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Abstract

Consider a sequence of outcomes from Markov dependent two-state (success–failure)
trials. In this paper, the exact distributions are derived for three longest-run statistics: the
longest failure run, longest success run, and the maximum of the two. The method of
finite Markov chain imbedding is used to obtain these exact distributions, and their bounds
and large deviation approximation are also studied. Numerical comparisons among the
exact distributions, bounds, and approximations are provided to illustrate the theoretical
results. With some modifications, we show that the results can be easily extended to
Markov dependent multistate trials.
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1. Introduction

Let random variables {Xt }nt=1 be outcomes of a sequence of random trials with two states
F = {F,S}, which are either independent and identically distributed (i.i.d.) two-state trials or
homogeneous Markov dependent trials with transition probability matrix

A =
[
pFF pFS
pSF pSS

]
. (1.1)

Given n ∈ J+ = {1, 2, . . . }, we define

Ln(S) = max
1≤t≤n−k+1

{k : Xt = Xt+1 = · · · = Xt+k−1 = S}
and

Ln(F) = max
1≤t≤n−k+1

{k : Xt = Xt+1 = · · · = Xt+k−1 = F}
as the lengths of the longest success and failure runs respectively. Further, we define

Ln = max{Ln(S), Ln(F)}
as the length of the longest run, of either successes or failures.
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The concept of the longest run has long been studied, due to its mathematical challenge
and extensive applications in, for example, game theory, biology, reliability theory, and quality
control. There are very many results on the exact distribution of the length of the longest success
run, especially when {Xt } is a sequence of i.i.d. two-state trials.

Let An(k) be the number of sequences of length n in which the longest success run does not
exceed k. Then, for the probability of success p = 1

2 , An(k) satisfies the recursive equation

An(k) =




k∑
j=0

An−1−j (k) for k < n,

2n for k = n
(see Schilling (1990)) and the distribution of Ln(S) is given by

P(Ln(S) ≤ k) = 2−nAn(k). (1.2)

Recently, Suman (1994) related the probability of the longest run of either successes or
failures in n Bernoulli trials to the longest success in n− 1 Bernoulli trials with p = 1

2 as

P(Ln ≤ k) = P(Ln−1(S) ≤ k − 1) (1.3)

for k = 1, . . . , n. In this special case, the probability P(Ln ≤ k) can be computed via (1.2).
Note, however, that the relationship in (1.3) holds only in the case when the {Xt } are from
Bernoulli trials with p = 1

2 .
For general cases 0 < p < 1, Burr and Cane (1961) and Gibbons (1971) showed that the

distribution of Ln(S) can be written as

P(Ln(S) ≤ k) =
n∑
i=0

C(i)n (k)p
iqn−i ,

where q = 1 − p and

C(i)n (k) =
i∑
j=0

C
(i−j)
n−1−j (k).

Philippou and Makri (1986) and Hirano (1986) independently provided the exact formula

P(Ln(S) < k) =
n∑
i=0

piqn−i
k∑
j=0

∑
x1,...,xk+1

(
x1 + · · · + xk+1
x1, . . . , xk+1

)

for k = 0, 1, . . . , n, where the inner summation is defined over all nonnegative integers
x1, . . . , xk+1 satisfying the conditions that x1 + 2x2 + · · · + (k + 1)xk+1 = n − j and
x1 + · · · + xk+1 = n− i, and where(

x1 + · · · + xk+1
x1, . . . , xk+1

)
= (x1 + · · · + xk+1)!∏k+1

i=1 (xi)!
is the multinomial coefficient. These combinatoric formulae are rather complex and can be
very tedious in computation.
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For large n, there are several outstanding results on the length of the longest success run.
For example, Petrov (1965), Rényi (1970), and Erdős and Révész (1975) showed that, as
n→ ∞,

Ln(S)

log1/p n
−→ 1 almost surely. (1.4)

The result of (1.4) is often referred to as the new law of large numbers. Goncharov (1944)
proved that Ln(S)− log1/p n does not have a proper limiting distribution, and showed that the
sequence of probabilities follows the law:

P(Ln(S)− �log1/pn� < x) = exp{−n(1 − p)p�log1/pn�+x} + o(1), (1.5)

where �a� stands for the integer part of a and x = 0,±1,±2, . . . . In their recent book,
Balakrishnan and Koutras (2002, pp. 29–35) provided up-to-date results and information on
the asymptotic distribution of Ln(S) in the i.i.d. cases.

In recent studies of the reliability of consecutive-k-out-of-n:F systems, Fu (1986), Chao and
Fu (1989), (1991), and Papastavridis and Koutras (1993) provided uniform upper and lower
bounds for the tail probability of Ln(S) < k:

(1 − pk)n−k+1 ≤ P(Ln(S) < k) ≤ (1 − qpk)n−k+1 (1.6)

for k = 1, . . . , n and 0 < p < 1. The bounds are very simple and accurate, especially
when p is small or q is close to 1. It is worth mentioning that the upper bound of (1.6),
(1 − qpk)n−k+1, is equivalent to the approximation (1.5) given by Goncharov (1944), whereas
the lower bound (1 − pk)n−k+1 with p = (λt/n)1/k converges to the tail probability of an
exponential distribution. The details of these interesting connections will be explained in
Sections 4 and 5.

Most results in the literature have focused on the longest success run. Recently, the exact
distribution of the longest run in a sequence of multistate trials has been studied by Fu (1996),
using the finite Markov chain imbedding technique. Using the same technique, Lou (1996)
studied the joint distribution of the longest success run Ln(S) and the number of successes
Sn, and also the conditional distribution of Ln(S) given Sn for the sequence {Xi} under i.i.d.
(Bernoulli) or Markov dependent bi-state trials. To date, the exact distribution of Ln under
Markov dependent trials remains unknown, and when n (with k fixed) is large, no good
approximation for P(Ln < k) has been developed. The purpose of this work is to develop
a simple and efficient method for finding the exact distributions of Ln(S), Ln(F), and Ln for
small and moderate n. In the case where n is large, we develop a large deviation approximation
which will provide a good approximation for P(Ln < k) and will also capture its exponential
rate tending to zero as n→ ∞.

The combinatoric method is, in general, inefficient and cumbersome in studying the exact
distributions of the random variablesLn(F), Ln(S), andLn, especially when the sequence {Xt }
is Markov dependent. In Section 2, we derive the exact distributions of the three longest-run
statistics through the adoption of the finite Markov chain imbedding technique developed and
used by Fu (1986), (1996), Fu and Koutras (1994), Koutras (1997), Koutras and Alexandrou
(1997), Doi and Yamamoto (1998), and Boutsikas and Koutras (2000). Existing bounds for
Ln(S) are reviewed in Section 3. In Section 4, we use the finite Markov chain imbedding
technique combined with spectral analysis to obtain large deviation approximations for the
tail probabilities of the longest runs. In Section 5, some numerical results are provided to
illustrate our theories. Our numerical results show that the upper bound of (1.6) and the large
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deviation approximation perform very well. Possible extension of our results to multistate
Markov dependent trials is discussed in Section 6.

2. Exact distributions

Given k ∈ J+ = {1, 2, . . . }, let �0(k) = Fk = FF . . .F and �1(k) = Sk = SS . . .S
denote two simple patterns of size k, and let�(k) = �0(k) ∪ �1(k) be the compound pattern
generated by�0(k) and�1(k) (i.e. either�0(k) or�1(k) occurs). We define three waiting time
random variables corresponding to the three patterns �0(k),�1(k), and �(k), respectively, as

W0(k) = inf{n : n ∈ J+, Xn−k+1 = · · · = Xn = F},
W1(k) = inf{n : n ∈ J+, Xn−k+1 = · · · = Xn = S},
W(k) = inf{n : n ∈ J+, Xn−k+1 = · · · = Xn = F or Xn−k+1 = · · · = Xn = S}.

Since�(k) is a compound pattern generated by�0(k) and�1(k), it follows from the definitions
ofW0(k),W1(k), andW(k) that

W(k) = min{W0(k),W1(k)}.
It is known (Fu and Chang (2002)) that waiting time random variables of simple or compound

patterns are finite Markov chain imbeddable in the following sense: for any waiting time random
variableW(�) defined by a pattern� = ⋃l

i=1�i (simple or compound), there exists a Markov
chain {Yt } defined on a finite state space � = {1, 2, . . . , m, α1, α2, . . . , αl} with transition
probability matrix M , which has the form

M =
[

N C

0 I

]
(m+l)×(m+l)

,

where 0 is the null matrix, I is the identity matrix,

N =


p11 · · · p1m
...

. . .
...

pm1 · · · pmm


 , and C =



p1α1 · · · p1αl
...

. . .
...

pmα1 · · · pmαl


 .

States α1, . . . , αl are absorbing states corresponding to patterns �1, . . . , �l respectively.
The waiting time distribution ofW(�) is then given by

P(W(�) = n) = ξ0N
n−1(I − N)1�, n = 1, 2, . . . , (2.1)

where ξ0 is the initial distribution and 1� is the transpose of the row vector 1 = [1, 1, . . . , 1]1×m.
The sequence {Yt } is referred to as the imbedded Markov chain corresponding to the waiting
time random variableW(�). In our context, there are three imbedded Markov chains, {Yt (0)},
{Yt (1)}, and {Yt }, corresponding to the waiting time random variablesW0(k),W1(k), andW(k)
respectively, defined on three state spaces:

�0 = {φ,S,F} ∪ F (�0) = {φ,S,F,F2, . . . ,Fk−1, α0},
�1 = {φ,S,F} ∪ F (�1) = {φ,F,S,S2, . . . ,Sk−1, α1},
� = �0 ∪�1 = {φ,F,F2, . . . ,Fk−1,S,S2, . . . ,Sk−1, α0, α1},
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where φ is the initial state (dummy state), F (�i) stands for the set of all sequential subpatterns
of pattern �i , and Fi and Si are, respectively, the failure run and success run of length i.
The transition probability matrix of the imbedded Markov chain {Yt (0)} is given by

M0 =
[

N0 C0

0 I

]
, (2.2)

where 0 is a row vector of zeros, I is the (1 × 1) identity matrix,

N0 =




0 pS pF 0 0 · · · 0

0 pSS pSF 0 0 · · · 0

0 pFS 0 pFF 0 · · · 0

0 pFS 0 0 pFF
. . .

...
...

...
...

... 0
. . . 0

0 pFS 0 0
...

. . . pFF

0 pFS 0 0 0 · · · 0



,

and C0 = (0, 0, . . . , 0, pFF)
�. The transition probability matrices M1 and N1 of {Yt (1)}

have the same forms as M0 and N0, but with S and F interchanged. Similarly, the transition
probability matrix of {Yt } is

M =
[

N C

0 I

]
, (2.3)

where

N =




0 pF 0 · · · 0 pS 0 · · · 0

0 0 pFF
. . .

... pFS 0 · · · 0
...

...
. . .

. . . 0
...

...
. . .

...

0 0 · · · 0 pFF pFS 0 · · · 0

0 0 0 · · · 0 pFS 0 · · · 0

0 pSF 0 · · · 0 0 pSS
. . .

...
...

...
...

. . .
...

... 0
. . . 0

0 pSF 0 · · · 0 0
...

. . . pSS

0 pSF 0 · · · 0 0 0 · · · 0




and

C� =
[

0 · · · 0 pFF 0 · · · 0 0

0 · · · 0 0 0 · · · 0 pSS

]
.

It can be seen that the transition probability matrix M is a combination of the two matrices
M0 and M1. With this notation, we have the following result.

Theorem 2.1. Suppose that {Xt }nt=1 is a Markov chain with transition probability matrix A

given by (1.1). Then the exact distribution of the longest run Ln is given by

P(Ln < k) = ξ0N
n1� (2.4)

for k = 2, . . . , n, where the transition matrix N is defined by (2.3).



Distribution of the longest run 351

Proof. This is an immediate consequence of the equality

P(Ln < k) = P(W(k) > n)

and (2.1).

Note that, when k = 1, P(Ln < 1) = 0.
Similarly, the exact distributions for Ln(F) and Ln(S) are given by

P(Ln(F) < k) = ξ0N
n
0 1

� (2.5)

and
P(Ln(S) < k) = ξ0N

n
1 1

� (2.6)

for k = 1, . . . , n, where N0 and N1 are defined by (2.2).
GivenpFF, pFS, pSF, andpSS, the equations (2.4), (2.5), and (2.6) are very efficient formulae

for evaluating the exact distributions numerically. Since the formulae involve only the power
of the transition probability matrix of the imbedded Markov chain, this clearly paves the way
for spectral analysis and large deviation approximations, as will be seen in Section 4.

3. Upper and lower bounds for the longest success and failure runs

It can be shown that the probability that the longest failure run Ln(F) is less than k is equal
to the reliability of consecutive-k-out-of-n:F systems (Fu (1986) and Fu and Koutras (1994)):

R(k, n) = P(Ln(F) < k).

In reliability literature, various upper and lower bounds for R(k, n) have been obtained for
the case where the components are i.i.d. (i.e. Bernoulli trials). Basically there are three types
of bounds:

(i) Bonferroni-type inequalities given by Derman et al. (1982);

(ii) product-type inequalities

(1 − qk)n−k+1 ≤ P(Ln(F) < k) ≤ (1 − pqk)n−k+1 (3.1)

for k = 1, . . . , n and 0 < p < 1, studied by Fu (1986), Chao and Fu (1989), and
Papastavridis and Koutras (1993);

(iii) Stein–Chen-type inequalities,

|P(Ln(F) < k)− exp(−λn)| ≤ (2kp − 1)qk (3.2)

for small q (q ∼ c/n1/k), whereλn = (n−k+1)pqk , studied by Barbour, Chryssaphinou
and Roos (1995), Chryssaphinou and Papastavridis (1990), Barbour, Holst and Janson
(1992), and Gordon et al. (1986).

Similar to (3.1), we have

(1 − pk)n−k+1 ≤ P(Ln(S) < k) ≤ (1 − qpk)n−k+1 (3.3)

for k = 1, . . . , n and 0 < p < 1. Muselli (2000) showed that, under the condition that
k ≥ p/q, the following inequalities hold:

(1 − pk)((n−k)q/(1−pk)k)+1 ≤ P(Ln(S) < k) ≤ (1 − pk)(n−k)q/(1−pk)+1. (3.4)

The upper bound of (3.4) is slightly better than that of (3.3).
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For Markov dependent trials, Godbole and Schaffner (1993) provided Stein–Chen-type
inequalities for P(Ln(S) < k). So far, to the best of the authors’ knowledge, there are no
satisfactory lower and upper bounds for P(Ln < k).

4. Spectral analysis and large deviation approximation

Goncharov’s approximation (1.5) for P(Ln(S) < k) is intimately related to the upper bound
in (3.3). This connection can be seen as follows.

For large n, taking k = �log1/pn� + x, x = 0,±1,±2, . . . , the upper bound in (3.3) is

(1 − qpk)n−k+1 = (1 − qp�log1/pn�+x)n−�log1/pn�−x+1

= (1 − λn/n)n−�log1/pn�−x+1

∼ exp{−λn[1 + o(1)]},

where

λn = n(1 − p)p�log1/pn�+x.

This yields Goncharov’s result. However, if k is fixed and n is very large, neither (1.5) nor (1.6)
provides a good approximation for P(Ln(S) < k) in terms of the relative error. To illustrate the
relationship and connection, numerical examples are provided in the next section.

A square matrix B = [bij ] is said to be nonnegative if bij ≥ 0 for all i and j . If all bij > 0,
we say that the matrix B is positive. A nonnegative matrix B is referred to as primitive if there
exists a positive integer m such that Bm is positive. A nonnegative matrix B is referred to as a
substochastic matrix if 0 <

∑l
j=1 bij ≤ 1 for all i = 1, 2, . . . , l and 0 <

∑l
j=1 bij < 1 for at

least one i.
If N is the square matrix defined by (2.3), let N∗ denote the square matrix obtained by

deleting the first row and the first column. In other words, the initial (dummy) state ∅ is
deleted from the state space � and the imbedded Markov chain {Yt } has transition probability
matrix N∗ instead of N . Let λ1, . . . , λ2(k−1) be the ordered eigenvalues of N∗ in the sense that
|λ1| ≥ |λ2| ≥ · · · ≥ |λ2(k−1)|.
Theorem 4.1. (Perron–Frobenius.) Given k ≥ 2, if the transition probabilities pFF, pFS, pSF,
and pSS are all greater than zero, then

(i) N∗ is a primitive substochastic matrix and

(ii) the largest eigenvalue λ1 satisfies 0 < λ1 < 1.

Proof. It follows from the definition of N that the matrix N∗ is nonnegative and substochas-
tic. Taking m = k + 1, it is easy to see that, for 1 ≤ i, j ≤ k − 1,

P(Yt+k+1 = Sj | Yt = Fi ) ≥ P(Xt+1 = S, . . . , Xt+k−j = S, Xt+k−j+1 = F,

Xt+k−j+2 = S, . . . , Xt+k+1 = S | Xt = F) > 0

for every t . Similarly, all other elements in N∗ are positive. Hence, N∗ is a primitive
substochastic matrix. The result (ii) is exactly the so-called Perron–Frobenius eigenvalue
theorem (see Seneta (1981)).
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From the definition of N∗, it is clear that the transition probability matrix N can always be
decomposed into the following form:

N =
[

0 ξ∗
0

0 N∗

]
,

and N has the same 2(k−1) eigenvalues λ1, . . . , λ2(k−1) as N∗, except that it has an additional
eigenvalue λ2k−1 = 0 induced by the initial (dummy) state. Set l = 2k− 1 and let η�

1 , . . . , η
�
l

be eigenvectors corresponding to the eigenvalues λ1, . . . , λl .
For simplicity of notation, in the following we present the results and proofs for the case

that λ1 has multiplicity one.
Note that the column vector 1� can always be written as a linear combination of eigenvectors

as

1� =
l∑
i=1

ciη
�
i . (4.1)

It follows from Theorem 2.1 and (4.1) that

P(Ln < k) =
l∑
i=1

ciξ0η
�
i λ

n
i , (4.2)

and the probability generating function for the sequence of probabilities {P(Ln < k)}∞n=1 is

ψ(t) =
l∑
i=1

ciξ0η
�
i

1 − λit .

In the following, we first provide a lemma required to prove our main result, and then derive
the large deviation approximation for the tail probability P(Ln < k) for large n.

Lemma 4.1. We have c∗1 := c1ξ0η
�
1 > 0.

Proof. From the definition of Ln and (4.2), we have, for every n and k ≥ 2,

0 < P(X1 = F, X2 = S, X3 = F, . . . , Xn = S)

≤ P(Ln < k) = λn1
[
c∗1 +

l∑
i=2

ciξ0η
�
i

(
λi

λ1

)n]
. (4.3)

Since |λi/λ1|n → 0 as n→ ∞ for i = 2, 3, . . . , l, it follows that, as n→ ∞,

l∑
i=2

|ciξ0η
�
i |

∣∣∣∣ λiλ1

∣∣∣∣
n

→ 0. (4.4)

Because c∗1 does not depend on n and λ1 > 0, the result follows from (4.3) and (4.4).

Theorem 4.2. Given k, the probability that Ln is less than k converges to zero exponentially
in the following large deviation sense:

lim
n→∞

1

n
log P(Ln < k) = −β, (4.5)

where β = −log λ1 is a positive constant.
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In plain words, P(Ln < k) tends to zero with an exponential rate exp{(n log λ1)(1 + o(1))},
i.e. for large n,

P(Ln < k) ∼ exp(n log λ1).

Similarly, the above result also holds for the random variables Ln(F) and Ln(S):

P(Ln(F) < k) ∼ exp(n log λ1(0))

and
P(Ln(S) < k) ∼ exp(n log λ1(1)),

where λ1(0) and λ1(1) are the largest eigenvalues of the transition probability matrices N0
and N1, respectively.

Proof. For any arbitrarily small ε, since (λi/λ1)
n → 0 as n → ∞ for i = 2, 3, . . . , l, it

follows that there exists an n0 such that∣∣∣∣
l∑
i=2

ciξ0η
�
i

c∗1

(
λi

λ1

)n∣∣∣∣ < ε
for all n > n0. Since c∗1 > 0 as shown in Lemma 4.1, it follows from (4.3) that

λn1(c
∗
1 − ε) ≤ P(Ln < k) ≤ λn1(c∗1 + ε)

for all n > n0. The result (4.5) follows by applying log to the above inequalities, dividing by
n, and letting n→ ∞.

Furthermore, the following stronger results also hold.

Theorem 4.3. (i) We have

lim
n→∞

P(Ln < k)

c∗1λn1
= 1.

(ii) For large n,
P(Ln < k) = c∗1λn1(1 +O(e−nγ )),

where c∗1 = c1ξ0η
�
1 and γ = log |λ1/λ2|.

Proof. From Lemma 4.1 and (4.3), we have

P(Ln < k) = c∗1λn1
[

1 + 1

c∗1

l∑
i=2

ciξ0η
�
i

(
λi

λ1

)n]
.

By (4.4), there exists a c∗2 > 0 such that, for large n,

∣∣∣∣ 1

c∗1

l∑
i=2

ciξ0η
�
i

(
λi

λ1

)n∣∣∣∣ ≤ 1

c∗1

l∑
i=2

|ciξ0η
�
i |

∣∣∣∣λ2

λ1

∣∣∣∣
n

≤ c∗2
∣∣∣∣λ2

λ1

∣∣∣∣
n

.

It follows that, for large n,

c∗1λn1
[

1 − c∗2
∣∣∣∣λ2

λ1

∣∣∣∣
n]

≤ P(Ln < k) ≤ c∗1λn1
[

1 + c∗2
∣∣∣∣λ2

λ1

∣∣∣∣
n]
. (4.6)

Result (i) is a direct consequence of (4.6). In addition, since c∗2 |λ2/λ1|n = O(e−nγ ), where
γ = log |λ1/λ2|, result (ii) also follows from (4.6).
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The results given in Theorems 4.2 and 4.3 also hold for Ln(S) and Ln(F). The proofs are
the same. It is important to note that, for given k, the eigenvalues {λi}l1 and l are functions of k.
Hence, our results depend on k. For example, in the case of Ln(S) with k = 1, we have l = 1
and λ1 = q, and therefore P(Ln(S) < 1) = qn.

In view of Theorems 4.2 and 4.3, we expect that, for moderate or large n, the large deviation
approximations will out perform other bounds and approximations mentioned in Section 3.
In fact, the exponential rate β = −log λ1 and coefficient c∗1λn1 cannot be further improved. It is
easy to see that for the general case where λ1 has multiplicity v for some v with 1 < v ≤ l,
we only need to set c∗1 = ∑v

i=1 ciξ0η
�
i and all results remain unchanged and the proofs are the

same.

5. Numerical results

In this section, our main goal is to present several numerical examples of exact distributions
for the longest runs Ln(F), Ln(S), and Ln to illustrate our theoretical results. Numerical
comparisons of exact distributions with various bounds and approximations are also given.

First, we compute the exact probabilities for Ln(S) and Ln for various values of k. Table 1
presents the probabilities P(Ln(S) < k) under the assumption that {Xt } are i.i.d. two-state trials
with p = 0.2 and 0.5 for n = 20, 50, 100, 1000, and 10 000. Table 2 gives the probabilities
under the assumption that {Xt } is a sequence of Markov dependent two-state trials with transition
probability matrix

A∗ =
[

0.75 0.25
0.25 0.75

]
(5.1)

and the initial probabilities p = q = 0.5. The distributions of Ln(S) for p = q = 0.5 and
n = 20, 30, 50, and 100 are shown graphically in Figure 1.

From Tables 1 and 2, it can be seen that, for given k, the exact probabilities P(Ln(S) < k) are
quite different in the i.i.d. and Markov dependent trials. For fixed k, all probabilities converge to
zero exponentially. Figure 1 shows that the exact distributions ofLn(S) for n = 20, 30, 50, 100

Table 1: Selected probabilities for i.i.d. two-state trials.

P(Ln(S) < 4) P(Ln(S) < 8)

n p = 0.2 p = 0.5 p = 0.2 p = 0.5

20 0.9781 0.5220 1.0000 0.9727
50 0.9410 0.1726 0.9999 0.9164

100 0.8823 0.0273 0.9998 0.8298
1000 0.2770 1.04 × 10−16 0.9980 0.1389

10 000 2.57 × 10−6 6.63 × 10−161 0.9797 2.39 × 10−9

P(Ln < 4) P(Ln < 6)

n p = 0.2 p = 0.5 p = 0.2 p = 0.5

20 0.0171 0.2316 0.1897 0.7631
50 1.83 × 10−5 0.0188 0.0091 0.4559

100 2.06 × 10−10 2.85 × 10−4 5.76 × 10−5 0.1932
1000 1.67 × 10−99 5.15 × 10−37 1.53 × 10−44 3.75 × 10−8

10 000 0 0 0 2.84 × 10−75
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Table 2: Selected probabilities for Markov dependent trials with transition probability matrix A∗ defined
in (5.1).

n P(Ln(S) < 4) P(Ln(S) < 8) P(Ln < 4) P(Ln < 6)

20 0.2094 0.7375 0.0063 0.1797
50 0.0165 0.4020 1.13 × 10−6 0.0074

100 2.40 × 10−4 0.1462 6.41 × 10−13 3.57 × 10−5

1000 2.01 × 10−37 1.80 × 10−9 2.30 × 10−125 8.08 × 10−47

10 000 0 1.55 × 10−88 0 0

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0
0 5 10 15 20 25 30

n = 20

n = 50
n = 30

n = 100

Figure 1: Distributions of Ln(S) with p = q = 0.5.

are highly skewed to the right and ELn(S)moves toward ∞ very slowly (approximately at rate
log1/p n).

Next, we compare various bounds and approximations with exact probabilities for Ln(S)
and Ln. For simplicity, in Tables 3–6 we use the following notation:

(i) LS and US: the Stein–Chen-type lower and upper bounds given by (3.2) with p and q
interchanged;

(ii) LF and UF: the product-type lower and upper bounds given by (3.3);

(iii) LM and UM: Muselli’s product-type lower and upper bounds given by (3.4);

(iv) AG: Goncharov’s approximation given by (1.5);

(v) AL: large deviation approximation given by (4.5);

(vi) E: the exact probability given by (2.4) or (2.6).

Tables 3 and 4 compare the exact probabilities P(Ln(S) < k) with their bounds and
approximations under the i.i.d. assumption. Tables 5 and 6 compare the exact probabilities
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Table 3: Comparisons of the exact P(Ln(S) < k) with bounds and approximations for i.i.d. two-state trials with p = 0.3 and k = 4, 8.

n LS LF LM AL E AG UF UM US

k = 4

50 0.7288 0.6823 0.7568 0.7475 0.7590 0.7531 0.7655 0.7617 0.8033
100 0.5397 0.4543 0.5640 0.5588 0.5674 0.5672 0.5761 0.5717 0.6142

1000 −0.0338 0.0003 0.0028 0.0030 0.0030 0.0034 0.0035 0.0033 0.0408
10 000 −0.0373 4.89 × 10−36 2.91 × 10−26 5.27 × 10−26 5.35 × 10−26 2.37 × 10−25 2.06 × 10−25 1.20 × 10−25 0.0373

k = 8

50 0.9974 0.9972 0.9980 0.9977 0.9980 0.9977 0.9980 0.9980 0.9987
100 0.9951 0.9939 0.9957 0.9954 0.9957 0.9954 0.9957 0.9957 0.9964

1000 0.9548 0.9369 0.9554 0.9551 0.9554 0.9551 0.9554 0.9554 0.9561
10 000 0.6313 0.5191 0.6318 0.6316 0.6318 0.6317 0.6319 0.6319 0.6326

Table 4: Comparisons of the exact P(Ln(S) < k) with bounds and approximations for i.i.d. two-state trials with p = 0.8 and k = 4, 6.

n LS LF LM AL E AG UF UM US

k = 4

50 −0.2245 1.75 × 10−11 2.77 × 10−18 1.43 × 10−5 2.28 × 10−5 0.0166 0.0180 0.0002 0.2670
100 −0.2454 6.33 × 10−23 4.05 × 10−37 2.04 × 10−10 3.26 × 10−10 0.0003 0.0003 2.13 × 10−8 0.2461

1000 −0.2458 6.81 × 10−229 0.0000 1.23 × 10−97 1.97 × 10−97 2.65 × 10−36 9.81 × 10−38 3.60 × 10−78 0.2458

k = 6

50 −0.2725 1.14 × 10−6 4.66 × 10−8 0.0064 0.0091 0.0727 0.0886 0.0196 0.4615
100 −0.3601 2.87 × 10−13 3.07 × 10−16 4.06 × 10−5 5.83 × 10−5 0.0053 0.0060 0.0003 0.3739

1000 −0.3670 4.28 × 10−132 1.65 × 10−163 1.21 × 10−44 1.74 × 10−44 1.70 × 10−23 5.36 × 10−24 1.98 × 10−36 0.3670
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Table 5: Comparisons of the exact P(Ln(S) < k) with large deviation approximations for Markov
dependent two-state trials with transition probability matrix A∗.

k = 4 k = 8

n E AL E AL

20 0.2094 0.1841 0.7375 0.6673
50 0.0165 0.0145 0.4020 0.3637

100 2.40 × 10−4 2.11 × 10−4 0.1462 0.1323
1000 2.01 × 10−37 1.77 × 10−37 1.81 × 10−9 1.64 × 10−9

10 000 0 0 1.55 × 10−88 1.40 × 10−88

Table 6: Comparisons of the exact P(Ln < k)with large deviation approximations for Markov dependent
two-state trials with transition probability matrix A∗.

k = 4 k = 8

n E AL E AL

20 0.9014 0.8868 0.9997 0.9995
50 0.7527 0.7405 0.9990 0.9989

100 0.5574 0.5484 0.9979 0.9977
1000 0.0025 0.0025 0.9775 0.9774

10 000 8.23 × 10−27 8.09 × 10−27 0.7955 0.7954

P(Ln(S) < k) and P(Ln < k) with their large deviation approximations under the assumption
of Markov dependence.

In view of Table 3, for small p (p = 0.3) all the upper and lower bounds and approximations
perform reasonably well except the Stein–Chen-type bounds. It can be shown that, for fixed k,
the upper and lower Stein–Chen bounds tend to ±(2kq − 1)pk as n → ∞. For large p
(p = 0.8), the performance of all the bounds and approximations is poor except for that of the
probability large deviation approximations, which remains good. In view of Tables 3 and 4,
the numerical results clearly suggest that UF and AG behave approximately the same with an
exponential rate −log(1 − qpk) while the upper bounds UM are slightly better than UF, having
an exponential rate −(q/(1 − pk)) log(1 − pk). It is not surprising that the large deviation
approximationsAL perform extremely well in all cases in Tables 3–6 for moderate and large n,
regardless of the value of p. For fixed k, the numerical results in Tables 3 and 4 clearly suggest
that LS, LF, AG, UF, and US have the wrong exponential rates, tending to zero.

All numerical results are computed using a Pentium® III PC with 733 MHz CPU and standard
hardware configuration. The computation times for all cases, including those for eigenvalues
λ1 in AL, are within a few seconds. We have also computed exact probabilities E and the large
deviation approximations AL for large k and n. The case of k = 100 and n = 10 000 took
0.33 second, whereas the case of k = 500 and n = 10 000 took 33 seconds. Even for very large
n (≤ 500 000), computing the exact distribution (for all k ∼ log n) is easy and fast. Therefore,
bounds and approximations are not recommended unless n and k are extremely large, such as
n ≥ 1012. Given the rapid increase of computer speed nowadays, we believe that computation
cost is not a problem in this type of computation. The MATLAB® programs for computing
exact distributions, the large deviation approximations, and various bounds are available upon
request from the first author of this paper.
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6. Discussion and extension

Let us now consider a sequence {Xt } of multistate Markov dependent trials with state space
F = {1, 2, . . . , m}, m ≥ 3. For i ∈ F , let Ln(i) be the length of the longest run of i and
Ln be the length of the longest run of any state. All the results in Sections 2 and 4 can be
extended to the multistate trials. The proofs of these results require only minor modifications.
For example, given k, the probability of Ln(i) being less than k can be cast in terms of the
waiting time random variableW(�(k, i)) > n in the following sense:

P(Ln(i) < k) = P(W(�(k, i)) > n) = ξ0N
n
i 1

�,

where �(k, i) = ik and Ni is the essential part of Mi , the transition probability matrix of the
imbedded Markov chain {Yt (i)} corresponding to the waiting timeW(�(k, i)). The imbedded
Markov chain is defined on the state space

�i = {φ} ∪ F ∪ F (�(k, i)) = {φ, 1, 2, . . . , m, i2, i3, . . . , ik−1, αi},
and the corresponding transition probability matrix is set up in the same way as in (2.2).
Furthermore, the probability of Ln being less than k can be cast in terms of the waiting time
random variableW(�k) being greater than n, where�k = ⋃m

i=1�(k, i) is a compound pattern
generated by m simple patterns, �(k, i) = ik , i = 1, 2, . . . , m, of size k. Mathematically,

W(�k) = min
1≤i≤m{W(�(k, i))}

and
P(Ln < k) = P(W(�k) ≥ n+ 1).

The proofs of these are straightforward and we omit them.
For large n, the large deviation approximation formula, P(Ln < k) ∼ exp(−nβ) with

β = −log λ1, remains true. Note that λ1 is the largest eigenvalue of N , and N is the essential
part of the transition probability matrix M of the imbedded Markov chain {Yt } associated with
the waiting time of the compound pattern

⋃m
i=1�(k, i). The proof is the same as that given in

Section 4.
In conclusion, the finite Markov chain imbedding technique not only enables us to compute

the exact distributions for Ln(i) and Ln efficiently, but also provides excellent large deviation
approximations.
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