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Abstract

Generalized method of moments (GMM) is an estimation technique

which estimates unknown parameters by matching theoretical moments

with sample moments. It may provide a poor approximation to the finite

sample distribution of the estimator. Moreover, increasing the number of

moment conditions requires substantial increase of the sample size.

Second-order least squares (SLS) estimation is an extension of the

ordinary least squares method by adding to the criterion function the

distance of the squared response variable to its second conditional

moment. It is shown in this paper that the SLS is asymptotically more

efficient than the GMM when both use the same moment conditions.

Moreover, Monte Carlo simulation studies show that SLS performs

better than the GMM estimators using three or four moment conditions.

1. Introduction

It has been more than two decades since econometricians have
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suggested using a generalized version of Pearson’s [6] method of moment

approach, commonly known as the generalized method of moment (GMM)

estimation. It is an estimation technique which estimates unknown

parameters by matching theoretical moments with the sample moments.

Large sample properties of GMM estimators have been developed by

Hansen [2]. In recent years, there has been growing literature on

finite sample behavior of GMM estimators, see, e.g., Windmeijer [11]

and references therein. Although GMM estimators are consistent and

asymptotically normally distributed under general regularity conditions,

it has long been recognized that this asymptotic distribution may provide

a poor approximation to the finite sample distribution of the estimators.

Identification is another issue in GMM method (e.g., Stock and

Wright [7] and Wright [12]). In particular, the number of moment

conditions needs to be equal to or greater than the number of parameters,

in order for them to be identified. This restriction makes problems when

parametric dimension increases. It seems that adding over-identifying

restrictions (moment conditions) will increase precision, however this is

not always the case (Anderson and Sorenson [1]). More recently, for a

linear model with heteroscedasticity, Koenker and Machado [4] showed

that an effective sample size can be given by ,3
nqn  where nq  is the

number of moment conditions used. This means that very large sample

size is required to justify conventional asymptotic inference. See also

Huber [3, p. 164].

Recently, Wang [8, 9] proposed a second-order least squares (SLS)

estimator which is based on the first two conditional moments of the

response variable given the predictor variables. This estimator extends

the ordinary least squares estimation by including in the criterion

function the distance of the squared response variable to its second

conditional moment. Wang and Leblanc [10] compared the SLS estimator

with the ordinary least squares (OLS) estimator in nonlinear models.

They showed that SLSE is asymptotically more efficient than the OLSE

when the third moment of the random error is nonzero. An interesting

question that arises naturally is how does SLS compare with GMM

estimators? This question is partially addressed in the current paper.
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In Section 2, we introduce the SLS and its asymptotic properties. In

Section 3, we compare the asymptotic covariance matrix of the (efficient)

SLS and GMM when both use the same number of moment conditions.

Since a theoretical comparison of these two methods is extremely difficult

when SLS and GMM use different number of moment conditions, we

compare these two estimators through Monte Carlo simulation studies,

which consist of Section 4. Finally, conclusions are given in Section 5.

2. Second-order Least Squares Estimation

Consider a general regression model

( ) ,; ε+θ= XgY  (1)

where R∈Y  is the response variable, kX R∈  is the predictor variable,
pR∈θ  is the unknown regression parameter and ε is the random error

satisfying ( ) 0=|ε XE  and ( ) .22 σ=|ε XE  Under model (1) the first two

conditional moments of Y given X are respectively, ( ) ( )θ=|γ ;XgXYE

and ( ) ( ) ,; 222 σ+θ=|γ XgXYE  where ( ) ., 2 ′σθ′=γ  Suppose ( ) ,, ′′ii XY

ni ...,,2,1=  is an i.i.d. random sample. Following Wang and Leblanc

[10], the second-order least squares estimator SLSγ̂  for γ  is defined as the

measurable function that minimizes

( ) ( ) ( )∑
=

γργρ′=γ
n

i
iiin WQ

1

, (2)

where ( ) ( ( ) ( ) )′σ−θ−θ−=γρ 222 ;,; iiiii XgYXgY  and ( )ii XWW =  is a

22 ×  nonnegative definite matrix which may depend on .iX  It is easy to

see that this estimator is an extension of the ordinary least squares

estimator by adding the distance of the squared response variable to its

second conditional moment into the criterion function.

Wang and Leblanc [10] proved that, under some regularity conditions,

the SLSE is consistent and has an asymptotic normal distribution with
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the asymptotic covariance matrix given by ,11 −− BAA  where

( ) ( ) ( ) ( ) ( ) ( )






γ′∂
γρ∂

γρ′γρ
γ∂
γρ′∂

=





γ′∂
γρ∂

γ∂
γρ′∂

= i
iiii

ii
i

i WWEBWEA ,

and

( )
( ) ( ) ( )

.

10

;
;2

;
















θ∂

θ∂
θ

θ∂
θ∂

−=
γ∂
γρ′∂

i
i

i
i

Xg
Xg

Xg

They pointed out that the best choice for the weighting matrix is

,1−= ii UW  where ( ) ( )( ),iiii XEU |γρ′γρ=  which gives the smallest variance-

covariance matrix

( ) ( )
.11






γ′∂
γρ∂

γ∂
γρ′∂ −− i

i
i UE

In the following we provide a formal proof of this fact.

Theorem 1. Denote 
( )
γ′∂
γρ∂

= iC  and ( ) ( ).γρ′γρ= iiD  Then the

asymptotic covariance matrix of the most efficient SLSE is ( ),11 CUCE −− ′

where =U  ( ).iXDE |

Proof. First, it is easy to see that ( )WCCEA ′=  and ( )WDWCCEB ′=

( ),WUWCCE ′=  because C and W do not depend on .iY  Further, let

( ) ( ).1 WCCEWUWCCE ′′=α −  Then we have

( ) ( )α−′α− − UWCCUUWCCE 1

( ) ( ) ( ) ( )α′α′+′α′−α′−′= − WUWCCEWCCEWCCECUCE 1

( ) ( ) ( ) ( )WCCEWUWCCEWCCECUCE ′′′−′= −− 11

( ) AABCUCE 11 −− −′=

which is nonnegative definite. It follows that ( ) ,1111 −−−− ≤′ BAACUCE

and equality holds if 1−= UW  in both A and B.
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In the rest of this paper, SLSE always refers to the most efficient

second-order least squares estimator using the weight .1−= UW

3. Comparison with GMM Estimation

In this section, we compare the SLS with GMM estimator when both
use the same set of moment conditions. Given the i.i.d. random sample

( ) ,...,,2,1,, niXY ii =′′  the GMM estimator using the first two conditional

moments is defined as the measurable function which minimizes

( ) ( ) ( ) ,
11














γρ

′














γρ=γ ∑∑

==

n

i
in

n

i
in WG (3)

where ( )γρi  is defined in (2) and nW  is a nonnegative definite weighting

matrix. It can be shown (e.g., Mátyás [5]) that under some regularity
conditions, the GMM estimator has an asymptotic normal distribution
and the asymptotic covariance matrix of the efficient GMM is given by

( ) ( )
,

1
1

−
−















γ′∂
γρ∂









γ∂
γρ′∂ ii EVE

where ( ) ( )[ ] ( )UEEV ii =γρ′γρ=  is the optimum weighting matrix. The

next theorem compares the asymptotic covariance matrices of the SLS
and GMM estimators.

Theorem 2. The SLSE is asymptotically more efficient than the GMM

estimator using the first two moment conditions, i.e., ( ) ≤′ −− CUCE 11

[ ( ) ( )] .11 −−′ CEVCE

Proof. The proof is similar to that of Theorem 1. Let ( ).1 CEV −=α

Then the result follows from

( ) ( )α−′α− − UCUUCE 1

( ) ( ) ( ) ( )αα′+α′−α′−′= − UECECECUCE 1

( ) ( ) ( ) .011 ≥′−′= −− CEVCECUCE



w
w

w
.p

ph
m

j.c
om

TARANEH ABARIN and LIQUN WANG184

If θ̂  and 2σ̂  denote the estimators of the regression and variance

parameters, respectively, then the above theorem implies that

( ) ( )SLSGMM VV θ≥θ ˆˆ  and ( ) ( )22 ˆˆ SLSGMM VV σ≥σ  asymptotically. Given

these theoretical comparison results, an interesting question is that does

GMM perform better than SLS if using more than two moment

conditions? This question is examined in the next section.

4. Monte Carlo Simulation Studies

In order to verify the finite sample behavior of the second-order least

squares (SLS) estimation approach and the generalized method of

moment (GMM) estimation, several simulation scenarios are considered.

4.1. Design of the studies

We consider the following exponential, logistic and linear exponential

models, each with two or three parameters.

1. Exponential model with two parameters: ,10 ε+= θXeY  where

( ),10,1.0~ UX  ( ),,0~ 2σε N  and true parameter values are 5.0−=θ

and .12 =σ

2. Exponential model with three parameters: ,2
1 ε+θ= θ XeY  where

( ),10,1.0~ UX  ( ),,0~ 2σε N  and true parameters are ,101 =θ

5.02 −=θ  and .12 =σ

3. Logistic model with two parameters: 
( )[ ]

,
34exp1

20 ε+
θ−−+

=
X

Y

where ( ),100,20~ UX  ( ),,0~ 2σε N  and true parameters are 50=θ

and .12 =σ

 4. Logistic model with three parameters: 
( )[ ]

,
exp1

20

21
ε+

θθ−−+
=

X
Y

where ( ),80,20~ UX  ( ),,0~ 2σε N  and true parameters are ,501 =θ

342 =θ  and .12 =σ



w
w

w
.p

ph
m

j.c
om

COMPARISON OF GMM WITH SECOND-ORDER LEAST … 185

 5. Linear-exponential model with two parameters: += θ XeY 15

,10 2 ε+θ Xe  where ( ),10,1.0~ UX  ( ),1,0~ Nε  and true parameters are

31 −=θ  and .12 −=θ

6. Linear-exponential model with three parameters: +θ= θ XeY 1
3

,10 2 ε+θ Xe  where ( ),10,1.0~ UX  ( ),1,0~ Nε  and true parameters are

,31 −=θ  12 −=θ  and .53 =θ

In each model we compare SLS with two versions of GMM estimator,

one (GMM3) using the first three and another (GMM4) using the first

four moment conditions. Both SLS and GMM estimators are computed in

two steps. In the first step, identity weighting matrix is used to obtain

initial parameter estimates. In the second step, first the optimal weight

for the SLS is calculated according formula (7) in Wang and Leblanc [10],

and optimal weight for GMM is calculated as ( ) ( )∑ =
− ′γργρ= n

i iin nW
1

1 .ˆˆ

Then the final estimates are computed using the estimated weights.

As is frequently the case in nonlinear numerical optimization,

convergence, numerical complaints and other problems will be

encountered. To avoid potential optimization problems involved in the

iterative procedures, a direct grid search method is applied. In particular,

50000 =n  grid points per parameter are generated in each iteration. For

each model, 1000 Monte Carlo repetitions are carried out for each of the

sample sizes ,20=n  ,30=n  ,50=n  ,100=n  ,200=n  .500=n  The

Monte Carlo means (SLS, GMM3, GMM4) and their root mean squared

errors (RMSE) are computed. The numerical computation is done using

the statistical computer language R for Windows on a PC with standard

configuration.

4.2. Summary of simulation results

Tables 1-6 report the results, where GMM3 denotes the estimator

based on the first three moment conditions, and GMM4 denotes the

estimator based on the first four moment conditions. We report the

Monte Carlo means and their root mean squared errors.
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The results show that the SLS performs reasonably well, especially

for sample sizes above 100. Moreover, all estimates seem to be unbiased

within the range SSE3±  (Simulation Standard Error), whereas the

GMM converges slower than SLS and, in some cases, it is still biased

even for relatively large sample sizes. For example Figure 1 suggests a

downward bias in the GMM3 and GMM4 for 2σ  but not in SLS.

In the most cases, SLS performs better than GMM3 and GMM4 in

the sense that it has smaller RMSE and it decreases with the increase of

a number of observations. Figure 2 compares RMSE of estimators for

exponential model with two parameters. As we can see in this figure, SLS

has smaller RMSE for all sample sizes than GMM3 and GMM4, and it

decreases as sample size increases. Another fact in this figure is that

GMM3 has smaller RMSE than GMM4. Since GMM4 uses more

information than GMM3, we expect to have more precise estimators for

GMM4 than GMM3, however this is not always true. In Koenker and

Machado [4], they imply that GMM with higher number of moment

equations needs more sample size to justify conventional asymptotic

inference.

We have also simulated all models with normally distributed X and

obtained similar results, except in logistic model with three parameters

where SLS has larger RMSE for small sample sizes than GMMs.

However, as sample size gets larger, SLS starts to dominate both GMM3

and GMM4. Figure 3 shows this result.

Table 6 shows the case ( )31 −=θ  that SLS has larger RMSE than

GMMs even for sample size equal to 500. This fact can be seen in

Figure 4 with the same model but normal X. In this case, we examined

larger sample sizes ( )2000,1000=n  and observed that SLS needs more

sample size to perform better than GMMs.
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Figure 1. Estimation of Sigma 2 in exponential model

with two parameters.

Figure 2. RMSE of Theata of estimators in exponential model.
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Figure 3. RMSE of Theata 0 of estimators in logistic model.

Figure 4. RMSE of Theata 0 of estimators in linear exponential model.
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Table 1. Exponential model with two parameters

20=n 30=n 50=n 100=n 200=n 500=n

5.0−=θ

SLS –0.5083 –0.5092 –0.5052 –0.5031 –0.5001 –0.5004

(0.0581) (0.0494) (0.0365) (0.0255) (0.0160) (0.0098)

GMM3 –0.5113 –0.5378 –0.5126 –0.4988 –0.4933 –0.4949

(0.0850) (0.1351) (0.0884) (0.0588) (0.0368) (0.0251)

GMM4 –0.5096 –0.5535 –0.5173 –0.4986 –0.4925 –0.4914

(0.0922) (0.1871) (0.1234) (0.0764) (0.0456) (0.0323)

12 =σ

SLS 0.9218 0.9494 0.9798 0.9882 0.9949 1.000

(0.3109) (0.2591) (0.2005) (0.1427) (0.1003) (0.0622)

GMM3 0.9317 1.0333 0.9331 0.8335 0.8159 0.8451

(0.4005) (0.3968) (0.4086) (0.4309) (0.4399) (0.4371)

GMM4 0.7772 0.7231 0.7579 0.7966 0.8211 0.7972

(0.4698) (0.5000) (0.4729) (0.4567) (0.4398) (0.4493)
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Table 2. Logistic model with two parameters

20=n 30=n 50=n 100=n 200=n 500=n

50=θ

SLS 50.0883 50.0104 50.0572 50.0112 50.0315 50.0101

(1.3735) (1.2320) (1.0403) (0.7832) (0.5426) (0.3419)

GMM3 50.0204 49.9089 49.9203 49.8564 49.9216 49.8778

(1.4145) (1.2863) (1.1391) (0.8998) (0.6909) (0.4849)

GMM4 49.9939 49.8795 49.8722 49.7912 49.8827 49.8232

(1.4381) (1.3484) (1.1965) (0.9950) (0.7768) (0.5993)

12 =σ

SLS 0.9287 0.9661 0.9676 0.9927 0.9974 0.9956

(0.2819) (0.2477) (0.1952) (0.1357) (0.0940) (0.0628)

GMM3 0.8056 0.8121 0.8775 0.8370 0.8097 0.7939

(0.5286) (0.4923) (0.4460) (0.4290) (0.4482) (0.4452)

GMM4 0.7806 0.8037 0.8230 0.8150 0.8193 0.7978

(0.5396) (0.5025) (0.4725) (0.4463) (0.4464) (0.4543)
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Table 3. Linear exponential model with two parameters

20=n 30=n 50=n 100=n 200=n 500=n

31 −=θ

SLS –2.9661 –3.0189 –3.0154 –3.0766 –3.0451 –3.0234

(0.9426) (0.7893) (0.7482) (0.7898) (0.5711) (0.3840)

GMM3 –3.1525 –3.0284 –2.9683 –3.0474 –2.9454 –2.9497

(0.7459) (0.5987) (0.5675) (0.5816) (0.5727) (0.5462)

GMM4 –3.2763 –3.0239 –2.9858 –3.0469 –2.9861 –2.9404

(0.7951) (0.6010) (0.5753) (0.5833) (0.5677) (0.5693)

12 −=θ

SLS –1.0993 –1.0299 –1.0235 –1.0182 –1.0104 –1.0026

(0.2806) (0.1612) (0.1100) (0.0798) (0.0722) (0.0381)

GMM3 –1.1712 –1.0620 –1.0435 –1.0180 –1.0351 –1.0274

(0.4111) (0.3026) (0.1840) (0.0949) (0.1417) (0.1136)

GMM4 –1.2492 –1.1064 –1.0639 –1.0268 –1.0354 –1.0392

(0.4967) (0.4240) (0.2735) (0.1204) (0.1882) (0.1667)
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Table 4. Exponential model with two parameters

20=n 30=n 50=n 100=n 200=n 500=n

101 =θ

SLS 10.0744 10.0608 10.0208 10.0227 10.0054 6.9832

(1.2046) (0.9414) (0.6252) (0.6030) (0.3614) (0.2789)

GMM3 9.9750 10.1089 10.2047 10.1560 10.2193 10.1981

(1.1147) (1.0884) (0.8478) (0.9315) (0.8113) (0.9006)

GMM4 10.0109 10.2007 10.3319 10.2152 10.4046 10.2912

(1.1200) (1.1262) (0.9112) (1.0557) (0.9776) (1.0189)

5.02 −=θ

SLS –0.5145 –0.5117 –0.5065 –0.5041 –0.5016 –0.4996

(0.0911) (0.0807) (0.0508) (0.0381) (0.0256) (0.0191)

GMM3 –0.5035 –0.5102 –0.5420 –0.5149 –0.5364 –0.5195

(0.1048) (0.1157) (0.1424) (0.0939) (0.1236) (0.0992)

GMM4 –0.5114 –0.5243 –0.5944 –0.5269 –0.5915 –0.5391

(0.1349) (0.1405) (0.2136) (0.1317) (0.2019) (0.1411)

12 =σ

SLS 0.8667 0.9172 0.9540 0.9743 0.9843 0.9966

(0.3241) (0.2663) (0.2119) (0.1491) (0.1082) (0.0773)

GMM3 0.8935 0.8308 0.8481 0.8518 0.8719 0.8427

(0.4064) (0.4354) (0.4318) (0.4360) (0.4245) (0.4319)

GMM4 0.8215 0.8405 0.7808 0.8216 0.7825 0.8082

(0.4412) (0.4314) (0.4678) (0.4424) (0.4558) (0.4489)
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Table 5. Logistic model with three parameters

20=n 30=n 50=n 100=n 200=n 500=n

501 =θ

SLS 49.9784 50.0449 50.1037 50.0983 50.0688 50.0295

(1.3575) (1.2445) (1.0435) (0.8200) (0.5724) (0.3400)

GMM3 49.8844 49.9033 49.9606 49.9089 49.8856 49.8674

(1.3567) (1.2304) (1.0257) (0.8463) (0.6755) (0.5429)

GMM4 49.8889 49.8748 49.9328 49.8543 49.8439 49.8212

(1.3801) (1.2498) (1.0853) (0.9465) (0.8295) (0.6843)

342 =θ

SLS 34.0087 34.0222 34.0016 33.9482 33.9556 33.9424

(1.6347) (1.5990) (1.5192) (1.3130) (1.0907) (0.7140)

GMM3 33.9469 33.9619 33.9106 33.9385 34.0086 34.0284

(1.2782) (1.2179) (1.1494) (1.1587) (1.1623) (1.1621)

GMM4 33.8767 33.9728 33.9098 33.9530 33.9826 34.0038

(1.3000) (1.2078) (1.1578) (1.1738) (1.1249) (1.1623)

12 =σ

SLS 0.8941 0.9314 0.9641 0.9695 0.9848 0.9943

(0.3011) (0.2514) (0.2020) (0.1452) (0.1002) (0.0637)

GMM3 0.8330 0.7942 0.7966 0.7940 0.8108 0.8098

(0.4976) (0.4754) (0.4596) (0.4501) (0.4361) (0.4385)

GMM4 0.8189 0.8038 0.8084 0.7883 0.8137 0.8125

(0.4929) (0.4692) (0.4503) (0.4580) (0.4311) (0.4495)
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Table 6. Linear exponential model with three parameters

20=n 30=n 50=n 100=n 200=n 500=n

53 =θ

SLS 4.9695 5.0889 5.1074 4.9739 5.0194 5.0629

(1.6352) (1.5366) (1.2622) (1.4251) (0.9281) (0.8469)

GMM3 4.9011 4.9196 5.0838 4.9434 5.1693 5.1909

(1.1845) (1.1895) (1.1312) (1.1403) (1.0668) 1.0453

GMM4 4.9146 5.0329 5.0846 5.0251 5.2054 5.2024

(1.1500) (1.1421) (1.1084) (1.1481) (1.1331) (1.0956)

31 −=θ

SLS –2.9963 –2.9494 –2.9362 –3.0091 –2.9845 –3.0040

(0.8174) (0.7654) (0.7793) (0.7339) (0.6662) (0.5772)

GMM3 –3.0569 –2.9786 –2.9660 –3.0118 –2.9210 –2.9919

(0.6075) (0.5907) (0.5848) (0.5904) (0.5760) (0.5631)

GMM4 –3.0787 –2.9685 –2.9638 –3.0021 –2.9519 –2.9644

(0.5908) (0.5729) (0.5688) (0.5685) (0.5684) (0.5921)

12 −=θ

SLS –1.0466 –1.0569 –1.0296 –1.0175 –1.0133 –1.0057

(0.1479) (0.1947) (0.1172) (0.0916) (0.0647) (0.0396)

GMM3 –1.0362 –1.0432 –1.0558 –1.0242 –1.0826 –1.0096

(0.1451) (0.2103) (0.2045) (0.1327) (0.2371) (0.1792)

GMM4 –1.0503 –1.0729 –1.1147 –1.0499 –1.1092 –1.0841

(0.1717) (0.2650) (0.3400) (0.2035) (0.3153) (0.2681)
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5. Conclusion

The generalized method of moments is widely used in econometrics,

statistics, and many other fields. Although GMM estimators are

consistent and asymptotically normally distributed under general

regularity conditions, it has long been recognized that this asymptotic

distribution may provide a poor approximation to the finite sample

distribution. Moreover, GMM needs more moment equations than

unknown parameters, which cause problems when parameter dimension

increases. The second-order least squares estimation uses only the first

two conditional moments of the response variable given the predictor

variables. In this paper, it has been shown that when the number of

moment equations and parameters are equal, the SLS is asymptotically

more efficient than that of the GMM in the case of two parameters.

Simulation studies show that SLS performs better than GMM even when

it uses more moment equations.
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