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We propose a strongly root-n consistent simulation-based estimator for the generalized linear mixed models.
This estimator is constructed based on the first two marginal moments of the response variables, and it
allows the random effects to have any parametric distribution (not necessarily normal). Consistency and
asymptotic normality for the proposed estimator are derived under fairly general regularity conditions.
We also demonstrate that this estimator has a bounded influence function and that it is robust against
data outliers. A bias correction technique is proposed to reduce the finite sample bias in the estimation of
variance components. The methodology is illustrated through an application to the famed seizure count
data and some simulation studies.
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1. Introduction

Generalized linear mixed models (GLMMs) have been widely used in the modelling of longitu-
dinal data where the response is discrete. They can be viewed as a natural combination of linear
mixed models [1] and generalized linear models. In contrast to marginal or generalized estimat-
ing equation (GEE) models [2], GLMMs emphasize on the regression coefficients as well as the
variance components of random effects.

For estimation and inference in GLMMs, the most frequently employed approach is likeli-
hood based. However, the likelihood function of a GLMM involves integrals with respect to the
distribution of the random effects and is generally intractable analytically. The analysis is even
more difficult when the dimension of random effects is high or there are crossed random effects.
To overcome this numerical difficulty, several methods have been proposed to approximate the
integrals in the likelihood function, for example, marginal quasi-likelihood and penalized quasi-
likelihood (PQL) estimation [3], adaptive quadrature [4] and maximum simulated likelihood [5].
A comprehensive evaluation and comparison of these approximate methods are unavailable in the
statistical literature. However, some limited studies have shown that the analytical simplification
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1086 H. Li and L. Wang

may not be always satisfactory and may produce biased and highly inefficient estimates [6,7].
Furthermore, the likelihood methods rely on normal assumption for random effects. Since the
random effects are unobservable, it is not feasible to verify their distributional assumptions. It
is thus natural to be concerned whether these methods yield reliable results when the normality
assumption is violated. In addition, it is also known that likelihood-based methods are sensitive to
data outliers. On the other hand, there are many works extending the GEE type or quasi-likelihood
to the estimation of GLMMs [2,8,9]. However, these methods are usually inefficient and require
the simulation size S to go to infinity to obtain consistent estimators. In practice, since S has to
be fixed, these methods only produce approximate consistent estimates.

In this paper, we propose an exact (not approximate) consistent simulation-based estimator
(SBE) using fixed S in the framework of GLMMs. This estimator is constructed based on the first
two marginal moments of the response variables, and it allows random effects follow a flexible
distribution. This approach was originally studied byWang [10] for nonlinear mixed effects models
with homoscedastic errors. This paper extends this methodology to a GLMM which allows very
general heteroscedastic errors, and we further investigate its robustness against data outliers using
its influence function (IF). In addition, this paper proposes a bias reduction technique to reduce
the finite sample bias for the estimation of variance components.

The structure of the paper is as follows. In Section 2, we introduce the model and give some
examples to illustrate model identifiability. In Section 3, we introduce the SBE and its properties.
In Section 4, we present simulation studies to examine the finite sample performances of the
proposed estimators. In Section 5, a real data application is given, and in Section 6, a discussion
is given. Proofs of the theorems are provided in the appendix.

2. The model

Suppose a subject i is measured repeatedly on ni occasions and it is assumed as the conditional
distribution of the response variableyij ∈ R, given that the random effectsbi ∈ R

q are independent
and belong to an exponential family. The random effects are assumed to have mean zero and
distribution fb(u; θ) with unknown parameters θ ∈ R

r . The conditional mean of yij is assumed
to depend upon fixed and random effects via a linear predictor and can be written as

g−1{E(yij |bi, xij , zij )} = x ′
ij β + z′

ij bi, i = 1, . . . , m, j = 1, . . . , ni, (1)

where xij ∈ R
p and zij ∈ R

q are the predictors, β ∈ R
p is a vector of the fixed effects and g−1(·)

is a link function. The conditional variance is given by

V (yij |bi, xij , zij ) = φν(g(x ′
ij β + z′

ij bi)), (2)

where ν(·) is a known variance function and φ is a scale parameter that may be known or unknown.
In this model, the parameter of interest is ψ = (β ′, θ ′, φ)′. Based on the model assumptions, the
first and second marginal moments can be expressed as

μij (ψ) = E(yij |Xi, Zi) =
∫

g(x ′
ij β + z′

ij u)fb(u; θ) du (3)

and

ηijk(ψ) = E(yij yik|Xi, Zi) =
∫

g(x ′
ij β + z′

ij u)g(x ′
ikβ + z′

iku)fb(u; θ) du

+ δjkφ

∫
ν(g(x ′

ij β + z′
ij u))fb(u; θ) du, (4)

where Xi = (x ′
i1, x

′
i2, . . . , x

′
ini

)′, Zi = (z′
i1, z

′
i2, . . . , z

′
ini

)′, δjk = 1 if j = k and 0 otherwise.
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In the following, we motivate our approach using two most popular GLMMs as examples to
demonstrate that ψ can indeed be identified and consistently estimated using the first two marginal
moments (3) and (4).

Example 2.1 Consider a mixed Poisson model for counts, where V (yij |bi) = E(yij |bi) and
log E(yij |bi) = x ′

ij β + z′
ij bi . Assuming bi ∼ N(0, D(θ)), we have

μij (ψ) = exp

(
x ′

ij β + z′
ijD(θ)zij

2

)
, (5)

and

ηijk(ψ) = μij (ψ)μik(ψ) exp[z′
ijD(θ)zik)] + δjkφμij (ψ). (6)

All unknown parameters in this model can be consistently estimated by Equations (5) and (6).

Example 2.2 Consider a mixed logistic model for a binary response yij , where φ = 1 and
logit{Pr(yij = 1|bi)} = x ′

ij β + z′
ij bi . For this model, we find

μij (ψ) = E(y2
ij |Xi, Zi) =

∫ (
ex ′

ij β+z′
ij u

1 + ex ′
ij β+z′

ij u

)
fb(u; θ) du, (7)

and

ηijk(ψ) =
∫ (

ex ′
ij β+z′

ij u

1 + ex ′
ij β+z′

ij u

) (
ex ′

ikβ+z′
iku

1 + ex ′
ikβ+z′

iku

)
fb(u; θ) du, for j < k. (8)

The integrals in Equations (7) and (8) are intractable but can be approximated using Monte Carlo
simulation techniques.

3. Simulation-based estimator

3.1. The estimator and its asymptotic properties

The first two marginal moments usually do not have closed forms in GLMMs, and the density
fb(u; θ) is typically unknown. Here, we propose a simulation-based approach to overcome these
two difficulties simultaneously. As it is well known, SBE is computationally convenient when
moment functions cannot be evaluated directly [11–13]. The basic idea is to form unbiased
estimators of integrals in moment equations with their Monte Carlo simulators. In particular,
we propose a simulation-by-parts [14] technique to construct two sets of moments. First, generate
random points uis, s = 1, 2, . . . , 2S, from a known density h(u), and construct

μij,1(ψ) = 1

S

S∑
s=1

g(x ′
ij β + z′

ij uis)fb(uis; θ)

h(uis)
, (9)

ηijk,1(ψ) = 1

S

S∑
s=1

g(x ′
ij β + z′

ij uis)g(x ′
ikβ + z′

ikuis)fb(uis; θ)

h(uis)

+ δjkφ

S

S∑
s=1

ν(g(x ′
ij β + z′

ij uis))fb(uis; θ)

h(uis)
(10)

using the first half of the points uis, s = 1, 2, . . . , S. Then, construct μij,2(ψ) and ηijk,2(ψ)

similarly using the second half of the points uis, s = S + 1, S + 2, . . . , 2S. It is obvious that
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1088 H. Li and L. Wang

the simulated moments are unbiased estimates of the true moments, since E(μij,t (ψ)|Xi, Zi) =
μij (ψ) and E(ηijk,t (ψ)|Xi, Zi) = ηijk(ψ), t = 1, 2. We denote the parameter space by 	 =

 × � × � ∈ R

p+r+1, and the true parameter value by ψ0 = (β ′
0, θ

′
0, φ0)

′ ∈ 	. Finally, the SBE
ψ̂m,S for ψ is defined as

ψ̂m,S = argmin
ψ∈	

Qm,S(ψ) = argmin
ψ∈	

m∑
i=1

ρ ′
i,1(ψ)Wiρi,2(ψ),

where ρi,t (ψ) = (yij − μij,t (ψ), 1 ≤ j ≤ ni, yij yik − ηijk,t (ψ), 1 ≤ j ≤ k ≤ ni)
′ and Wi =

W(Xi, Zi) is a nonnegative definite matrix which may depend on Xi and Zi . By using
two different sets of independent simulated points, Qm,S(ψ) is an unbiased estimator of
Qm(ψ) = ∑m

i=1 ρ ′
i (ψ)Wiρi(ψ) because ρi,1(ψ) and ρi,2(ψ) are conditionally independent given

(Yi, Xi, Zi), and hence,

E[ρi,1(ψ)Wiρi,2(ψ)] = E[E(ρi,1(ψ)|Yi, Xi, Zi)WiE(ρi,2(ψ)|Yi, Xi, Zi)]
= E(ρi(ψ)Wiρi(ψ)), (11)

where ρi(ψ) = (yij − μij (ψ), 1 ≤ j ≤ ni, yij yik − ηijk(ψ), 1 ≤ j ≤ k ≤ ni)
′.

To construct simulated moments in Equations (9) and (10), the random effect distribution is only
required to have a known parametric form. Hence, instead of relying on normality assumption on
bi , we can use more flexible distributions. For example, one can follow Davidian and Gallant [15]
and Zhang and Davidian [16] to represent the density of bi by the standard semi-nonparametric
densities, which include normal, skewed, multi-modal and fat- or thin-tailed densities. One can
use the Tukey(g, h) family distribution [17] for bi as well, which is generated by a single
transformation of the standard normal and covers a variety of distributions.

To establish the consistency and asymptotic normality of ψ̂m,S , we make the following
assumptions:

A1. g(·) and ν(·) are continuous functions; fb(u; θ) is continuous in θ ∈ � for all u.
A2. E[‖Wi‖(y4

ij + 1)] < ∞; g2(x ′β + z′u)fb(u; θ) and |ν(g(x ′β + z′u))|fb(u; θ) are bounded
by a positive function G(x, z, u) satisfying E[‖Wi‖(

∫
G(Xi, Zi, u) du)2] < ∞.

A3. The parameter space 	 ⊂ R
p+r+1 is compact.

A4. E[ρi(ψ) − ρi(ψ0)]′Wi[ρi(ψ) − ρi(ψ0)] = 0 if and only if ψ = ψ0.
A5. g(·) and ν(·) are twice continuously differentiable and fb(u; θ) is twice continuously differ-

entiable w.r.t. to θ in an open subset θ0 ∈ �0 ⊂ �. Furthermore, all first- and second-order
partial derivatives of g(x ′β + z′u)fb(u; θ) and ν(g(x ′β + z′u))fb(u; θ) w.r.t. (β ′, θ ′)′ are
bounded absolutely by the positive function G(x, z, u) given in A2.

A6. The matrix

B = E

[
∂ρ ′

i (ψ0)

∂ψ
Wi

∂ρi(ψ0)

∂ψ ′

]
(12)

is nonsingular.

Theorem 3.1 Suppose thatSupp(h) ⊇ Supp(fb(·; θ)) for all θ ∈ �0. Then, for any fixedS > 0,

as m → ∞,

(1) under A1–A4, ψ̂m,S
a.s.−→ ψ0;
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(2) under A1–A6,
√

m(ψ̂m,S − ψ0)
L−→ N(0, B−1CSB

−1), where

2CS = E

[
∂ρ ′

i,1(ψ0)

∂ψ
Wiρi,2(ψ0)ρ

′
i,2(ψ0)Wi

∂ρi,1(ψ0)

∂ψ ′

]

+ E

[
∂ρ ′

i,1(ψ0)

∂ψ
Wiρi,2(ψ0)ρ

′
i,1(ψ0)Wi

∂ρi,2(ψ0)

∂ψ ′

]
. (13)

Note that the above asymptotic results do not require that the simulation size S tends to infinity,
because we use the simulation-by-parts technique to approximate moments. This is fundamentally
different from other simulation-based methods, which require that S goes to infinity to obtain
consistent estimators [2,8,9]. In general, the simulation approximation of the integrals will result
in certain efficiency loss, but this loss decreases at the rate O(1/S) [14]. Therefore, the efficiency
loss due to the simulations can be made small by increasingS. In general, a simulation size of 1000–
3000 is sufficient to obtain satisfactory estimates. For the choice of h(u), in theory, it has no impact
on the asymptotic efficiency of the estimator, as long as it has sufficiently large support. However,
the choice of h(u) will affect the finite sample variances of the simulated moments. It is well
known that the finite sample variances will be minimized when h(u) ∝ |g(x ′

ij β + z′
ij u)fb(u; θ)|

and h(u) ∝ |g(x ′
ij β + z′

ij u)g(x ′
ikβ + z′

iku)fb(u; θ)|.
When closed forms of moments exist such as in Example 2.1, the SBE becomes M-estimator [18]

ψ̂m or the second-order least squares estimator (SLSE) of Wang [10]. We can show that ψ̂m is
consistent and asymptotically normally distributed. In particular, we have the following corollary.

Corollary 3.2 As m → ∞, ψ̂m = arg minQm(ψ) has properties

(1) under A1–A4, ψ̂m
a.s.−→ ψ0;

(2) under A1–A6,
√

m(ψ̂m − ψ0)
L−→ N(0, B−1CB−1), where B is given in Equation (12) and

C = E

[
∂ρ ′

i (ψ0)

∂ψ
Wiρi(ψ0)ρ

′
i (ψ0)Wi

∂ρi(ψ0)

∂ψ ′

]
.

Remark 3.3 Since random effects are usually assumed to have zero mean, it is more convenient
to define bi = D(θ)1/2ξi , where the random variable ξ has mean zero and covariance matrix Iq .
Hence alternatively, we can rewrite Equations (9) and (10) as

μij,1(ψ) = 1

S

S∑
s=1

g(x ′
ij β + z′

ijD(θ)1/2uis)fξ (uis)

h(uis)
,

ηijk,1(ψ) = 1

S

S∑
s=1

g(x ′
ij β + z′

ijD(θ)1/2uis)g(x ′
ikβ + z′

ikD(θ)1/2uis)fξ (uis)

h(uis)

+ δjkφ

S

S∑
s=1

ν(g(x ′
ij β + z′

ijD(θ)1/2uis))fξ (uis)

h(uis)
.

In this case, there is no parameter of interest in fξ (uis).

Remark 3.4 For binary responses yij , E(yij |Xi, Zi) = E(y2
ij |Xi, Zi) with probability one.

Therefore, the terms y2
ij − E(y2

ij |Xi, Zi) in ρi,1(ψ) and ρi,2(ψ) are redundant and do not need to
be included.
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1090 H. Li and L. Wang

Remark 3.5 For certain GLMMs such as a probit model with normal distributed random effects,
the first marginal moment admits an analytical form but not the second marginal moments. In this
case, only the second moments need to be simulated.

3.2. Computation of the SBE

In general, the SBE does not admit an explicit solution and can be computed using the Newton–
Raphson algorithm as

ψ̂(τ+1) = ψ̂(τ) −
(

∂2Qm,S(ψ̂
(τ))

∂ψ∂ψ ′

)−1
∂Qm,S(ψ̂

(τ))

∂ψ
,

where ψ̂(τ) denotes the estimate of ψ at the τ th iteration, and

∂Qm,S(ψ̂
(τ))

∂ψ
=

m∑
i=1

[
∂ρ ′

i,1(ψ̂
(τ))

∂ψ
Wiρi,2(ψ̂

(τ)) + ∂ρ ′
i,2(ψ̂

(τ))

∂ψ
Wiρi,1(ψ̂

(τ))

]
, (14)

∂2Qm,S(ψ̂
(τ))

∂ψ∂ψ ′ =
m∑

i=1

[
∂ρ ′

i,1(ψ̂
(τ))

∂ψ
Wi

∂ρi,2(ψ̂
(τ))

∂ψ ′ + (ρ ′
i,2(ψ̂

(τ))Wi ⊗ I )
∂vec(∂ρ ′

i,1(ψ̂
(τ))/∂ψ)

∂ψ ′

]

+
m∑

i=1

[
∂ρ ′

i,2(ψ̂
(τ))

∂ψ
Wi

∂ρi,1(ψ̂
(τ))

∂ψ ′

+ (ρ ′
i,1(ψ̂

(τ))Wi ⊗ I )
∂vec(∂ρ ′

i,2(ψ̂
(τ))/∂ψ)

∂ψ ′

]
. (15)

The terms (ρ ′
i,1Wi ⊗ I )(∂vec(∂ρ ′

i,2/∂ψ))/∂ψ ′ and (ρ ′
i,2Wi ⊗ I )(∂vec(∂ρ ′

i,1/∂ψ))/∂ψ ′ are op(1),
so they can be omitted from the second derivative for computational convenience.

Another important question is how to specify the form of weight Wi to compute ψ̂m,S in an
optimal way, such that AV (ψ̂m(Wi)) − AV (ψ̂m(W

opt
i )) is nonnegative definite for all possible

Wi . It can be shown that W
opt
i is equal to

A−1
i = E[ρi,1(ψ0)ρ

′
i,2(ψ0)|Xi, Zi]−1. (16)

The proof is analogous to that reported by Abarin and Wang [19] and is, therefore, omitted. In
practice, Ai is not feasible, since it involves unknown parameters to be estimated. One possible
solution is using a two-stage procedure. First, minimize Qm,S(ψ) using a sub-optimal choice of
Wi , such as an identity weight matrix, to obtain the first-stage estimator ψ̂m1,S . Second, estimate
Wi = Â−1

i using ψ̂m1,S and then minimize Qm,S(ψ) again with Â−1
i to obtain the second-stage

estimator ψ̂m2,S . In general, the computation of Ai in Equation (16) is difficult, since it requires the
specification of the third- and fourth-order moments of yij . However, these high-order moments
can be easily approximated using the Monte Carlo simulation method introduced in this section.
Alternatively, Ai can be estimated using any nonparametric method such as kernel or spline
estimation. A simple estimator of Ai would be

A(ψ̂) = 1

m

m∑
i=1

ρi,1(ψ̂m1)ρ
′
i,2(ψ̂m1). (17)

In many real data applications, the subjects are clustered so that the values of Xi, Zi are equal
or close for all subjects within one cluster. In such cases, each Ai can be estimated similar to
Equation (17) using all the subjects within the same cluster.
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3.3. Robustness

Many simulation studies that we have done show that the estimated optimal weight (17) provides
not only efficient estimates but also protection against influential measurements. This motivated
us to investigate the robustness property of the proposed estimator theoretically. In particular, we
study the robustness property of the SBE by means of the IF, which was introduced by Hampel
et al. [20]. Let v be the subset of observations (Xl, Yl) under investigation, and the IF of SBE at
point v takes the form [20]

IF(v; ψ̂m,S, F ) = −B(ψ̂m(F ))−1 ∂ρ ′
l,1(v; ψ̂m,S(F ))

∂ψ
Â−1ρl,2(v; ψ̂m,S(F )), (18)

where F is the underlying distribution and B is given in Equation (12).

Corollary 3.6 If the SBE ψ̂m,S is computed using the estimated optimal weight (17), then
‖IF(v; ψ̂m,S, F )‖ → 0 as ‖v‖ → ∞.

The implication of the above corollary is that the IF of ψ̂m is bounded and ψ̂m has a redescending
property [18]. It is expected that data outliers in either x or y direction will be automatically
downweighted by the inverse of the estimated optimal weight matrix. It does not require detection
for outliers beforehand to implement downweighting strategy.

3.4. Bias reduction

It is noticed in the simulation studies done by Wang [10] and our preliminary simulation studies
that there are some finite sample biases for the estimation of variance components by the SBE.
These biases are downward oriented and diminish with the increase in sample sizes. The source of
this bias lies in the fact that the optimal weight in Equation (16) is replaced by a root-m estimate
given in Equation (17) for the second-stage minimization. Asymptotically, this replacement has
no impact on the properties of SBE. However, it does make a difference in finite samples because
Ai(ψ̂) depends on yi and causes the correlation with ρi,1(ψ) and ρi,2(ψ). Note in the setup of the
SBE, we require Wi that may only depend on Xi and Zi . Evaluating this bias analytically is not
easy. Instead, we extend the independently weighted method proposed by Altonji and Segal [21]
for the bias reduction. The basic idea is to break the correlation between Ai(ψ̂) and ρi,t (ψ) by
designing the weighting matrix using observations other than those used to construct the sample
moments. We randomly split the sample into K groups with mk subjects in each group, and the
independently weighted SBE (SBEIW) ψ̂ IW

m,S for ψ is defined as the measurable function that
minimizes

Qm,S(ψ) = 1

K

K∑
k=1

mk∑
i=1

(ρk
i,1(ψ))′A−1

i,k (ψ̂)ρk
i,2(ψ), (19)

where ρk
i,t (ψ) is constructed for the kth group and A−1

i,k (ψ̂) is constructed using all but the kth
group. Intuitively, this estimator is less biased because the statistical dependence between the
weight matrix and sample moments is broken. However, splitting the sample causes efficiency
loss due to the loss in degrees of freedom. Since cov(ψ̂k

m,S, ψ̂
k+l
m,S ) = 0 for l = 0 by design, it can
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1092 H. Li and L. Wang

be easily shown that

cov(ψ̂ IW
m,S) = 1

K2

K∑
k=1

cov(ψ̂k
m,S),

where ψ̂k
m,S is obtained by minimizing

∑mk

i=1(ρ
k
i,1(ψ))′A−1

i,k (ψ̂)ρk
i,2(ψ). In the simulation studies

presented in Section 4, we select K = 2 and observe significant improvement in estimation bias
over SBE with negligible efficiency loss.

4. Monte Carlo simulation studies

In this section, we evaluate the finite sample behaviours of the proposed estimator and compare
them with that of the penalized quasi-likelihood estimator (PQLE) reported by Breslow and
Clayton [3].We conducted substantial numerical studies by using different GLMMs and parameter
configurations. We carried out 500 Monte Carlo replications in each simulation study and reported
the biases and the root mean square errors (RMSEs). All computations were done in R and PQL
estimates were obtained from the glmmPQL package.

The first simulation study was designed based on Example 2.1. In particular, we simulated
the model log E(yij |bi) = β0 + β1xij + bi, j = 1, . . . , 4, where xij = 0.1j , β = (3, −1)′ and
bi ∼ N(0, 0.25). In the present simulation, we set m = 50, 100, 200, 300, 400 and chose the
density N(0, 1) to be h(u) and generated S = 1000 independent uis for the SBE. For comparison
purpose, we also computed the ψm by using the two marginal moments from Equations (5) and
(6).

Table 1 reports the biases and the RMSEs. Figure 1 visually summarizes the performance of all
estimators at various sample sizes in terms of RMSEs and percentage of bias. From Table 1 and
Figure 1, we can see that all estimators perform satisfactorily and show clearly their asymptotic
proprieties, that is, the estimated RMSEs decrease with the increase in sample size. For fixed
effects, both estimated RMSEs and biases from the proposed estimators are very close to each
other and are comparable to the PQLE, although ψ IW

m and ψ IW
m,S have slightly higher RMSEs

Table 1. Biases (RMSE) of the parameter estimates.

m PQLE SLSE SLSIW SBE SBEIW

β0 = 3
50 0.006 (0.082) −0.086 (0.115) 0.001 (0.162) −0.069 (0.109) 0.012 (0.168)
100 0.012 (0.060) −0.053 (0.077) −0.009 (0.090) −0.039 (0.075) 0.007 (0.103)
200 0.010 (0.040) −0.029 (0.052) −0.009 (0.058) −0.022 (0.055) 0.005 (0.061)
300 0.006 (0.033) −0.021 (0.040) −0.005 (0.040) −0.016 (0.047) −0.003 (0.052)
400 0.009 (0.031) −0.017 (0.035) −0.005 (0.034) −0.010 (0.044) −0.003 (0.043)

β1 = −1
50 −0.007 (0.152) 0.007 (0.143) 0.020 (0.341) 0.009 (0.130) −0.005 (0.329)
100 −0.004 (0.109) 0.006 (0.106) 0.013 (0.180) 0.008 (0.107) 0.007 (0.195)
200 0.000 (0.073) 0.002 (0.077) 0.015 (0.109) 0.004 (0.074) 0.013 (0.115)
300 −0.001 (0.064) 0.003 (0.061) 0.007 (0.081) 0.000 (0.058) 0.003 (0.081)
400 −0.001 (0.056) 0.001 (0.054) 0.003 (0.067) 0.003 (0.054) 0.006 (0.065)

θ = 0.25
50 −0.010 (0.053) −0.043 (0.060) 0.011 (0.105) −0.054 (0.076) 0.012 (0.122)
100 −0.007 (0.040) −0.043 (0.056) 0.004 (0.066) −0.045 (0.069) 0.001 (0.081)
200 −0.004 (0.026) −0.030 (0.042) 0.012 (0.059) −0.036 (0.059) 0.000 (0.060)
300 −0.003 (0.023) −0.024 (0.035) 0.006 (0.048) −0.027 (0.051) 0.002 (0.055)
400 −0.004 (0.019) −0.022 (0.032) 0.002 (0.033) −0.025 (0.048) 0.005 (0.048)
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Figure 1. RMSE and percentage of bias of parameter estimates for a model at various sample sizes.

for β1. For the random effect parameter θ , all estimators present similar estimated RMSEs and
PQLE; ψm and ψm,S show some downward bias, while ψ IW

m and ψ IW
m,S show some upward bias.

In Figure 1, a significant higher percent (10–20%) bias is observed in ψm as well as in ψm,S ;
however, it is worth noting that this bias gradually reduces with the increase in sample size. In
contrast, ψ IW

m and ψ IW
m,S have less than 5% bias, which demonstrates bias reduction by using the

proposed independent weight methodology. In addition, we use histograms to show how close the
distributions of the SBE estimates are to the normal distributions and compare them with those
of the PQL estimates. In Figure 2, we can find that when m = 200, the distribution is already
fairly close to normal for all estimators; thus, the asymptotic normality properties of the proposed
estimates are justified.

A second simulation study was conducted based on a model setup that was the same as the
one in the previous simulation study, except the random effect was generated from either a t (4)

or a χ2(3) distribution. h(u) was set as the same distribution as the random effect for SBE.
Table 2 summarizes the simulation results. For fixed effects, Monte Carlo mean estimates from
both PQLE and SBE are close to the true parameter values and no apparent biases are observed.
For the random effect, PQLE results in a larger bias and RMSEs in comparison with the SBE.

In the third simulation study, we considered a logistic model: logit(Pr(yij = 1|bi)) = β0 +
β1 × trti + β2xij + bi0 + bi1xij , where bi ∼ N [(0, 0)′, diag(θ0, θ1)]. In the present simulation,
we selected m = 200, 300 and n = 5; covariates trti = 1 for half the sample and 0 for the remain-
der, xij = (j − 3)/2; β = (−1.0, 0.5, 0.5)′; θ0 = 1 and θ1 = 0.5. To compute the SBE, we
chose the density of N [(0, 0)′, diag(2, 2)] to be h(u) and generated independent points uis ,
s = 1, . . . , 2S, using S = 500, 1000 and 2000, respectively. Table 3 reports the simulation results.
Overall, it is clear that the SBE results in smaller bias than the PQLE for fixed effects as well as
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Figure 2. Histograms of PQLE, SLSE and SBE for a model with m = 200.

Table 2. Biases (RMSE) of the parameter estimates at m = 200 and non-normal
random effect distribution.

χ2(3) distribution t (4) distribution

PQLE SBE PQLE SBE

β0 = 3 0.006 (0.011) −0.031 (0.055) 0.010 (0.101) −0.028 (0.053)
β1 = −1 0.002 (0.073) 0.005 (0.079) 0.002 (0.056) 0.007 (0.072)
θ = 0.25 0.093 (0.394) −0.023 (0.039) 0.116 (1.106) −0.027 (0.041)

the random effect θ0, while the SBE has slightly bigger bias only for the random effect θ1. The
finding is not surprising, as it is known that the PQLE may have severe bias in the estimates of the
fixed effects and variance components of random effects, when repeated measures data are binary.
As the sample size m increases from 200 to 300, the RMSEs for all parameters from all methods
decrease. For the SBE, as the number of simulated values S decreases from 2000 to 500, RMSEs
become slightly bigger, but the estimates stay relatively stable. This implies that even at a relative
small sample size of simulated values S = 500, the SBE still produces reasonable estimates. On
comparing the PQLE with the SBE computed using S = 2000, the PQLE seems to have smaller
RMSEs, especially for the random effect estimates. The SBEIW has also been computed and it
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Table 3. Biases (RMSE) of the parameter estimates with a different number of the
simulated points S for SBE.

SBE

PQLE S = 2000 S = 1000 S = 500

m = 200
β0 = −1 0.109 (0.180) −0.071 (0.188) −0.070 (0.200) −0.049 (0.191)
β1 = 0.5 −0.054 (0.189) 0.029 (0.217) 0.040 (0.218) 0.032 (0.174)
β2 = 0.5 −0.057 (0.124) 0.030 (0.141) 0.030 (0.139) 0.024 (0.109)
θ0 = 1 −0.108 (0.258) 0.103 (0.332) 0.112 (0.375) 0.063 (0.358)
θ1 = 0.5 0.074 (0.279) 0.082 (0.402) 0.107 (0.392) 0.061 (0.366)

m = 300
β0 = −1 0.113 (0.164) −0.030 (0.135) −0.045 (0.154) −0.033 (0.178)
β1 = 0.5 −0.067 (0.176) 0.021 (0.170) 0.024 (0.169) 0.027 (0.183)
β2 = 0.5 −0.058 (0.109) 0.022 (0.109) 0.022 (0.107) 0.013 (0.108)
θ0 = 1 −0.116 (0.210) 0.055 (0.255) 0.071 (0.298) 0.051 (0.345)
θ1 = 0.5 0.088 (0.241) 0.074 (0.319) 0.073 (0.324) 0.045 (0.334)

Table 4. Biases (RMSE) for the parameter estimates with and without outliers.

No outliers With outliers

PQLE GEE SLSE/SBE PQLE GEE SLSE/SBE

Poisson model
β0 = 1 0.021 (0.060) 0.1232 (0.1369) −0.082 (0.103) 0.162 (0.205) 0.2907 (0.3080) −0.057 (0.082)
β1 = 1 −0.001 (0.038) −0.0019 (0.0373) 0.017 (0.043) −0.004 (0.163) 0.0081 (0.1716) 0.011 (0.041)
θ = 0.25 −0.013 (0.043) – −0.047 (0.062) 0.097 (1.029) – −0.040 (0.059)

Logistic model
β0 = 1 0.020 (0.212) −0.0440 (0.0699) 0.066 (0.306) −0.059 (0.412) −0.0570 (0.0807) 0.074 (0.365)
β1 = 1 0.051 (0.229) −0.0435 (0.0744) 0.117 (0.317) −0.108 (0.433) −0.0551 (0.0842) 0.073 (0.301)
θ = 0.25 0.017 (0.320) – −0.021 (0.571) −0.013 (0.295) – 0.028 (0.643)

showed smaller biases than SBE. The simulation results from SBEIW are not provided here for
the sake of saving space, since SBE has already demonstrated smaller biases than PQLE.

The last simulation study here is to demonstrate the robustness of the proposed estimator in the
presence of outliers; we conducted simulation studies on random intercept Poisson and logistic
models with one covariate and the parameter values β = (1, 1)′ and θ = 0.25. We generated m =
100 subjects with n = 5 measurements per subject. The values of the covariate xij = (j − 3)/2
in the Poisson mixed model and one random measurement within five different subjects were
contaminated by using 100yij (i.e. 5% subjects with one outlier). For the logistic model, xij was
generated from N(0, 1). Since the response variable yij is binary in the logistic model, outliers
arise in x. To create outliers, we followed Sinha [22,23] to replace one randomly chosen x value
within five different subjects by x + 3 (i.e. 5% subjects with one outlier). In this simulation study,
we also included the GEE estimates based on an independent working correlation. For comparison,
we also present the simulation results without outliers. Table 4 summarizes the simulation results.
In the case of the Poisson mixed model, the SBE stays almost the same as outliers increase from
0% to 5%, while a significant increase from PQLE and GEE is observed. For the logistic model,
the SBE shows smaller biases for the estimation of β1 and θ in the presence of outliers. For the
estimation of fixed effects β0 and β1, the SBE provides smaller RMSEs than the PQLE and GEE.
It is known that GEE is unbounded and sensitive to data outliers [24]. However, the PQLE of
θ appears to have smaller RMSEs. This interesting and counterintuitive phenomenon was also
found in a similar simulation study conducted by Sinha [22] and Noh and Lee [25] when they
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1096 H. Li and L. Wang

Table 5. Comparison of parameter estimates and their SEs for the seizure count data.

Parameter SLSE estimates (SE) RQLEa estimates (SE) MQLEa estimates (SE)

INTERCEPT −1.324 (1.672) −1.330 (0.928) −1.388 (1.248)
BASE 0.915 (0.117) 0.895 (0.083) 0.890 (0.141)
TRT −0.758 (0.627) −0.795 (0.446) −0.849 (0.424)
TRT × Base 0.397 (0.205) 0.260 (0.238) 0.324 (0.216)
AGE 0.453 (0.485) 0.462 (0.277) 0.463 (0.365)
VISIT/10 −0.230 (0.268) −0.230 (0.156) −0.253 (0.241)
θ0 0.135 (0.093) 0.130 (0.050) 0.257 (0.083)
θ1 0.117 (0.709) 0.116 (0.357) 1.904 (1.386)

aObtained from Sinha [23].

compared their proposed robust estimation methods with the classical likelihood-based method.
Similarly, we can argue that the RMSE of the PQLE of θ underestimates because of the relatively
larger biases observed in the PQLE of the fixed effects.

5. Application to the seizure count data

In this section, we apply the proposed methods to analyse the popular epilepsy seizure count data
presented by Thall and Vail [26]. The data come from a clinical trial of 59 epileptics who were
randomized to receive either the antiepileptic drug progabide (TRT = 1) or a placebo (TRT = 0),
as an adjuvant to standard chemotherapy. The logarithm of a quarter of the number of epileptic
seizures in the 8-week period preceding the trial (BASE) and the logarithm of age (Age) were
included as covariates in the analysis. For each individual, a multivariate response variable con-
sisting of the seizure counts during 2-week periods before each of four clinical visits (VISIT,
coded −0.3, −0.1, 0.1 and 0.3) was collected. By a thorough investigation, Thall and Vail [26]
identified a number of patients as outliers, who have irregular large counts. Recently, the data
were further analysed by Sinha [23] using the robust quasi-likelihood estimator (RQLE) proposed
by him. Here, we consider the following model used by Sinha [23]:

log E(yij |bi) = x ′
ij β + bi0 + bi1VISITij , (20)

where bi0 ∼ N(0, θ0) and bi1 ∼ N(0, θ1) are the independent random effects, and xij represents
the vector of the predictors BASE, TRT, AGE and VISIT, and the interaction between BASE
and TRT.

Table 5 reports the fixed and random effect estimates by the SBE, the RQLE and the classical
marginal quasi-likelihood estimator (MQLE). The estimates of the fixed effects are very similar
and the covariate BASE is highly significant by all the three approaches. However, we observed
a significant difference in the estimates of the random effects. In particular, the SBE estimates
highly agree with the RQL estimates, but are quite different from those obtained by the MQL
method. The standard errors (SEs) of θ2

0 from all approaches are relatively close, but the SBE
results in a SE reduction of 50% for θ2

1 in comparison with the MQLE. Since Sinha [23] concludes
that the RQL method appears to be successful in handling outliers in the epilepsy data, we confirm
that the SBE has the same property.

6. Concluding remarks

This paper proposes an exact consistent SBE for GLMMs with flexible distributions of random
effects. We have established the asymptotic properties of the proposed estimators under mild
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regularity conditions, and we have demonstrated that the proposed estimator has desirable finite
sample properties by simulation studies. In comparison with the likelihood-based method, the
proposed approach requires less distributional assumptions and leads to exact consistent (not
approximately) estimation. In comparison to GEE and associated simulation-based methods, it is
computationally more attractive and does not require any ‘working’ specification of the weight
matrix. Furthermore, the proposed estimator is robust against data outliers. Since the main purpose
of this paper is to introduce a new consistent estimator for a GLMM, we did not fully explore its
robustness property, except some limited simulation studies. Some future research may be done
to investigate its breakdown points and compare it with some popular robust estimation methods
in the literature.
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Appendix: Technical proofs

Throughout the proofs, we use g(d)(·) and ν(d)(·), d = 0, 1, 2, to denote their dth-order derivatives, and use f
(d)
b (u; θ) to

denote its dth-order partial derivative w.r.t. θ .

Proof of Corollary 3.2(1)

For any 1 ≤ i ≤ m, by A1–A3 and the Cauchy–Schwartz inequality, we have

‖ρi(ψ)‖2 ≤ 2
∑

j

y2
ij + 2

∑
j≤k

y2
ij y

2
ik + 2

∑
j

(∫
g(x′

ij β + z′
ij u)fb(u; θ) du

)2

+ 4
∑
j≤k

(∫
g(x′

ij β + z′
ij u)g(x′

ikβ + z′
iku)fb(u; θ) du

)2

+ 4φ2
∑

j

(∫
ν(g(x′

ij β + z′
ij u))fb(u; θ) du

)2

≤ 2
∑

j

y2
ij + 2

∑
j≤k

y2
ij y

2
ik + 2

∑
j

∫
g2(x′

ij β + z′
ij u)fb(u; θ) du

+ 4
∑
j≤k

∫
g2(x′

ij β + z′
ij u)fb(u; θ)du

∫
g2(x′

ikβ + z′
iku)fb(u; θ) du

+ 4φ2
∑

j

(∫
ν(g(x′

ij β + z′
ij u))fb(u; θ) du

)2

,

and therefore,

E sup
	

ρ′
i (ψ)Wiρi(ψ) ≤ E‖Wi‖ sup

	

‖ρ′
i (ψ)‖2

≤ 2niE‖Wi‖y2
ij + ni(ni + 1)E‖Wi‖y2

ij y
2
ik + 2niE‖Wi‖

∫
G(Xi, Zi, u) du

+ 2ni(ni + 1 + 2 sup
�

φ2)E‖Wi‖
(∫

G(Xi, Zi, u) du

)2

< ∞.

Hence, by the uniform law of large numbers (ULLN), supψ∈	 |(1/m)Qm(ψ) − Q(ψ)| a.s.−−→ 0, where Q(ψ) =
E[ρ′

i (ψ)Wiρi(ψ)]. Furthermore, since ρi(ψ) − ρi(ψ0) does not depend on Yi ,

Q(ψ) = E(ρ′
i (ψ) − ρ′

i (ψ0) + ρ′
i (ψ0))Wi(ρi(ψ) − ρi(ψ0) + ρi(ψ0))

= Q(ψ0) + E(ρi(ψ) − ρi(ψ0))
′Wi(ρi(ψ) − ρi(ψ0)).

It follows from A4 that Q(ψ) ≥ Q(ψ0) and the equality holds if and only if ψ = ψ0. Thus, all conditions reported by

Amemiya [27, Lemma 3] are satisfied, and therefore, ψ̂m
a.s.−−→ ψ0, as m → ∞.
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Proof of Corollary 3.2(2)

By A5 and the dominated convergence theorem, the first derivative ∂Qm(ψ)/∂ψ exists and has the first-order Taylor

expansion in 	. Since ψ̂m
a.s.−−→ ψ0, for sufficiently large m, we have

∂Qm(ψ̂m)

∂ψ
= ∂Qm(ψ0)

∂ψ
+ ∂2Qm(ψ̃m)

∂ψ∂ψ ′ (ψ̂m − ψ0) = 0, (A1)

where ‖ψ̃m − ψ0‖ ≤ ‖ψ̂m − ψ0‖. The first derivative of Qm(ψ) in Equation (A1) is given by

∂Qm(ψ)

∂ψ
= 2

m∑
i=1

∂ρ′
i (ψ)

∂ψ
Wiρi(ψ),

where

∂ρ′
i (ψ)

∂ψ
= −

(
∂μij (ψ)

∂ψ
, 1 ≤ j ≤ ni,

∂ηijk(ψ)

∂ψ
, 1 ≤ j ≤ k ≤ ni

)

with nonzero first derivatives

∂μij (ψ)

∂β
= xij

∫
g(1)(x′

ij β + z′
ij u)fb(u; θ) du,

∂μij (ψ)

∂θ
=

∫
g(x′

ij β + z′
ij u)f

(1)
b (u; θ) du,

∂ηijk(ψ)

∂β
= xij

∫
g(1)(x′

ij β + z′
ij u)g(x′

ikβ + z′
iku)fb(u; θ) du

+ xik

∫
g(x′

ij β + z′
ij u)g(1)(x′

ikβ + z′
iku)fb(u; θ) du

+ δjkφxij

∫
ν(1)(g(x′

ij β + z′
ij u))g(1)(x′

ij β + z′
ij u)fb(u; θ) du,

∂ηijk(ψ)

∂θ
=

∫
g(x′

ij β + z′
ij u)g(x′

ikβ + z′
iku)f

(1)
b (u; θ) du

+ δjkφ

∫
ν(g(x′

ij β + z′
ij u))f

(1)
b (u; θ) du,

∂ηijk(ψ)

∂φ
= δjk

∫
ν(g(x′

ij β + z′
ij u))fb(u; θ) du.

Since (∂ρ′
i (ψ)/∂ψ)Wiρi(ψ) are i.i.d. with zero mean, it follows from the central limit theorem that, as m → ∞,

1√
m

∂Qm(ψ0)

∂ψ

L−→ N(0, 4C). (A2)

The second derivative of Qm(ψ) in Equation (A1) is given by

∂2Qm(ψ)

∂ψ∂ψ ′ = 2
m∑

i=1

[
∂ρ′

i (ψ)

∂ψ
Wi

∂ρi(ψ)

∂ψ ′ + (ρ′
i (ψ)Wi ⊗ I )

∂vec(∂ρ′
i (ψ)/∂ψ)

∂ψ ′

]
,

where I is the 2m(p + r + 1)-dimensional identity matrix and

∂vec(∂ρ′
i (ψ)/∂ψ)

∂ψ ′ = −
(

∂2μij (ψ)

∂ψ∂ψ ′ , 1 ≤ j ≤ ni,
∂2νijk(ψ)

∂ψ∂ψ ′ , 1 ≤ j ≤ k ≤ ni

)′
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with nonzero partial derivatives

∂2μij (ψ)

∂β∂β ′ = xij x
′
ij

∫
g(2)(x′

ij β + z′
ij u)fb(u; θ) du,

∂2μij (ψ)

∂θ∂θ ′ =
∫

g(x′
ij β + z′

ij u)f
(2)
b (u; θ) du,

∂2μij (ψ)

∂β∂θ ′ = xij

∫
g(1)(x′

ij β + z′
ij u)f

(1)
b (u; θ) du,

∂2ηijk(ψ)

∂β∂β ′ = xij x
′
ij

∫
g(2)(x′

ij β + z′
ij u)g(x′

ikβ + z′
iku)fb(u; θ) du

+ 2xij x
′
ik

∫
g(1)(x′

ij β + z′
ij u)g(1)(x′

ikβ + z′
iku)fb(u; θ) du

+ xikx
′
ik

∫
g(x′

ij β + z′
ij u)g(2)(x′

ikβ + z′
iku)fb(u; θ) du

+ δjkφxij x
′
ij

∫
ν(2)(g(x′

ij β + z′
ij u))

(
g(1)(x′

ij β + z′
ij u)

)2
fb(u; θ) du,

+ δjkφxij x
′
ij

∫
ν(1)(g(x′

ij β + z′
ij u))g(2)(x′

ij β + z′
ij u)fb(u; θ) du,

∂2ηijk(ψ)

∂θ∂θ ′ =
∫

g(x′
ij β + z′

ij u)g(x′
ikβ + z′

iku)f
(2)
b (u; θ) du

+ δjkφ

∫
ν(g(x′

ij β + z′
ij u))f

(2)
b (u; θ) du,

∂2ηijk(ψ)

∂β∂θ ′ = xij

∫
g(1)(x′

ij β + z′
ij u)g(x′

ikβ + z′
iku)f

(1)
b (u; θ) du

+ xik

∫
g(x′

ij β + z′
ij u)g(1)(x′

ikβ + z′
iku)f

(1)
b (u; θ) du

+ δjkφ

∫
ν(1)(g(x′

ij β + z′
ij u))g(1)(x′

ij β + z′
ij u)f

(1)
b (u; θ) du.

Analogous to the proof of Corollary 3.2(1), by A1–A5 and the Cauchy–Schwartz inequality, we can verify that

E sup
	

∥∥∥∥ ∂ρ′
i (ψ)

∂ψ
Wi

∂ρi(ψ)

∂ψ ′

∥∥∥∥ ≤ E‖Wi‖ sup
	

∥∥∥∥ ∂ρ′
i (ψ)

∂ψ

∥∥∥∥
2

< ∞

and

E sup
	

∥∥∥∥(ρ′
i (ψ)Wi ⊗ I )

∂vec(∂ρ′
i (ψ)/∂ψ)

∂ψ ′

∥∥∥∥ ≤ √
2m(p + r + 1)E‖Wi‖ sup

	

‖ρi(ψ)‖
∥∥∥∥ ∂vec(∂ρ′

i (ψ)/∂ψ)

∂ψ ′

∥∥∥∥
≤ √

2m(p + r + 1)(E‖Wi‖ sup
	

‖ρi(ψ)‖2)1/2

×
(

E‖Wi‖ sup
	

∥∥∥∥ ∂vec(∂ρ′
i (ψ)/∂ψ)

∂ψ ′

∥∥∥∥
2
)1/2

.

< ∞.

Therefore, by the ULLN and Lemma 4 reported by Amemiya [27], we have

1

2m

∂2Qm(ψ)

∂ψ∂ψ ′
a.s.−−→ E

[
∂ρ′

i (ψ)

∂ψ
Wi

∂ρi(ψ)

∂ψ ′ + (ρ′
i (ψ)Wi ⊗ I )

∂vec(∂ρ′
i (ψ)/∂ψ)

∂ψ ′

]
= B, (A3)

where the second equality holds because

E

[
(ρ′

i (ψ0)Wi ⊗ I )
∂vec(∂ρ′

i (ψ0)/∂ψ)

∂ψ ′

]
= 0.

The result then follows from Equations (A1)–(A3), assumption (A6) and Slutsky’s theorem.
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Proof of Theorem 3.1(1)

First, the conditional expectation satisfies

E

(
sup
	

‖ρi,1(ψ)‖|Yi, Xi, Zi

)
≤

∑
j

|yij | +
∑
j≤k

|yij yik | + 1

S

∑
j

S∑
s=1

E

(
sup� |g(x′

ij β + z′
ij uis )|fb(uis ; θ)

h(uis )

∣∣∣∣∣ Xi, Zi

)

+ 1

S

∑
j≤k

S∑
s=1

E

(
sup� |g(x′

ij β + z′
ij uis )g(x′

ikβ + z′
ikuis )|fb(uis ; θ)

h(uis )

∣∣∣∣∣ Xi, Zi

)

+ sup� φ

S

∑
j

S∑
s=1

E

(
sup� |ν(g(x′

ij β + z′
ij uis ))|fb(uis ; θ)

h(uis )

∣∣∣∣∣ Xi, Zi

)

≤
∑

j

|yij | +
∑
j≤k

|yij yik | +
∑

j

(∫
sup
�

|g(x′
ij β + z′

ij u)|fb(u; θ)du

)

+
∑
j≤k

(∫
sup
�

|g(x′
ij β + z′

ij u)g(x′
ikβ + z′

iku)|fb(u; θ)du

)

+ sup
�

φ
∑

j

(∫
sup
�

|ν(g(x′
ij β + z′

ij u))|fb(u; θ)du

)
.

Similarly, the above upper bound applies to E(sup	 ‖ρi,2(ψ)‖|Yi, Xi, Zi) as well. Furthermore, since ρi,1 and ρi,2 are
conditionally independent given (Yi , Xi, Zi), we have

E

(
sup
	

|ρi,1(ψ)Wiρi,2(ψ)|
)

≤ E

[
‖Wi‖E

(
sup
	

‖ρi,1(ψ)‖|Yi, Xi, Zi

)
E

(
sup
	

‖ρi,2(ψ)‖|Yi, Xi, Zi

)]

≤ E‖Wi‖
⎛
⎝∑

j

|yij | +
∑
j≤k

|yij yik | +
∑

j

∫
sup
�

|g(x′
ij β + z′

ij u)|fb(u; θ) du

+
∑
j≤k

∫
sup
�

|g(x′
ij β + z′

ij u)g(x′
ikβ + z′

iku)|fb(u; θ) du

+ sup
�

φ
∑

j

∫
sup
�

|ν(g(x′
ij β + z′

ij u))|fb(u; θ) du

⎞
⎠

2

.

Analogous to the proof of Corollary 3.2(1), we have E(sup	 |ρi,1(ψ)Wiρi,2(ψ)|) < ∞, and therefore, by the ULLN,

1

m
Qm,S(ψ)

a.s.−−→ Eρ′
i,1(ψ)Wiρi,2(ψ)

uniformly in ψ ∈ 	, where

Eρ′
i,1(ψ)Wiρi,2(ψ) = E[E(ρ′

i,1(ψ)|Xi, Zi)WiE(ρ′
i,2(ψ)|Xi, Zi)] = Q(ψ).

It has been proved previously that Q(ψ) attains a unique minimum at ψ0 ∈ 	. Therefore, by Lemma 3 reported by

Amemiya [27], ψ̂m,S
a.s.−−→ ψ0, as m

a.s.−−→ ∞.

Proof of Theorem 3.1(2)

For sufficiently large m, we have

∂Qm,S(ψ0)

∂ψ
+ ∂2Qm,S(ψ̃m,S)

∂ψ∂ψ ′ (ψ̂m,S − ψ0) = 0, (A4)
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where ‖ψ̃m,S − ψ0‖ ≤ ‖ψ̂m,S − ψ0‖ and the first derivative

∂Qm,S(ψ)

∂ψ
=

m∑
i=1

(
∂ρ′

i,1(ψ)

∂ψ
Wiρi,2(ψ) + ∂ρ′

i,2(ψ)

∂ψ
Wiρi,1(ψ)

)

is a summation, which are i.i.d. terms with mean zero and common covariance matrix 4CS . Hence, by the central limit
theorem, we have

1√
m

∂Qm,S(ψ)

∂ψ

a.s.−−→ N(0, 4CS). (A5)

Next, the second derivative is given by

∂2Qm,S(ψ)

∂ψ∂ψ ′ =
m∑

i=1

[
∂ρ′

i,1(ψ)

∂ψ
Wi

∂ρi,2(ψ)

∂ψ ′ + (ρ′
i,2(ψ)Wi ⊗ I )

∂vec(∂ρ′
i,1(ψ)/∂ψ)

∂ψ ′

]

+
m∑

i=1

[
∂ρ′

i,2(ψ)

∂ψ
Wi

∂ρi,1(ψ)

∂ψ ′ + (ρ′
i,1(ψ)Wi ⊗ I )

∂vec(∂ρ′
i,2(ψ)/∂ψ)

∂ψ ′

]
,

where I is the 2m(p + r + 1)-dimensional identity matrix. Similar to previous proofs, it can be shown that
(1/m)(∂2Qm,S(ψ)/∂ψ∂ψ ′) converges to

E

[
∂ρ′

i,1(ψ0)

∂ψ
Wi

∂ρi,2(ψ0)

∂ψ ′ + (ρ′
i,2(ψ0)Wi ⊗ I )

∂vec(∂ρ′
i,1(ψ0)/∂ψ)

∂ψ ′

]

+ E

[
∂ρ′

i,2(ψ0)

∂ψ
Wi

∂ρi,1(ψ0)

∂ψ ′ + (ρ′
i,1(ψ0)Wi ⊗ I )

∂vec(∂ρ′
i,2(ψ0)/∂ψ)

∂ψ ′

]

uniformly for all ψ ∈ 	. Since

E

[
∂ρ′

i,1(ψ0)

∂ψ
Wi

∂ρi,2(ψ0)

∂ψ ′

]
= E

[
∂ρ′

i (ψ0)

∂ψ
Wi

∂ρi(ψ0)

∂ψ ′

]
= B

and

E

[
(ρ′

i,1(ψ0)Wi ⊗ I )
∂vec(∂ρ′

i,2(ψ0)/∂ψ)

∂ψ ′

]
= 0,

we have

1

m

∂2Qm,S(ψ)

∂ψ∂ψ ′
a.s.−−→ 2B. (A6)

Finally, the result follows from Equations (A4)–(A5) and Slutsky’s theorem.

Proof of Corollary 3.6

The IF of SBE is bounded if and only if

∂ρ′
l,1(v; ψ̂m,S(F ))

∂ψ
Â−1ρl,2(v; ψ̂m,S(F )) (A7)

is bounded. We can express Â as

Â = 1

m

m∑
i=1

ρi,2ρ
′
i,1 = 1

m
(Vl + ρl,2ρ

′
l,1),
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where Vl = ∑
i =l ρi,2ρ

′
i,1. Then, by the Sherman–Morrison–Woodbury formula, we have

Â−1 = m(Vl + ρi,2ρ
′
i,1)

−1 = m

(
V −1

l − V −1
l ρl,2ρ

′
l,1V

−1
l

1 + ρ′
l,1V

−1
l ρl,2

)

if Vl is nonsingular, V −1
l and Â−1 exist. Therefore,

Â−1ρl,2 = m

(
V −1

l ρl,2 − V −1
l ρl,2ρ

′
l,1V

−1
l ρl,2

1 + ρ′
l,1V

−1
l ρl,2

)
= m

(
V −1

l ρl,2

1 + ρ′
l,1V

−1
l ρl,2

)
,

and accordingly,

∥∥∥∥∥ ∂ρ′
l,1

∂ψ
Â−1ρl,2(v)

∥∥∥∥∥
2

= m2

(
ρ′

l,2(v)V −1
l (∂ρl,1/∂ψ)(∂ρ′

l,1/∂ψ)V −1
l ρl,2(v)

1 + ρ′
l,1(v)V −1

l ρl,2(v)

1

1 + ρ′
l,1(v)V −1

l ρl,2(v)

)
→ 0

as ‖v‖ → ∞.
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