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Abstract

The class of the so-called general least squares procedures in the linear errors-in-
variables models with correlated noise components is considered. The word ”gen-
eral” means that the data are projected onto the hyperplanes along an arbitrarily
given direction, not necessarily parallel to the axes of coordinates. A full description
of the structure of this class is given. The asymptotic properties of the estimators
are investigated. Monte Carlo simulations of the asymptotic biases of the general
least squares, the total least squares and the maximum likelihood estimators are
presented.

1 Introduction

Errors-in-variables models have received more and more attention in recent years.
Aigner et al (1984), Anderson (1984) and Fuller (1987) summarize various aspects
and results, mainly for static models. Whereas a recent, rather thorough reference
of the literature is given in Deistler and Anderson (1989), with emphasis on dynamic
systems. Another direction of research of the problem is using non-statistical frame-
work. In a series of lectures Kalman (1990) investigates the problem in such a setting
and provides some very deep results, one of which is the general least squares scheme
for estimating the regression coefficients for given number of equations. This paper
is largely motivated by Kalman (1990). However here we are mainly concerned with
statistical aspects and applications of the general least squares procedures.

Consider the following linear errors-in-variables model

yt = α+ β′ξt + ut, xt = ξt + vt, (1.1)

where ξt ∈ IRm are the vectors of unobserved variables, yt ∈ IR and xt ∈ IRm are the
observed variables, ut and vt are the corresponding measurement errors and α ∈ IR
and β ∈ IRm are the parameters.
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The problem of estimating the slope parameters in this model has a long his-
tory. It is well-known that the ordinary least squares (OLS) estimator is no longer
optimal in the usual sense and is biased toward the origin. A straightforward gen-
eralization of the OLS procedure is the total least squares (TLS) (sometimes also
called orthogonal regression), in which the perpendicular distance of the hyperplane
to the data are minimized.

However, we observe that in some situations, especially when the errors ut and
vt are highly correlated, the observed data (yt, x

′
t) tend to be deviate from the true

values (α + β′ξt, ξ
′
t) in a common direction. This suggests another possibility to

generalize the OLS procedure: first, the data are projected onto the hyperplanes
along the fixed “true” direction, not necessarily parallel to the axes of coordinates,
and then, the sum of squared residuals is minimized. For notational convenience we
call this procedure the directed least squares (DLS) procedure.

From the statistical point of view it is well-known that the model (1.1) suffers
from the problem of identification (Hsiao 1983). Consequently in practical appli-
cations usually a certain kind of a priori information must be used to reduce the
number of unknown parameters. One typical example of such cases is the maximum
likelihood (ML) estimation, presuming that certain information about the error co-
variances be available (Fuller 1987). In this paper we show that in such cases this
information may also be used to calculate the DLS estimate which is equally good
as and sometimes even better than the ML and the TLS estimates.

In section 2 we derive the general form of the DLS estimate for an arbitrarily
given direction. Section 3 deals with the statistical properties of the estimator. In
section 4 we show how to use the information in the error covariances to choose a
direction to apply the DLS estimator for two typical models which are used very
often in practical applications. Results of Monte Carlo simulations of the asymptotic
biases of the DLS, the TLS and the ML estimators are also presented.

2 The directed least squares estimates

In this section we first derive the general form of the DLS estimate for an arbitrarily
given direction and then discuss some geometric and algebraic properties of the
class of all such estimates. Without loss of generality we assume that the data
zt = (yt, x

′
t)
′ ∈ IRn, n = m+ 1, t = 1, 2, . . . , T are generated from the model

yt = β′ξt + ut, xt = ξt + vt (2.1)

and the data moment matrix is nonsingular: Mz = 1
T

∑T
t=1 ztz

′
t > 0. In this case

the model may be written as(
yt
xt

)
=

(
ηt
ξt

)
+

(
ut
vt

)
, A′

(
ηt
ξt

)
= 0, A′ = (1,−β′) ∈ IRn.
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Given any vector D = (1, d′)′ ∈ IRn (that the first element is taken to be one is
not a restriction of generality), the projection in IRn along the direction D onto the
hyperplane Π : A′z = 0, where A′D 6= 0, is Pd = I −D(A′D)−1A′. Thus the sum of
squared residuals (divided by the sample size T) is

L(d, β) =
1

T

T∑
t=1

‖zt − Pdzt‖2

=
1

T

T∑
t=1

z′t(I − Pd)′(I − Pd)zt

= tr
(
(I − Pd)′(I − Pd)Mz

)
= D′D(A′D)−2A′MzA. (2.2)

The least squares solution to the problem is then to find the β̂ which minimizes (2.2).
Applying the well-known Cauchy-Schwarz inequality we have, for every β ∈ IRm,

L(d, β) ≥ D′D(D′M−1z D)−1

and the minimum is attained if and only if

MzÂ = cD, (2.3)

where Â = (1,−β̂′)′ and c is a constant. Writing (2.3) as(
My M ′xy
Mxy Mx

)(
1

−β̂

)
= c

(
1
d

)
and solving this matrix equation we have

β̂d = (Mx − dM ′xy)−1(Mxy − dMy), (2.4)

provided det(Mx − dM ′xy) 6= 0.
Thus we have obtained the least squares solution to the problem of estimation

of slope parameters in model (2.1). We call β̂d in (2.4) the DLS estimate of β. Note
that this estimate depends on the direction d, which is unknown in general. In fact,
every vector d ∈ IRm satisfying det(Mx − dM ′xy) 6= 0 may serve as a direction. On
the other hand, it is easy to verify that, for the given data Mz > 0, any β ∈ IRm
satisfying My −M ′xyβ 6= 0 is a least squares solution if we choose the direction

d = (My −M ′xyβ)−1(Mxy −Mxβ). (2.5)

Let D = {d ∈ IRm| det(Mx − dM ′xy) 6= 0} and B = {β ∈ IRm|My −M ′xyβ 6= 0},
then the class of all DLS estimates {β̂d | d ∈ D} is exactly B and, viewed as a
mapping, β̂d defined by (2.4) is one to one between D and B. Furthermore for
n = 2, it is easily seen that β̂d is strictly decreasing in the intervals (−∞,mx/mxy)
and (mx/mxy,+∞). We summarize the above discussion in the following theorem.
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Theorem 2.1. Given the data Mz satisfying detMz 6= 0, then
(1) Given any direction d ∈ D, the loss function L(d, β) in (2.2) is minimized

at β̂d which is given by (2.4).
(2) Conversely, for any β ∈ B, there is one direction d ∈ IRm (given by (2.5)),

such that β̂d is the corresponding least squares solution.
(3) The mapping d → β̂d is a homeomorphism between D and B, which are the

open and dense subsets of IRm.
(4) For n = 2, β̂d is piecewise strictly decreasing on D.

Remark 2.1. If we do not have any a priori information about the direction d,
then it seems natural to minimize the loss

L(d, β̂d) = D′D(D′M−1z D)−1 (2.6)

with respect to d further to get an overall optimal solution. It is easily seen that
this will lead to the total least squares (TLS) estimate. Indeed, the right hand side
of (2.6) attains the minimum if and only if D is the eigenvector of Mz associated
with the smallest eigenvalue λ = λmin, i.e., if and only if D satisfies MzD = λminD,
which gives dTLS = (λminI −Mx)−1Mxy. Now if Â is determined by (2.3), then
MzÂ = λminÂ. Solving this equation we obtain the familiar TLS estimate

β̂TLS = (Mx − λminI)−1Mxy.

However, the derivation of the estimates here gives an interpretation other than the
traditional ones, e.g. that the TLS has the minimum perpendicular distance to the
data. As has been mentioned earlier, the TLS procedure seems to be rational if we
do not have any information about the errors in the data. As is easily seen however,
the TLS ignores such kind of information if they are available, which is more often
than not the case in controlled experiments. As will be shown later, in such cases
TLS is not the optimal solution in the class of all DLS estimates.

Remark 2.2. Finally we note that in applications usually the intercept is explic-
itly expressed in the model, as in (1.1). Thus it is convenient to give an explicit
expression for the estimates. The calculations are straightforward if the model (1.1)
is viewed as a special case of model (2.1) in which one component of ξt takes the
constant one. The only issue to be careful is that, since the constant variable one
is error free, the corresponding direction adjustment should be zero, i.e., the direc-
tion vector should be taken as (1, 0, d′)′. Thus the corresponding estimates of the
parameters in model (1.1) are given by

β̂d = (Sx − dS′xy)−1(Sxy − dSy), α̂d = ȳ − x̄′β̂d,

provided det(Sx − dS′xy) 6= 0, where

x̄ =
1

T

T∑
t=1

xt, Sx =
1

T

T∑
t=1

(xt − x̄)(xt − x̄)′, Sxy =
1

T

T∑
t=1

(xt − x̄)(yt − ȳ)

and ȳ and Sy are similarly defined.
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3 Statistical properties of the DLS estimator

In this section we are concerned with the statistical aspect of the DLS estimator.
Usually the model (1.1) has two different forms, namely the structural form and
the functional form, depending on whether the ξt are stochastic variables or fixed
parameters. In this paper we make the following assumptions for the structural
form

(S1) ξt has finite first and second moments µξ = Eξt and Σξ = E(ξt − µξ)(ξt −
µξ)
′ > 0.

(S2) ξt and εt = (ut, v
′
t)
′ are independent.

Whereas for the functional form we assume

(F1) For T →∞, 1
T

∑T
t=1 ξt → µξ ∈ IRm exists.

(F2) For T →∞, 1
T

∑T
t=1(ξt − µξ)(ξt − µξ)′ → Σξ > 0.

Under either of the two groups of assumptions and notations the following mo-
ments equations hold

µy = α+ β′µξ, µx = µξ (3.1)

Σy = β′Σξβ + Σu, Σxy = Σξβ + Σvu, Σx = Σξ + Σv. (3.2)

For a proof see e.g. Schneeweiss and Mittag (1986). However, since our derivations
of the asymptotic properties of the DLS estimator are based solely on these moment
equations, it is not necessary to distinguish between the two forms of the model.
Given the data, the equations (3.1) are used to determine the intercept α and (3.2)
the slope parameter β. However, we are mainly interested in the estimator of the
slope parameter β̂d, since the calculation of α̂d and the derivation of its properties
are mathematically straightforward, e.g. the consistency of α̂d follows immediately
from the consistency of β̂d.

First let us consider the consistency of the DLS estimator. We say that the
estimator β̂d is consistent for β, if plimT→∞ β̂d = β holds for all β ∈ IRm. The
following theorem shows the consistency of the DLS estimator.

Theorem 3.1. If det(Σx − dΣ′xy) 6= 0, then

(1) plimT→∞ β̂d = β holds if and only if d = (Σu − Σ′vuβ)−1(Σvu − Σvβ).
(2) plimT→∞ β̂d = β for all β ∈ IRm if and only if ΣuΣv = ΣvuΣ′vu and d =

ΣvuΣ−1u = ΣvΣvu(Σ′vuΣvu)−1.
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Proof. (1) From the definition of the DLS (2.4) and the moment equations (3.2)
we have

plim
T→∞

β̂d = (Σx − dΣ′xy)
−1(Σxy − dΣy)

=
(
(I − dβ′)Σξ + Σv − dΣ′vu

)−1(
(I − dβ′)Σξβ + Σvu − dΣu

)
= β +

(
(I − dβ′)Σξ + Σv − dΣ′vu

)−1
(Σvu − dΣu − (Σv − dΣ′vu)β). (3.3)

Thus plimT→∞ β̂d = β if and only if

Σvu − dΣu − (Σv − dΣ′vu)β = 0 (3.4)

or equivalently d = (Σu − Σ′vuβ)−1(Σvu − Σvβ), provided Σu − Σ′vuβ 6= 0.
(2) From (3.4) plimT→∞ β̂d = β for all β if and only if Σvu − dΣu = 0 and

Σv − dΣ′vu = 0, which is equivalent to the conditions in the theorem. �

From the above theorem we see that the consistency can be achieved only in the
case where the error covariance matrix is singular. Consequently it is necessary to
consider another criterion of the estimation error when the DLS estimator is applied.
One natural criterion is the asymptotic absolute bias (AAB) of the estimator, which
is defined as

AAB(β̂d, β) = ‖ plim
T→∞

β̂d − β‖ = ‖βd − β‖. (3.5)

In order to calculate this bias, let us first discuss more about the direction d.
For notational simplicity in the remaining part of this section we restrict ourselves
to the case n = 2. For this case we use the lower case letters to denote variables
and moments. Thus the error covariance matrix is

Σε =

(
σu σvu
σvu σv

)
= σu

(
1 ρ

√
δ

ρ
√
δ δ

)
,

where ρ = σvu/
√
σvσu, δ = σv/σu are the error correlation coefficient and the error

variance ratio respectively. In the case where the error covariance matrix Σε is
nonsigular, the two directions

d1 =
σvu
σu

= ρ
√
δ, d2 =

σv
σvu

=

√
δ

ρ
(3.6)

given in Theorem 3.1.(2) are not identical. There is another intuitive reason that d1
and d2 play a special role, namely they are the two extreme bounds of all possible
directions if the average direction in the real errors is viewed as the regression
coefficient in the linear relation vt = dut. Indeed, by (3.6), the intervals between d1
and d2 will cover the whole real line as ρ→ 0 and they will concentrate at one point√
δ and −

√
δ as ρ→ 1 and ρ→ −1 respectively.
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Next we look at in more detail the function

βd = plim
T→∞

β̂d =
σxy − dσy
σx − dσxy

.

It is easily seen that βd is strictly decreasing in d in each interval of (−∞, σx/σxy)
and (σx/σxy, +∞). Thus if d1 and d2 lie at the same side of σx/σxy, then for any d

between d1 and d2 the AAB of β̂d in (3.5) does not exceed that of β̂d1 and β̂d2.
On the other hand, it is also easily seen that the function βd changes very

fast around its odd pole σx/σxy, i.e., any small change in d may lead to a very
large change in βd. This sensitivity might lead to large estimation bias if the true
direction lies in this region and is not known exactly. However this will not occur
in the case |ρ| = 1. Because of the one to one correspondence between d and βd, it
is possible and also more convenient to describe this ”sensitive region” of the DLS
procedure in terms of β.

Lemma 3.1. σx/σxy lies between d1 and d2 if and only if β lies between

b1 =
ρ√
δ

and b2 =
1 + (1− ρ2)rvξ

ρ
√
δ

, (3.7)

where rvξ = σv/σξ is the so-called noise-to-signal ratio. The directions of inequalities
depend on the sign of the correlation coefficient ρ.

Proof. We consider the case where σvu > 0. From (3.2) it follows that d1 <
σx/σxy < d2 if and only if

σvu
σu

<
σx
σxy

=
σξ + σv
σξβ + σvu

<
σv
σvu

,

which is easily shown to be equivalent to b1 < β < b2. The case σvu < 0 may be
treated in the same way with all inequalities reversed. �

It is easily seen that the sensitive interval corresponds to a certain neighbourhood
of the odd pole of the function βd and the intervals for positive ρ are symmetric
about zero to the intervals for negative ρ. Table 3.1 shows some sensitive intervals
for 0 < ρ < 1, in which case the sensitive interval is (b1, b2). We observe that most
of these sensitive intervals are around 1 (except for δ = 0.5 and ρ = 0.9) and have
a width no more than 2.5.

As has been mentioned earlier, in practical applications the DLS procedure might
have relatively large asymptotic bias if the unknown true parameter lies in the
sensitive interval. Thus the DLS procedure is recommended only if there is strong
a priori information that the true parameter β lies outside the sensitive interval.
In this case it is possible to give the bound for the asymptotic bias for the DLS
estimator.
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Table 3.1: Some sensitive intervals for β.

δ = 1

rvξ = 0.1 rvξ = 0.01 rvξ = 0.001
ρ = 0.9 (0.9, 1.13) (0.9, 1.11) (0.9, 1.11)
ρ = 0.7 (0.7, 1.50) (0.7, 1.44) (0.7, 1.43)
ρ = 0.5 (0.5, 2.15) (0.5, 2.02) (0.5, 2.00)

δ = 0.5

rvξ = 0.1 rvξ = 0.01 rvξ = 0.001
ρ = 0.9 (1.27, 1.60) (1.27, 1.57) (1.27, 1.57)
ρ = 0.7 (0.99, 2.12) (0.99, 2.03) (0.99, 2.02)
ρ = 0.5 (0.71, 3.04) (0.71, 2.85) (0.71, 2.83)

Theorem 3.2. Suppose d1 and d2 lie at the same side of σx/σxy. Let b1, b2 be as
in (3.7) and c > 0 be any given constant. Then for any d between d1 and d2 and for
all β in the region

|β − b1| ≥
1

cδ
, |1− b2

β
| ≥ 1

c|ρ|
√
δ

(3.8)

it holds
AAB(β̂d, β) = | plim

T→∞
β̂d − β| ≤ c(1− ρ2)rvξ. (3.9)

Proof. From (3.3) we have, for any d,

βd − β =
σvu − dσu − (σv − dσvu)β

(1− dβ)σξ + σv − dσvu
.

Thus by (3.6)

βd1 − β =
−(σv − d1σvu)β

(1− d1β)σξ + σv − d1σvu

=
−(1− ρ2)rvξβ

1− d1β + (1− ρ2)rvξ

=
(1− ρ2)rvξ

(1− b2/β)ρ
√
δ

and

βd2 − β =
σvu − d2σu
(1− d2β)σξ

=
(1− ρ2)rvξ
(β − b1)δ

.
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Since d1 and d2 lie at the same side of σx/σxy, the function βd is strictly decreasing
in the interval between d1 and d2. It follows that for any d between d1 and d2

|βd − β| ≤ max{|βd1 − β|, |βd2 − β|}

= (1− ρ2)rvξ max{ 1

|β − b1|δ
1

|1− b2/β||ρ|
√
δ
}

≤ (1− ρ2)rvξc,

provided β lies in the region (3.8). �

From (3.8) and (3.9) we see that the choice of the constant c is a trade-off
between the estimation precision and the range of admissible β’s. It is also easy to
calculate that for any c satisfying

0 < c <
1√

δ(
√

1 + (1− ρ2)rvξ − |ρ|)
(3.10)

the region (3.8) will exclude the sensitive interval between b1 and b2. Thus by
Lemma 3.1 and Theorem 3.2 we have the following result.

Corollary 3.1. Let c be any constant satisfying (3.10). Then (3.9) holds for any d
between d1 and d2 and all β in the region (3.8).

Example 3.1. Let δ = 1, rvξ = 0.01, c = 2 and ρ = 0.7, then by (3.6) d1 = 0.7 and
d2 = 1.43. From Table 3.1 we see that the sensitive interval is (b1, b2) = (0.7, 1.44).
Now it is easy to verify that the region (3.8) is the union of the intervals (−∞, 0.2)
and (5.03, +∞) and this region does not contain the sensitive interval. Thus by
Theorem 3.2, for any 0.7 < d < 1.43 and all β being outside the interval (0.2, 5.03),
it holds |plimT→∞ β̂d − β| ≤ c(1− ρ2)rvξ = 0.0102.

In the remaining part of this section we consider a kind of weaker consistency in
the sense that β̂d converges to the true β in probability as the sample size T is large
and as the noise-to-signal ratio is small. Formally, we consider the convergence

β̂d
P→ β, as T →∞ and

trΣε

trΣξ
→ 0, (3.11)

where Σε is the variance-covariance matrix of the errors εt = (ut, v
′
t)
′. For this kind

of weaker consistency we have the following result.

Theorem 3.3. If n = 2, then (3.11) holds for any d, β satisfying dβ 6= 1.
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Proof. From (3.3) we have

plim
T→∞

β̂d = β +
σvu − dσu − (σv − dσvu)β

(1− dβ)σξ + σv − dσvu

= β +
(1 + dβ)ρ

√
σvσu − βσvdσu

(1− dβ)σξ + σv − dρ
√
σvσu

= β +
(1 + dβ)ρ

√
(σv/σξ)(σu/σξ)− β(σv/σξ)− d(σu/σξ)

(1− dβ) + (σv/σξ)− dρ
√

(σv/σξ)(σu/σξ)

= β +O

(
σv + σu
σξ

)
and the result follows immediately. �

4 Applications of the DLS estimator

In this section we explain how to use the a priori information in the error covariance
matrix to choose a suitable direction for the DLS estimator. We also compare it
with the usual TLS and the ML estimators under the AAB criterion

AAB(β̂, β) = | plim
T→∞

β̂ − β|.

Throughout this section we consider the univariate model (n = 2)

yt = βξt + ut, xt = ξt + vt,

where ξt ∼ N(0, 1), εt = (ut, vt)
′ ∼ N(0,Σε) and ξt and εt are independent. Espe-

cially we assume that σvu 6= 0. We will consider two typical models in this form,
namely the model with an error in the equation and the model with no error in the
equation. For more details about these models as well as the corresponding TLS
and ML estimators, we refer the reader to Fuller (1987).

4.1 The model with an error in the equation

In this model it is assumed that in the covariance matrix

Σε =

(
σu σvu
σvu σv

)
σv, σvu are known, whereas σu is not. In this case we may choose d = σv/σvu =

√
δ/ρ

for the DLS estimator. Now the smallest eigenvalue of Mz is

λmin =
my +mx −

√
(my −mx)2 + 4m2

xy

2
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Table 4.1: The ML, DLS, TLS and OLS estimates for the models with an error in
the equation: ρ = 1.

β 60 20 10 5 3 0.5 0

ML 57.22 19.12 9.57 4.81 2.91 0.52 0.05
DLS 60.03 20.03 10.00 5.00 3.00 0.50 0.00
TLS 59.98 19.98 9.96 4.96 2.96 0.53 0.05
OLS 57.20 19.11 9.57 4.81 2.90 0.52 0.05

β -0.5 -1 -3 -5 -10 -20 -60

ML -0.43 -0.91 -2.81 -4.72 - 9.49 -19.00 -57.12
DLS -0.50 -1.00 -3.00 -5.00 -10.02 -20.00 -60.01
TLS -0.47 -1.00 -3.04 -5.05 -10.07 -20.05 -60.06
OLS -0.43 -0.91 -2.81 -4.71 - 9.49 -18.99 -57.09

Table 4.2: AAB’s of the ML, DLS, TLS and OLS estimators for the models with an
error in the equation: ρ = 1.

β 60 20 10 5 3 0.5 0

ML 2.792 0.886 0.429 0.190 0.095 0.024 0.046
DLS 1.027 0.350 0.167 0.073 0.036 0.009 0.018
TLS 1.027 0.348 0.171 0.081 0.049 0.028 0.049
OLS 2.818 0.894 0.433 0.191 0.096 0.024 0.047

β -0.5 -1 -3 -5 -10 -20 -60

ML 0.069 0.094 0.191 0.286 0.509 1.002 2.893
DLS 0.026 0.036 0.072 0.110 0.198 0.367 1.080
TLS 0.037 0.038 0.079 0.118 0.205 0.369 1.082
OLS 0.070 0.095 0.193 0.288 0.514 1.012 2.921

and hence the TLS estimator is given by

β̂TLS =
mxy

mx − λmin

=
my −mx +

√
(my −mx)2 + 4m2

xy

2mxy
.

Note that now the ML estimate does not always exist and is given by

β̂ML =
mxy − σvu
mx − σv

,

provided σv < mx and (mxy − σvu)2 ≤ (mx − σv)(my − σ2vu/σv). However, these
conditions are practically always fulfilled in Monte Carlo simulations.
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Table 4.3: The ML, DLS, TLS and OLS estimates for the models with an error in
the equation: ρ = 0.8.

β 60 20 10 5 3 0.5 0

ML 57.16 19.08 9.56 4.80 2.90 0.51 0.04
DLS 60.01 19.99 10.01 5.00 3.01 0.44 -0.02
TLS 59.96 19.95 9.96 4.96 2.97 0.52 0.04
OLS 57.14 19.07 9.56 4.80 2.89 0.51 0.04

β -0.5 -1 -3 -5 -10 -20 -60

ML -0.44 -0.91 -2.82 -4.73 - 9.47 -19.01 -57.08
DLS -0.51 -1.01 -3.00 -5.01 - 9.99 -20.01 -59.98
TLS -0.47 -1.00 -3.03 -5.04 -10.03 -20.05 -60.02
OLS -0.44 -0.91 -2.82 -4.73 - 9.47 -19.00 -57.05

Table 4.4: AAB’s of the ML, DLS, TLS and OLS estimators for the models with an
error in the equation: ρ = 0.8.

β 60 20 10 5 3 0.5 0

ML 2.856 0.926 0.437 0.202 0.104 0.017 0.038
DLS 1.075 0.341 0.166 0.074 0.040 0.061 0.027
TLS 1.075 0.342 0.166 0.080 0.046 0.024 0.041
OLS 2.882 0.935 0.441 0.204 0.105 0.017 0.039

β -0.5 -1 -3 -5 -10 -20 -60

ML 0.063 0.086 0.182 0.272 0.527 0.989 2.933
DLS 0.029 0.036 0.070 0.106 0.199 0.380 1.092
TLS 0.035 0.036 0.075 0.113 0.201 0.383 1.093
OLS 0.064 0.087 0.184 0.274 0.532 0.998 2.961

The Monte Carlo simulations of the ML, the DLS, the TLS and the OLS esti-
mates and the corresponding AAB’s are carried out for the case δ = 1 and rvξ = 0.05.
The results in Table 4.1 – 4.4 are based on 1000 replications and 100 observations in
each replication. These results show that the DLS estimator has the smaller asymp-
totic absolute bias than the other estimators except when β = 0.5 (for ρ = 0.8),
which lies in the sensitive interval. It is also worth noting that the DLS estimator
performs clearly better than other estimators for −20 < β < 20.
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Table 4.5: The ML, DLS, TLS and OLS estimates for the models with no error in
the equation: ρ = 0.9.

β 60 20 10 5 3 0.5 0

ML 60.01 19.99 10.01 5.00 3.00 0.50 0.00
DLS1 60.02 20.00 10.02 5.01 3.02 0.49 0.00
DLS2 60.01 19.99 10.01 5.00 3.01 0.48 -0.01
TLS 59.96 19.95 9.96 4.96 2.96 0.53 0.04
OLS 57.14 19.07 9.57 4.80 2.90 0.52 0.04

β -0.5 -1 -3 -5 -10 -20 -60

ML -0.50 -1.00 -3.00 -5.00 -10.02 -20.00 -60.11
DLS1 -0.50 -0.99 -2.99 -4.99 -10.01 -19.99 -60.10
DLS2 -0.51 -1.00 -3.01 -5.00 -10.02 -20.00 -60.11
TLS -0.47 -1.00 -3.04 -5.04 -10.06 -20.04 -60.15
OLS -0.43 -0.91 -2.82 -4.72 - 9.49 -18.99 -57.19

Table 4.6: AAB’s of the ML, DLS, TLS and OLS estimators for the models with no
error in the equation: ρ = 0.9.

β 60 20 10 5 3 0.5 0

ML 1.064 0.340 0.165 0.073 0.037 0.011 0.018
DLS1 1.064 0.340 0.166 0.074 0.040 0.013 0.018
DLS2 1.064 0.340 0.165 0.073 0.037 0.024 0.020
TLS 1.066 0.341 0.167 0.081 0.046 0.026 0.045
OLS 2.880 0.930 0.436 0.200 0.100 0.020 0.043

β -0.5 -1 -3 -5 -10 -20 -60

ML 0.027 0.035 0.069 0.105 0.198 0.367 1.084
DLS1 0.027 0.036 0.069 0.105 0.198 0.367 1.083
DLS2 0.028 0.036 0.069 0.105 0.198 0.367 1.084
TLS 0.038 0.037 0.077 0.112 0.206 0.371 1.089
OLS 0.069 0.092 0.184 0.282 0.517 1.018 2.828

4.2 The model with no error in the equation

In this model it is assumed that Σε = σ2Γ where

Γ =

(
1 σvu/σu

σvu/σu σv/σu

)
=

(
1 ρ

√
δ

ρ
√
δ δ

)
is known whereas σ2 is unknown. In this case we may choose either d1 = ρ

√
δ

or d2 =
√
δ/ρ and apply the corresponding DLS estimators. Since now the error
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Table 4.7: The ML, DLS, TLS and OLS estimates for the models with no error in
the equation: ρ = 0.7.

β 60 20 10 5 3 0.5 0

ML 59.95 20.01 9.99 5.01 3.00 0.50 0.00
DLS1 59.98 20.05 10.04 5.06 3.07 0.48 0.00
DLS2 59.95 20.01 10.00 5.01 3.01 0.37 -0.04
TLS 59.91 19.97 9.96 4.97 2.98 0.52 0.03
OLS 57.12 19.08 9.55 4.80 2.89 0.51 0.03

β -0.5 -1 -3 -5 -10 -20 -60

ML -0.50 -1.00 -3.00 -5.00 -10.01 -20.01 -59.97
DLS1 -0.49 -0.98 -2.98 -4.97 - 9.97 -19.98 -59.93
DLS2 -0.52 -1.01 -3.01 -5.00 -10.01 -20.01 -59.97
TLS -0.48 -1.00 -3.03 -5.03 -10.04 -20.05 -60.00
OLS -0.44 -0.92 -2.82 -4.73 - 9.49 -19.02 -57.05

Table 4.8: AAB’s of the ML, DLS, TLS and OLS estimators for the models with no
error in the equation: ρ = 0.7.

β 60 20 10 5 3 0.5 0

ML 1.074 0.351 0.167 0.075 0.043 0.013 0.018
DLS1 1.075 0.353 0.172 0.090 0.079 0.021 0.018
DLS2 1.074 0.351 0.167 0.076 0.045 0.129 0.040
TLS 1.075 0.351 0.170 0.078 0.046 0.022 0.035
OLS 2.890 0.924 0.449 0.204 0.107 0.015 0.034

β -0.5 -1 -3 -5 -10 -20 -60

ML 0.025 0.032 0.068 0.101 0.188 0.342 1.073
DLS1 0.026 0.034 0.070 0.102 0.188 0.342 1.074
DLS2 0.031 0.035 0.068 0.101 0.188 0.342 1.073
TLS 0.031 0.033 0.073 0.105 0.192 0.343 1.073
OLS 0.058 0.082 0.176 0.274 0.514 0.989 2.958

variance ratio δ is known, we may use the “adjusted” TLS estimator which is given
by

β̂TLS =
δmy −mx +

√
(δmy −mx)2 + 4δm2

xy

2δmxy
.

The ML estimator is defined as

β̂ML =
mxy − λρ

√
δ

mx − λδ
,
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where λ is the smallest root of the equation

det(Mz − λΓ) = δ(1− ρ2)λ2 − (δmy +mx − 2ρ
√
δmxy)λ+ (mxmy −m2

xy) = 0

and is given by

δmy +mx − 2ρ
√
δmxy −

√
(δmy +mx − 2ρ

√
δmxy)2 − 4δ(1− ρ2)(mxmy −m2

xy)

2δ(1− ρ2)

for |ρ| < 1 and by (mxmy −m2
xy)/(δmy + mx − 2ρ

√
δmxy) for |ρ| = 1 respectively.

In the later case the ML estimator is β̂ML = (mxy − ρ
√
δmy)/(mx − ρ

√
δmxy) and

therefore coincides with the DLS estimator β̂d1.
The ML, the DLS, the TLS and the OLS estimates and the corresponding AAB’s

are shown in the Table 4.5 – 4.8. Again 1000 replications and 100 observations in
each replication are made for the case δ = 1 and rvξ = 0.05. These results show that
for ρ = 0.9 the DLS estimator performs generally as well as the ML and better than
the TLS and the OLS estimators. For ρ = 0.7 no one of the estimators dominates
others uniquely. Note that β̂d1 performs better than β̂d2 for −1 < β < 1 whereas
β̂d2 is better for other β’s.
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