
CENSORED LINEAR REGRESSION
MODELS

Censored linear regression models constitute
a class of special limited dependent variable∗
models where the dependent variables are
censored. The censoring∗ can be from above
or below; the censoring points can be known,
unknown, or random. For illustration, con-
sider a model where the dependent variable
is censored from below at the known point
zero; precisely,

ηt = β1 + x′
tβ2 + ut,

yt = max{ηt, 0}, (1)

where ηt ∈ R is the censored dependent vari-
able, yt is its observed counterpart, xt ∈ Rk is
the observed vector of covariates, β = (β1, β ′

2)′
the vector of regression parameters, and ut
the errors in the regression equation. It is
usually assumed that ut is normally dis-
tributed with mean 0 and variance σu.

This model was first applied in economics
by Tobin [22] and is known as the Tobit model
in the econometric literature [10]; see PROBIT

ANALYSIS. For the ‘‘standard’’ Tobit model
(1), many statistical inference methods have
been developed in the last twenty years Ref-
erences may be found, e.g., in refs. 2, 3, 14,
18. The related models are Probit models and
truncated linear regression models.

It is well known that the ordinary
least squares (OLS) estimators of β in
the model (1), using either all observa-
tions or only the positive observations of
yt and the corresponding observations of
xt, are biased and inconsistent [3,11]. Gold-
berger [11], Greene [14], and Chung and
Goldberger [6] proposed corrected OLS esti-
mators of β under the extra assumption that
xt is normally distributed. Heckman [15] pro-
posed a two-stage estimator of a more general
model of (1). Amemiya [1] derived the asymp-
totic normality∗ of the maximum likelihood
estimators∗ (MLEs) of β and σu. Using Tobin’s
reparameterization, Olsen [19] showed that
a reparametrized likelihood function of the
model (1) has a unique, global, finite maxi-
mum. Powell [20,21] proposed a least abso-
lute deviation∗ (LAD) estimator of the model
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(1) and derived its consistency and asymp-
totic distribution. A Bayes approach was used
by Chib [5].

TOBIT MODEL WITH MEASUREMENT
ERRORS

In many practical applications the explana-
tory variable xt or some of its components are
not or cannot be exactly measured. In such
cases a more general model than (1) is desir-
able. A censored linear errors-in-variables∗
(CEV) model can be defined as

ηt = β1 + β ′
2ξ t + ut,

yt = max{ηt, 0},
xt = ξ t + vt, (2)

where instead of ξ t, xt is actually observed,
and vt represents measurement errors∗.
Furthermore, ut, vt and ξ t are assumed
to be independently and normally dis-
tributed with means 0, 0, µξ and variances
σu, �v, �ξ respectively. If the measurement
error covariance �v = 0, then the model (2)
reduces to the error-free model (1).

The problem with measurement errors has
received more attention recently. Weiss [26]
considered the LAD estimator of model (2).
Wang [23,24,24] investigated the MLE and
proposed two-step moment estimators of the
model. A closely related binary choice model
with measurement errors has been stud-
ied [16], and also a class of more general
stochastic frontier models [7].

IDENTIFIABILITY

The usual linear normal errors-in-variables
model is not identifiable, and hence the model
cannot be estimated consistently. The model
(2) is nonlinear because of censoring. How-
ever, this censoring can only help to iden-
tify the lost information caused by censoring
itself and does not help to identify all model
parameters [24]. Specifically, in the model
(2) only the parameters (µη, ση, σ xη, µξ , µx, �x)
are uniquely identified, whereas the parame-
ters (β1, β2, σu, �ξ , �v) are not uniquely iden-
tified.
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In practical applications the a priori iden-
tifying information is usually provided in
terms of at least k(k + 1)/2 linear restric-
tions on the parameters, e.g., that the vari-
ance ratio σ−1

u �v or the so-called reliability
ratio κ = �−1

x �ξ is known or may be esti-
mated previously. The latter is equivalent to
the condition that the noise-to-signal ratio
� = �−1

ξ �v is known. This information can
be obtained in many situations when, e.g.,
validation data, panel data or repeated sam-
pling are available. For more discussion see
[4,8,9,17]. In the following we assume that
� = �−1

ξ �v is known.

MODEL REDUCTION AND ESTIMATION

The model (2) can be reduced to an error-
free form. Indeed, it can be transformed into
the familiar form of a censored regression
model [25]:

ηt = γ1 + x′
tγ 2 + wt,

yt = max{ηt, 0}, (3)

where wt has distribution N(0, σw) and is
independent of xt. The relations between
the new parameters (γ1, γ2, σw, µx, �x) and
the original ones (β1, β2, σu, µξ , �ξ , �v) are
given by

β1 = γ1 − µ′
x�γ 2, β2 = (I + �)γ2,

σu = σw − γ ′
2�x�γ 2, µξ = µx,

�ξ = �x(I + �)−1. (4)

The mapping (4) is one-to-one; consequently,
any estimator of the model (3) implies a
corresponding estimator of the model (2).
Using this approach, it is also possible to
derive the asymptotic bias of the estimator
of (2) when the identifying information �

is misspecified. Suppose, for instance that
ψ̂ = (γ̂1, γ̂ ′

2, σ̂w)′ is a consistent estimator of
(3) and θ̃ = (β̃1, β̃

′
2, σ̃u)′ is obtained via (4)

where, instead of �, a wrong �̃ is used. Then,
the asymptotic bias of θ̃ is given by

plim β̃1 = β1 + µ′
x(� − �̃)(I + �)−1β2,

plim β̃2 = β2 − (� − �̃)(I + �)−1β2,

plim σ̃u = σu + β ′
2�ξ (� − �̃)(I + �)−1β2.

Consequently, the estimation biases are of
the same order as � − �̃ and hence can be
significant if the amount of misspecification
� − �̃ is not very small relative to I + �.
Further, the slope parameter β2 tends to
be underestimated by underspecified � and
overestimated by overspecified �, whereas
the converse is true for β1 and σu.

The model (3) is different from the ordi-
nary Tobit model (1) in that the xt in (3)
is a random vector and is unbounded under
normality, whereas in the Tobit model it is
usually assumed to consist of bounded con-
stants. This fact should be taken into account
in deriving the asymptotic covariance matri-
ces of the estimators, e.g., of the maximum
likelihood estimator.

A TWO-STEP MOMENT ESTIMATOR (TME)

Suppose the data (yt, x′
t), t = 1, 2, . . . , T, are

i.i.d. Denote the sample moments by

µ̂y = 1
T

T∑
t=1

yt, µ̂x = 1
T

T∑
t=1

xt,

�̂x = 1
T

T∑
t=1

(xt − x)(xt − x)′.

Let µy+ = E(yt|yt > 0) and µxy+ = E(xtyt|yt >

0). These conditional moments are consis-
tently estimated by the corresponding sam-
ple moments, using the positive yt’s and
the corresponding xt’s. These estimators are
denoted analogously as µ̂y+, µ̂xy+, respec-
tively. Finally, let δ = µη/

√
ση, and let �(·)

and φ(·) denote the standard normal distri-
bution and density functions.

Wang [25] proposed a two-step estimation
procedure. In the first step, the first and
second moments of (ηt, x′

t) are estimated by

µ̂η = δ̂µ̂y+
δ̂ + φ(δ̂)/�(δ̂)

,

σ̂η = (µ̂η/δ̂)2,

σ̂ xη = µ̂xy+ − µ̂xµ̂y+,
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where δ̂ = �−1(µ̂y/µ̂y+). In the second step,
the remaining parameters are estimated by

β̂2 = �̂
−1
ξ σ̂ xη, β̂1 = µ̂η − β̂

′
2µ̂ξ ,

σ̂u = σ̂η − β̂
′
2σ̂ xη, µ̂ξ = µ̂x,

�̂ξ = �̂x(I + �)−1.

All these estimators are strongly consis-
tent, because they are continuous functions
of the sample moments. Furthermore, they
are asymptotically normally distributed [25].
The asymptotic covariance matrices given in
ref. 25 apply to the moment estimators of the
Tobit model (1) as well, because it is a special
case of the model (2) with � = 0 (and hence
�ξ = �x).

This two-step procedure may be similarly
applied to the case where, instead of �, the
variance ratio σ−1

u �v is known. The only dif-
ference is that the second-step estimators
should be calculated similarly as in ref. 8.
The asymptotic results of the estimators may
be established analogously. Such results for
a simple model with k = 1 are given by
Theorem 1.3.1 of ref. 8.

MAXIMUM LIKELIHOOD ESTIMATOR (MLE)

Without loss of generality, let the data be
given as in the preceding section, in which
the first T0yt’s are zero, and the last T1 = T −
T0 yt’s are positive. The MLE of µx and �x are
given by the corresponding sample moments,
and the MLE of µξ and �ξ are therefore
identical with the TME [24]; analogously to
ref. 19, the reparametrized conditional log-
likelihood function

Lc(ψ) =
T0∑
t=1

log �(−α′x̃t)

+ T1 log τ − 1
2 ψ ′Z′Zψ (5)

is globally concave in ψ = (α′, τ )′ ∈ Rk+1 ×
R+, where R+ = (0, +∞), x̃t = (1, x′

t)
′, Z =

(X1, −Y1), X1 = (x̃T0+1, x̃T0+2, . . . , x̃T)′, and
Y1 = (yT0+1, yT0+2, . . . , yT)′. Analogously
to [1], the MLE for ψ is asymptotically nor-
mal with an asymptotic covariance matrix
which is the inverse of

− plim
T→∞

1
T

∂2Lc(ψ)
∂ψ∂ψ ′ = � = �0 + �(δ)�1,

where δ = µη/
√

ση,

�0 =
⎛
⎝�(−δ)E[λt(λt − α′x̃t) 0

×x̃tx̃′
t|ηt � 0]
0 �(δ)/τ 2

⎞
⎠ ,

�1 =
(

E(x̃tx̃′
t|yt > 0) −E(x̃tyt|yt > 0)

−E(ytx̃′
t|yt > 0) E(y2

t |yt > 0)

)
,

and λt = φ(α′x̃t)/�(−α′x̃t) [24]. The MLE for
θ = (β1, β ′

2, σu)′ is calculated according to

β1 = (α1 − µ′
x�α2)/τ ,

β2 = (I + �)α2/τ ,

σu = (1 − α′
2�x�α2)/τ 2.

It is clear that θ̂ML is consistent. Further,√
T(θ̂ML − θ0)

L→N(0, σwC�−1C′), where σw =
σu + β ′

2�v(I + �)−1β2 and

C =
⎛
⎝1 −µ′

x� −β1
0 I + � −β2
0 −2β ′

2�x� −2σu

⎞
⎠ .

The maximization of Lc(ψ) may be carried out
through standard numerical methods such
as Newton-Raphson∗. The numerical calcu-
lation is straightforward, as the first and
second derivatives of Lc(ψ) are available:

∂Lc(ψ)
∂ψ

=
(−X′

0λ0
T1/τ

)
− Z′Zψ,

∂2Lc(ψ)
∂ψ∂ψ ′ = −

(
X′

0�0X0 0
0 T1/τ

2

)
− Z′Z,

where X0 = (x̃1, x̃2, . . . , x̃T0 )′, λ0 = (λt, t = 1,
2, . . . , T0)′, λt = φ(α′x̃t)/�(−α′x̃t), and �0 is
the diagonal matrix with diagonal elements
λt(λt − α′x̃t), t = 1, 2, . . . , T0.

Since Lc(ψ) is globally concave, the itera-
tion may start at any finite point. However, a
good starting point is important for rapid con-
vergence; the TME of the preceding section
may serve as initial values for the itera-
tions. As is shown by a Monte Carlo study
in ref. 24, for a simple model with k = 1 the
MLE procedures using the Newton-Raphson
algorithm and the TME as starting values
may achieve rather satisfactory convergence
after four or five iterations. The estimators
ψ̂1 and θ̂1 obtained after one iteration of the
Newton-Raphson procedure have the same
asymptotic distributions as the MLEs ψ̂ML
and θ̂ML, respectively.



4 CENSORED LINEAR REGRESSION MODELS

REFERENCES

1. Amemiya, T. (1973). Regression analysis
when the dependent variable is truncated nor-
mal. Econometrica, 41, 997–1016.

2. Amemiya, T. (1984). Tobit models: a survey.
J. Econometrics, 24, 3–61.

3. Amemiya, T. (1985). Advanced Econometrics.
Blackwell, Oxford, England.

4. Carroll, R. J., Ruppert, D., and Stefan-
ski, L. A. (1995). Measurement Error in Non-
linear Models. Chapman and Hall, London.

5. Chib, S. (1992). Bayes inference in the Tobit
censored regression model. J. Econometrics,
51, 79–99.

6. Chung, C. F. and Goldberger, A. S. (1984).
Proportional projections in limited dependent
variable models. Econometrica, 52, 531–534.

7. Colombi, R. (1993). Stochastic frontier and
switching regression models with latent vari-
ables. In Statistical Modeling and Latent
Variables, K. Haagen, D. Bartholomew, and
M. Deistler eds. North-Holland, Amsterdam.

8. Fuller, W. A. (1987). Measurement Error Mod-
els. Wiley, New York.

9. Gleser, L. J. (1992). The importance of assess-
ing measurement reliability in multivari-
ate regression. J. Amer. Statist. Ass., 87,
696–707.

10. Goldberger, A. S. (1964). Econometric Theory,
Wiley, New York.

11. Goldberger, A. S. (1981). Linear regression
after selection. J. Econometrics, 15, 357–366.

12. Goldberger, A. S. (1983). Abnormal selection
bias. In Studies in Econometrics, Time Series
and Multivariate Statistics, S. Karlin, T.
Amemiya, and L. A. Goodman, eds. Academic
Press, New York, pp. 67–84.

13. Greene, W. H. (1983). Estimation of lim-
ited dependent variable models by ordinary
least squares and the method of moments.
J. Econometrics, 21, 195–212.

14. Greene, W. H. (1993). Econometric Analysis,
2nd ed. Macmillan, New York.

15. Heckman, J. J. (1976). The common struc-
ture of statistical model of truncation, sample
selection and limited dependent variables and
a simple estimator for such models. Ann. Econ.
and Soc. Meas., 5, 475–492.

16. Hsiao, C. (1991). Identification and estimation
of dichotomous latent variables models using
panel data. Rev. Econ. Stud., 58, 717–731.

17. Jaech, J. L. (1985). Statistical Analysis of
Measurement Errors. Wiley, New York.

18. Maddala, G. S. (1985). Limited-Dependent
and Qualitative Variables in Econometrics.
Cambridge University Press, Cambridge,
England.

19. Olsen, R. J. (1978). Note on the uniqueness
of the maximum likelihood estimator for the
Tobit model. Econometrica, 46, 1211–1215.

20. Powell, J. L. (1981). Least Absolute Devia-
tion Estimation for Censored and Truncated
Regression Models. Tech. Rep. 356, Institute
for Mathematical Studies in the Social Sci-
ences, Stanford University, Stanford, CA.

21. Powell, J. L. (1983). Asymptotic Normality of
the Censored and Truncated Least Absolute
Deviation Estimators. Tech. Rep. 395, Insti-
tute for Mathematical Studies in the Social
Sciences, Stanford University, Stanford, CA.

22. Tobin, J. (1958). Estimation of relationships
for limited dependent variables. Economet-
rica, 26, 24–36.

23. Wang, L. (1992). Identifiability and Estima-
tion of Linear Censored Errors-in-Variables
Models. WWZ-Discussions Papers 9208, Uni-
versity of Basel, Basel, Switzerland.

24. Wang, L. (1994). Identification and Estima-
tion of Censored Regression Model with
Errors-in-Variables. USC-Economics, Arthur
Andersen Working Paper Series 9401, Univer-
sity of Southern California, Los Angeles.

25. Wang, L. (1996). Estimation of Censored
Linear Errors-in-Variables Models. WWZ-
Discussions Papers 9605, University of Basel,
Basel, Switzerland.

26. Weiss, A. A. (1993). Some aspects of measure-
ment error in a censored regression model.
J. Econometrics, 56, 169–188.

See also CENSORING; ERRORS IN VARIABLES; LIMITED DEPENDENT

VARIABLES MODELS; MEASUREMENT ERROR; and PROBIT

ANALYSIS. LIQUN WANG


