to be an integer without loss of generality. It is easy to see
that Ul _ E; = S,(f) and E; N E; = () for all i # j. Define a sequence of constants

- E;'u: (i—Du+ 1f(x[j])

4 = ‘MZ}L 7

and a discrete probability distribution on S, (f)

di=1,2,...,1 (7)

i
gx) = Zl(xvéi)P](Ei)gl(x | Ei)a (8)

where P,(E;) = a,u*(E;), u* is the Lebesgue counting measure on S, (f), and

Gl E) = ©)

is the conditional distribution of x given xeE,.

3.3. Sampling

Suppose we would like to generate m independent and identically distributed observations
from S, (f) according to distribution g(x). First, we sample m subsets with replacement
from {Ei}ﬁzl according to probabilities {P,(Ei)}ﬁzl res/pectively. Denote by m; the

number of occurrence of E; in the m draws, where Zizlm[ = m. Then, for each
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i=1,2,...,1, we sample with replacement 7; observations randomly within contour E,;
and denote the set of these observations by éi. Finally, the set of observations
R, (f) =U _,0,={yj=1,2,...,m} is the desired sample. It is easy to see that each
observation yl/ obtained by this two-stage sampling procedure is equivalent to an
observation drawn directly from S, (f) according to distribution g;(x), and, moreover, all
observations are independent.

Note that éi may not have all the points of E;, but may contain several duplications of
one point in E; due to sampling with replacement. Furthermore, since O, C E;,, contours
{ONI}I1 form a partition of R,,(f). For the sample generated by the above algorithm, we
have the following asymptotic results.

THEOREM 2 Under the assumptions of Theorem 1, it holds
1. For any 1> 1 and 1 <i <, as n— 0, di/,t* (E,) zwtl-,u(E,-), where f>stcmals for

convergence in probability.
2. For any H(x)€L,(S(f)), as n — 00, m — o0 and | - 0,

IRy j
() / | HOFu(@).

m
J

Proof:

1. Forany / > 1 and 1 < i <, since fis continuous and x) are uniformly distributed

on S(f),

- = Z{M:(171)14+1.f(x[j]) szlf(x(j))[(xmin)
au* (E;) = jzj’_‘:lf(x[j]) == ST G0 +0,(1)-

It follows from the law of large numbers and the Slutzky’s theorem that

2. First, by the law of large numbers, as m — o0, n — o0,

j=1 j=1

Further, by construction and the law of large numbers,
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Z": H(xm) &) = Z]: Z H(XU))@,,(XU), E)

j=1 i=1j=1

Finally, since g;(x) — f(x) uniformly on S(f) by Theorem 1(2),

/ H(x)gmx)u(dxw/ H(x)f (x)u(d),
S(f) S(f)

which completes the proof. u

There are three basic issues associated with this method (or any other sampling based
method):

1. Is the method applicable in moderate to high dimensional problems?
2. Is the method computationally efficient?
3. Does the method provide reasonably accurate approximation?

We have applied our method to a large number of examples, including some benchmark
examples which have frequently appeared in the recent literature. Our method performs
pretty well with all these examples, some of which are shown in the following sections. We
expect that this method will perform well with other real examples, including high
dimensional problems. Before providing examples, the following technical remarks are in
order, which may offer more insights and details of the algorithm.

REMARK 1 The algorithm basically involves only two computational components,
namely sampling from one-dimensional uniform distribution and ordering observations
according to the heights of the density function. In this sense the algorithm is dimension-
free and also non-iterative. Consequently, this algorithm is computationally very efficient
and fast, especially for low or moderate dimensional sampling and integration problems.
Another feature of the algorithm is that the contourization step transforms the original
distribution f on S(f) to a finite, monotonic step function g; on a partition of S,(f). This
eliminates problems and difficulties caused by multi-modality and non-connectivity in
most Markov Chain Monte Carlo algorithms. In addition, since the re-normalization is
build into the algorithm, the normalizing constant of density f(x) needs not be known,
which is often convenient and sometimes desirable in many real applications, especially in
Bayesian analysis. Furthermore, from

1= [ pas= () [ F/misias
S(f) S(f)
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the normalizing constant can be estimated using the initial uniform sample as

n

WS X7 =1 f )

REMARK 2 Our algorithm is applicable to most distributions encountered in real
applications. In some cases only minor modifications are needed.

CASE 1 When f(x) is continuous but its support S(f) is unbounded, the algorithm can be
modified by applying the Egorov’s theorem (Hewitt and Stromberg, 1967, p. 158).
Without loss of generality, we assume S(f) = R'. Since f(x) is continuous, for an
arbitrarily small ¢ > 0, we can construct a compact subset

$*(f) = [~ MM N S(f) (10)
such that
fulde) = 1 —¢ (11)
S*(f)
for a very large M > 0. Then, the reweighted function

) — f(x)
S = @)

is a density function on S™(f). Similarly, we can define g;"(x) on S*(f) the same way as
g,(x) is defined on S(f). It follows that g;(x) — f*(x) uniformly on S*(f) as / — co. In
addition, the discretized support S, (f) should be modified as

(12)

S¥(f) == M,M]" NS, (f) (13)

for the given M. More practical issues concerning the choice of M are discussed in
Sections 4 and 5.

CASE 2 If support S(f) C [a,b]" but S(f) # [a,b]*, then the discretized sample space
should be modified as S,(f) = {x\/}7_, NS(f). The rest part of the algorithm remains
the same.

CasE 3 Iff(x) is a simple density function, i.e., f(x) = g;(x) for some /€N, then function
&;(x) can be taken to be f(x) restricted to S,(f) and the algorithm becomes simpler.

CASE 4 If f(x) is a mixed type distribution, then for the discrete components the discrete
uniform distribution should be used. The rest part of the algorithm can either remain
unchanged or can be further modified as in Case 3.

REMARK 3 For integration problem, this method can be used together with importance
sampling as

/‘H ds = [ [HEFE)/20)s0ds
S(f)
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In fact, it is the simplicity and efficiency of the algorithm that makes it much easier to
identify the importance region and, therefore, to choose importance density g(x).
Moreover, our method can also be incorporated with MCMC methods like Gibbs sampler
by applying the method sequentially when the full conditional densities are available.
However, we don’t recommend such combinations when observations can be generated
from f(x) directly. Furthermore, if numerical integration is of primary concern, then after
identifying importance region, the integral can be approximated by using initial uniform
sample {x(/)} rather than using sample {yl/}.

REMARK 4 If f(x) is a likelihood function or a posterior density function defined on the
parameter space S(f) and satisfies fs( ot (x)u(dx) < oo, then the first two steps of the
algorithm can be used to compute the approximate maximum likelihood estimate (AMLE)
or the posterior modes. The estimate is any one of the points in the last contour of S, (f)
corresponding to the largest value of the function f. The AMLE is very close to the true
MLE, when n,m and [ are sufficiently large. Further, if finding the true MLE is desired,
then the AMLE can serve as a good initial estimate for an iterative searching procedure
such as Newton-Raphson. This method is used to compute the AMLE in Example 6 and
modes of various distributions in other examples in Section 5.

4. Examples

In order to illustrate our method and to make our algorithm more transparent, we give four
simple examples of two or three dimensional distributions, two of which have bounded
support and the other two have unbounded support. More benchmark and real examples of
higher dimensional problems are given in the next section. All numerical computations in
this paper are carried out using S-PLUS on a Pentium III PC with standard hardware
configuration. The actual computing time for each example is much less than one minute,
so that we do not report it explicitly.

EXAMPLE 1 Consider two independent random variables X;~Beta(2,2) and
X, ~Beta(3, 1). The joint density function of (X;,X,), up to a normalizing constant, is
given by

f(xlvx2) :xl(l —XI)X%, 0 lea X2 S L.

This distribution has a compact support S(f) = [0, 1]2 and the first two moments
E(X;)=1/2, Var(X,) = 1/20, E(X,) = 3/4 and Var(X,) = 3/80. Suppose we wish to
draw a sample of size m =2,000 and compute the corresponding sample moments.

First, we generate n = 200,000 uniform random numbers on [0, 1]2 to form the
discretized support S,(f). Then S, (f) is divided into / = 100 contours according to the
heights of density function f(x/), with 2,000 points in each contour. Finally, m = 2,000
sample points are drawn from these contours according to the sampling scheme in Step 3.
Figure 1 shows a scatter plot, a contour plot and a surface plot of the sample, together with
the histograms of two marginal distributions. The corresponding sample moments are
X, = 0.4989, S7 = 0.0501, X, = 0.7429 and S3 = 0.0387.
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Figure 1. A sample of size m = 2,000 from the bivariate Beta distribution of Example 1.

EXAMPLE 2 Consider a three dimensional Dirichlet distribution (X;,X,,X;)~
D(0.5,2.5,4.5,6.5) with density (up to a normalizing constant)

—0.5.15.35 55
Fep,x,03) = x1 7207037 (1 =2 — x5 —x3)77,0 < xp +xp +03 < 1

This distribution has a compact support S(f) = {(x,, X2, x3)€[0,1]° : x; +x, +x3 < 1}
which is not of the form [a, b]3. Again n = 200,000 uniform random points are drawn from
S(f) to form S, (f) and then S, (f) is divided into / = 200 contours, such that each contour
has 1,000 points. Finally m = 2,000 sample points are drawn from these contours. Some
selected scatter plots and marginal histograms of the sample are shown in Figure 2. The
corresponding sample moments are respectively X; = 0.0403,X, = 0.1741, X; = 0.3241,
S3 = 0.0025, S3 = 0.0094 and 3 = 0.0154.

As indicated in Remark 2 of Section 3, in the case of unbounded support, an initial
compact interval [— M, M]lC can be determined, which is large enough to cover the ‘high”’
probability area of the distribution f. This step is not as complicated as it looks like for
most distributions arising in applications. In fact, one may start with a reasonable guess of
the interval based on the properties of the given density function. Once a sample has been
generated, one can examine the marginal histograms and will realize immediately, if the
initial interval is too small or too large and make adjustment correspondingly. This is
demonstrated in the next example.
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Figure 2. A sample of size m = 2,000 from the three dimensional Dirichlet distribution.

EXAMPLE 3 Consider a benchmark example which is used to compare different
algorithms in Robert (1998). It is the posterior distribution of the location parameter of
three i.i.d. Cauchy random variables with unit scale parameter and a constant prior
distribution. The density function (up to a normalizing constant) is given by

70 = [ 8+ =81+ (- 177)] oo <x< .

This distribution is trimodal and has an unbounded support (— 0o, c0). The difficulty in
generating random sample from this distribution is that it has a large dispersion. Following
Robert (1998), we also compute the quantities #; = EH;(X), i = 1,2, 3, with H(x) = x,
H,y(x) = (x — 17/3)* and H;(x) = I(xe [4,8]), where [ is the indicator function.

From the properties of Cauchy distribution and the fact that this distribution has three
modes — 8, 8 and 17, we take the initial interval to be [— 60, 60], from which we generate
n = 500,000 uniform random points to form S,(f). We then divide S,(f) into / = 500
contours, such that each contour has 1,000 points. Finally we draw m = 2,000 sample
points from these contours. A histogram and a density curve of this sample is shown in the
first row of Figure 3.

From the histogram of this sample we see immediately that there is no observation out
of interval [— 20, 30], meaning that the initial interval [— 60,60] is too large. We thus
narrow the interval down to [— 20, 30] and repeat the whole procedure. The new sample is
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Figure 3. Two samples of size m = 2,000 from the univariate distribution of Example 3.

shown in the second row of Figure 3. The corresponding sample median is Med = 8.5401
and other quantities are respectively h; = 8.9231, s, = 51.9702 and /; = 0.2585. Using
the first two steps of the algorithm, the mode of f(x) is found to be Mod = 8.0485. These
quantities are computed by many authors using much more complicated procedures in the
literature (Robert, 1998).

EXAMPLE 4 Consider a mixture of three bivariate normal distributions

fx,x) = 0.3 fi(x), %) + 0.3 f,(x1, %) + 0.4 f3(x),x,),

where f|, f>, f3 are normal distributions with common standard deviations (0.4,0.4), but
are centered at means u; = (—3,0), u, = (3,0) and p; = (0, 3) respectively.

This distribution has support S(f) = R?. From the property of normal distribution, we
start with a large enough initial interval [—9, 9]2, and then narrow it down to
[—6,6] x[—3,6]. So, we first generate n = 600,000 uniform random points from
[—6,6] x [~ 3,6] to form S*(f). Then S;*(f) is divided into / = 600 contours. From these
contours m = 6,000 observations are drawn. The sample is shown in Figure 4. The
corresponding sample moments are X = (0.0001,1.2081) and $? = (5.5177,2.3136). The
mode is found to be Mod = (0.0001,2.9990).

Note that the locations of the three component distributions in this example are of equal
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Figure 4. A sample of size m = 6,000 from the bivariate normal mixture in Example 4.

distance, i.e., d(u;, o) = d(pty, ti3) = d(us, ;). It is important to see that as the locations
of the three distributions move away from each other, the usual MCMC algorithms like
Gibbs sampler will become less and less efficient, and will fail when the distributions are
far enough from each other. This is due to the fact that the Markov chain, induced by the
Gibbs sampler, becomes slower and slower, and collapses eventually as the ratio of the
distance between the locations to their variances becomes moderately large. In general,
Gibbs sampler will have much trouble to deal with moderate or high dimensional mixture
populations, especially when the sub-populations are apart from each other. Note that in
this example, this deficiency cannot be overcome by rotating coordinate axes.

5. Applications

In this section we apply our approach to some real problems which have been extensively
studied in the recent literature. All previous studies of theses examples are restricted to
either conjugate or ‘‘standard’’ set-up of prior distributions and likelihoods, for the
computational convenience. We demonstrate with these examples that our method is not
restricted to those set-up and provides real freedom in choosing prior distributions.

EXAMPLE 5 Gaver and O’Muircheartaigh (1987) analyzed a data set of failure rates of ten
pumps at the nuclear power plant Farley 1, UK. They used a Poisson model for the
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logarithmic failure rates and log-Student-r and gamma priors respectively for the
parameters. This data set has been subsequently re-analyzed by Gelfand and Smith (1990)
and Tierney (1994), using different prior distributions. This example has been used as a
benchmark example by Robert (1998) to compare different algorithms. Here we analyze
the original data (not logarithmic scaled) and use the log-Student-¢ prior, as originally
proposed by Gaver and O’Muircheartaigh (1987). Suppose the pump failure rates s; ~
Poisson(/4,;), i =1,2,...,10. Parameters log/; are modeled as a sample from the
Student-¢ distribution with five degrees of freedom,

()]

Thus, the logarithm of the posterior density is

-3

log ;~1(5;p1,7) =

10 10

10
FO ) = Z(Si —1)log 2; — Z ti4; =3 Z log[57* + (log Z; — /4)2]-

i=1 i=1 i=1

Following Gaver and O’Muircheartaigh (1987), parameters u and t are set to their
maximum likelihood estimates, i = — 1.18 and 7 = 1.29. This model is estimated using
the data given in Gaver and O’Muircheartaigh (1987).

First, from the property of Student-¢ distribution, we choose the initial interval to be
[0,20] "9 After several trials, the upper bound 20 has been lowered to different values for
different coordinates. Then, from the resulting interval, n = 600,000 uniform random
points are generated. These points are then divided into / = 1,000 contours, from which
m = 5,000 observations are sampled. The marginal posterior distributions of
Ay i=1,2,...,10 are shown in Figure 5. The corresponding posterior modes, means
and standard deviations are given in Table 1, together with the real failure rates computed
from the data. To our knowledge these graphical and numerical results are most complete
compared to all previous studies in the literature.

EXAMPLE 6 Tanner (1992) used a Poisson change point model to analyze a British
coalmining disaster data set from 1851-1962. A simplified version of this model has also
been considered by Arnold (1993). A time series plot and a bar chart of the data are
displayed in Figure 6, which shows a clear structure change around 1890.

Following Tanner (1992), suppose the annual counts of disasters X; ~ Poisson(6,), for
i=1,2,...,x and X; ~Poisson(4;), for i = k + 1,k +2,...,N with N = 110. Then the
log-likelihood function is

I(k,0,4) = (ix,»—l/Z) log0+< i x,-—l/2> log/ — K0 — (n — k)4,

i=1 i=Kk+1

where ke (1 : N), 0€(0,00) and A€ (0, 00). Using our algorithm and the steps in the next
paragraph, the approximate maximum likelihood estimates (AMLE) for these parameters
are computed and the corresponding results are shown in Table 2.

Now let the parameters in this model have the following prior distributions: the change
point k has a discrete uniform distribution on integers (1 : N), 6 and A have gamma
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Figure 5. Marginal posterior distributions of pump failure rates 4;, i = 1,2, ..., 10.

Table 1. Posterior modes, means and standard deviations of Farley 1 pump failure rates.

Pump 1 2 3 4 5 6 7 8 9 10

Rate 0.0530  0.0636  0.0795 0.1113  0.5725 0.6043 09542 09542 1.9084  2.0992
Mode  0.0543  0.0909 0.0810 0.1015 0.2630 0.5744 0.4236 02700 1.5815 1.7625
Mean  0.0628 0.1085 0.0913  0.1160 0.5246  0.5914  0.6801  0.6892  1.5431  2.0159
Std. 0.0248  0.0690 0.0364 0.0296 0.2718 0.1345 0.5181 0.5209 0.7653  0.4384
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Figure 6. Coalmining disaster data (1851-1962) in Example 6.

distributions G(1/2,a) and G(1/2, ) respectively, and hyper-parameters « and f both
follow a gamma distribution G(2, 1). Therefore, the logarithm of the posterior density is

fle, 0, 2,0, 8) =1(k,0,A) + 1.5logo + 1.5log f — (0 + 1)oe — (A + 1)p.

We generate a sample from the posterior distribution for the discrete variable x and four
continuous variables 0, A, o and . We start with initial ranges for parameters as
ke (25:55), 0e[2,5], 1€]0,2], «€[0,3] and Se(0,6] respectively, then narrow them
down to ke (30:50), 0€[2.2,4], A1€[0.6,1.4], x€[0,2] and f € [0,4] respectively, from
which n = 600,000 initial points are generated. These points are divided into / = 600
contours, from which a sample of size m = 5,000 is drawn. The marginal posterior
distributions are shown in Figure 7. The first plot in Figure 7 shows the discrete posterior
distribution for the change point x, which is very similar to the result obtained by Tanner
(1992). The corresponding posterior sample modes, means and standard deviations of all
parameters are given in Table 2.

Table 2. The AMLE, posterior modes, means and standard deviations of the change point x and other parameters
in Example 6.

Parameters K 0 A o p
AMLE 41.0000 3.0809 0.9097 - -
Mode 41.0000 3.0945 0.9090 0.4357 0.8370
Mean 40.0060 3.0807 0.9274 0.6205 1.2971

Std. 2.5224 0.2972 0.1206 0.3815 0.7872
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Figure 7. Marginal posterior distributions of «, 0, A, o and f§ in Example 6.

6. Curse of Low Probability

This section is concerned with an important and challenging issue that is closely related to
random sample generation and integration. The problem is how to compute accurately an
integration over an area where the probability measure is extremely low. In the literature
this problem is often regarded as a problem of dimensionality. To our understanding,
however, the real difficulty is not (only) high dimension, but rather low probability. We
explain the problem with the following three examples.

As indicated in the introduction section, for a given integration problem, it is well
known that the sampling-based methods may not be as accurate or efficient as numerical
analytic methods, especially when the dimension is low or moderate. However, the
attraction of sampling-based methods is their conceptual simplicity and ease of
implementation. In this sense our method can provide an indirect solution to some
integration problems. More technical and accurate treatments of the numerical integration
problems, including evaluating multivariate normal probabilities, can be found in, for
example, Evans and Swartz (1995, 2000), Genz (1992, 1993), Genz and Kwong (2000),
Schervish (1984) and Somerville (1998).
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Figure 8. A sample of size m = 2,000 from the six-dimensional normal distribution N (0, X).

EXAMPLE 7 Evans and Swartz (1995) considered an integral of the density function f(x)
of the six dimensional normal distribution N4(0,%) over interval [0,00)%, where
2= diag(0,1,2,3,4,5) +ee’ and e = (1,1,1,1,1,1)". As pointed out by Evans
and Swartz (1995), an accurate numerical evaluation of this integral is extremely difficult.
To visualize the problem, we use our algorithm to generate a sample of size m = 2,000
from this distribution and display some selected scatter plots and the marginal histograms
in Figure 8.

From these plots we see that, because of the variance-covariance structure of this
distribution, the value of f(x) is very small for x& [0, 00)°. In fact, the value of this integral
is approximately f[OAOO)ﬁ f(x)dx~1/60,000, which means that in about every 60,000
generated observations we expect to have one observation falling in the range [0, oo)6.
This makes it very difficult to use any Monte Carlo method to calculate this integral
accurately. However, our method provides an indirect solution to this problem. From the
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Figure 9. A sample of size 5,000 from the bivariate normal distribution with correlation r = —0.95.

drawn sample we can see that in the range of integration [0, oo)6 the density function
highly concentrates around the origin and is almost zero anywhere else. This suggests to
approximate the integral using a simple importance sampling procedure. Indeed, a sample
of 10° uniform observations from interval [0,1]° gives a sample mean for f(x) as
1.6658269 x 10—, This value is pretty close to the results of Evans and Swartz (1995),
obtained by much more sophisticated procedures.

EXAMPLE 8 The difficulty in the above example has in fact nothing to do with dimension.
It is easy to see that even an integral of a density function of a bivariate normal distribution
over range [0, oo)2 may be difficult, if the correlation coefficient is very close to —1. This
can also be visualized through Figure 9 of a sample from the bivariate normal distribution
with means (0, 0), variances (1, 1) and correlation r = — 0.95. Again, the method in the
previous example provides a possible solution for similar problems.

EXAMPLE 9 Sometimes difficulties like one in the above two examples can be overcome
through using some advanced techniques and with great care, such as importance sampling
techniques (Evans and Swartz, 1995). However, there are situations where even
importance sampling does not work properly. This can be seen by the following
univariate integration problem. Let f(x) be the density of the standard normal distribution
and
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Vr/2exp(x?/2)
= 2 ([ = my),
x| log [x](log log |x])

where m; = 9. The question is how to approximate the integral

I= /ic H(x)f (x)dx

without using knowledge of the functional forms of f and H. It is easy to see that the
integral 1 — [ 'f”mU f(x)dx is a very small number, meaning that an extremely small portion
of observations of any sample will fall in the range (— oo, — my] U [my, c0). Furthermore,
it is easy to calculate, for every m > my, the difference

1
I—/ H(x dx =
loglogm

which tends to zero very slowly as m — o0. As a result, the numerical integration of the
form | 'fm H (x)f (x)dx will not be a good approximation of /, unless m is extremely large.
Indeed, for m = 10* say, the relative approximation error is

loglogm, log log my

loglogm  logk + loglog 10

which is about 1/10 even for & = 1,000! It seems to us that any Monte Carlo based
simulation method will fail to deal with such kind of problem.

All the above examples show that the real difficulty in calculating integrations over an
unbounded low probability area lies in the fact that it is difficult to generate any
observation, let alone many, in that area via sampling based methods.

7. Discussions and Conclusions

We proposed a simple, direct numerical sampling method, which is dimension-free, non-
iterative and is applicable to almost all multivariate distributions arising in real
applications. This method is based on random discretization of the density function and
a multivariate version of the inverse probability integral transformation. This approach
requires no reparameterization or any other truly restrictive conditions on density
functions. Due to its simplicity and efficiency, this algorithm enables flexible and practical
choice of prior distributions, which is important in non-conjugate Bayesian analysis of real
problems.

This approach is based on an approximation of the density of interest by a simple
density with / contours. This approximation becomes more and more accurate, when
| — oo. Based on our experience with numerous real examples, a value of / between 200
and 500 for a density of five dimensions or lower, and a value between 1,000 and 100,000
for a density of higher dimensions usually provide rather satisfactory results.

As pointed out by a referee, there is an interesting connection between the algorithm of
this paper and the sampling-importance-resampling (SIR) of Rubin (1988). In the case
where density f(x) has a compact support, if the uniform density is used as importance
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density in SIR and the number of contours is taken to be / = » in our algorithm, then both
procedures are the same.

It is shown that the method of this paper also provides an indirect solution to some
numerical integration problems. The examples presented are initial experiments in this
direction and much more work is needed for future research.
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