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Abstract

This paper introduces a class of estimators for regression parameters in a linear model. This
class contains many well-known linear estimators, such as ridge regression, principal components,
shrunken least squares and the iteration estimators. The admissibility of the estimators in this
class is studied and comparisons among them are made under the matrix mean square error
criterion.

1 Introduction

Consider linear regression model
y = Xβ + ε, (1.1)

E(ε) = 0, E(εε′) = σ2I,

where X is a T × p known matrix, ε is a T × 1 random vector, I is the identity matrix, β ∈ IRp
and 0 < σ2 <∞ are unknown parameters. Further, we assume that 2 ≤ rank(X) = p ≤ T .

It is well-known that under standard assumptions the ordinary least squares estimator

bOLS =
(
X ′X

)−1
X ′y

is the best linear unbiased or minimum variance unbiased estimator for β. However, as pointed
out by Trenkler (1981), when any one of the assumptions of model (1.1) does not hold or the
regression matrix X is ill-conditioned (e.g. there exists multicollinearity), bOLS may perform very
poorly. Consequently, in recent years many linear biased estimators have been developed to improve
the performance of bOLS . This paper considers the following class of linear estimators called the
generalized shrunken least squares (GSLS) estimators:

bGS (A) = PAP ′bOLS ,

where A = diag (a1, a2, ..., ap), 0 ≤ ai ≤ 1, i = 1, 2, ..., p. Here P is the orthogonal matrix such that

P ′X ′XP = diag (λ1, λ2, ..., λp) := Λ

and λ1 ≥ λ2 ≥ · · · ≥ λp > 0. It is easy to see that this class includes many common linear biased
estimators. For example:
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(1) The generalized ridge regression estimators of Hoerl and Kennard (1970):

bRR (K) =
(
X ′X + PKP ′

)−1
X ′y = bGS

(
Λ (Λ +K)−1

)
,

where K = diag (k1, k2, ..., kp), ki ≥ 0, i = 1, 2, ..., p.
(2) The principal components estimators of Kendall (1957):

bPC (r) =
r∑
i=1

1

λi
PiP

′
iX
′y = bGS

([ Ir 0
0 0

])
,

where P = (P1, P2, ..., Pp).
(3) The shrunken least squares estimators of Mayer and Willke (1973):

bSLS (α) = αbOLS = bGS (αI) ,

where 0 < α < 1.
(4) The iteration estimators of Trenkler (1978):

bI (α, n) = α
n∑
i=0

(
I − αX ′X

)i
X ′y = bGS

(
I − (I − αΛ)n+1),

where 0 < α < λ−11 , n = 0, 1, 2, ....
Later we will see that, under the matrix mean square error criterion, in the class of generalized

shrunken least squares estimators no one estimator is uniformly better than another one.

2 Admissibility of GSLS estimators

Let b1 and b2 be two estimators of β. Then b1 is said to be better than b2, if for all β and σ2,

E
[
(b1 − β)′ (b1 − β)

]
≤ E

[
(b2 − β)′ (b2 − β)

]
and the inequality holds for at least one pair (β, σ2). In the following we denote the class of all
homogeneous linear estimators of β as

L = {Ly | L is a p× T constant matrix} .

An estimator b of β is said to be L–admissible, if b ∈ L and L does not contain any estimator which
is better than b. By the result of Rao (1976) it is easy to see that every GSLS estimator bGS(A) is
L–admissible.

If an estimator b of β is admissible in the class of all estimators of β, then b is simply said
to be admissible. To consider the admissibility of any GSLS estimator bGS(A) in the class of all
estimators of β, in the rest of this section we assume that in model (1.1) it holds ε ∼ N

(
0, σ2I

)
.

We first prove a lemma, which is also of interest in its own right.

Lemma 2.1. Assume random variable y ∼ N
(
θ, σ2V

)
, where θ ∈ IRn, 0 < σ2 < ∞ and V is a

known positive definite matrix. Then for any linear estimator Ly, it is admissible for θ if and only
if either 1) L = I; or 2) LV is symmetric, all eigenvalues of L are between 0 and 1 and at most
two of them are equal to 1.
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Proof: First we show the sufficiency. For the case L = I, see Cheng (1982). For the case 2), we
first consider a special case where V = I and σ2 is fixed. Denote z = y/σ. Then z ∼ N (θ/σ, I).
By the result of Cohen (1966), Lz is admissible for θ/σ. Therefore Ly is admissible for θ.

Next, consider the case where y ∼ N
(
θ, σ2I

)
and σ2 is unknown. We prove the result by

contradiction. If there exists an estimator b of θ, such that for all θ and σ2,

E
[
(b− θ)′ (b− θ)

]
≤ E

[
(Ly − θ)′ (Ly − θ)

]
and the inequality holds for at least one pair (θ0, σ

2
0), then for y ∼ N

(
θ, σ20I

)
, b will be better than

Ly. However, this is impossible by the result already proved above.
Finally, consider the general V > 0. Let z = V −1/2y, ϕ = V −1/2θ. Then z ∼ N

(
ϕ, σ2I

)
. Under

the lemma’s conditions, V −1/2LV 1/2 is symmetric, all its eigenvalues are between 0 and 1 and at
most two of them are equal to 1. It follows that V −1/2LV 1/2z is admissible for ϕ and, therefore,
Ly is admissible for θ.

Now we show the necessity. Suppose L 6= I. Since Ly is admissible for θ, it is also L–admissible.
By the result of Rao (1976), LV is symmetric and all eigenvalues of L are between 0 and 1. We
need only to show that L has at most two eigenvalues being 1. Using the above notation, we
have z ∼ N

(
ϕ, σ2I

)
and V −1/2LV 1/2z is admissible for ϕ. Hence without loss of generality we

can assume V = I. Further, let U be an orthogonal matrix such that U ′LU = diag (l1, l2, ..., ln),
where 1 ≥ l1 ≥ l2 ≥ · · · ≥ ln ≥ 0. Since Uy ∼ N

(
Uθ, σ2I

)
, LUy is admissible for Uθ. It

follows that U ′LUy is admissible for θ. Again we show the result by contradiction. If there exists
l1 = l2 = · · · = lr = 1 and r ≥ 3, then we construct an estimator which is better than U ′LUy.
Since L 6= I, we have r ≤ n− 1. Denote

y = (y1, y2, ..., yn)′ , θ = (θ1, θ2, ..., θn)′ ,

x = (y1, y2, ..., yr)
′ , µ = (θ1, θ2, ..., θr)

′ .

Then x ∼ N
(
µ, σ2I

)
.

If r ≤ n−2, then let S =
∑n

i=r+1 (yi − ȳ)2, where ȳ =
∑n

i=r+1 yi/(n−r). Otherwise if r = n−1,
then let S = y2n. Then S and x are independent and S/σ2 ∼ χ2 (n− r). Further denote

b = (ωy1, ωy2, ..., ωyr, lr+1yr+1, lr+2yr+2, ..., lnyn)′ ,

where

ω = 1− (r − 2)S

(n− r + 2)x′x
.

Then we have

E
[
(b− θ)′ (b− θ)

]
= E

[
(ωx− µ)′ (ωx− µ)

]
+

n∑
i=r+1

E (liyi − θi)2 .

By the result of James and Stein (1961), for all θ and σ2, it holds E
[
(ωx− µ)′ (ωx− µ)

]
< rσ2.

Hence b will be uniformly better than U ′LUy. The proof is completed. 2

Now we have the main result of this section.

Theorem 2.1. A GSLS estimator bGS (A) is admissible if and only if rank (I −A) ≥ p− 2.

Proof: An estimator PAP ′bOLS is admissible for β if and only if XPAP ′bOLS is admissible for Xβ.
By Lemma 2.1 this is equivalent to that XPAP ′X ′ is symmetric, all eigenvalues of XPAΛ−1P ′X ′
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are between 0 and 1 and at most two of them are equal to 1. Since XPAΛ−1P ′X ′ and A have
the same eigenvalues, the necessary and sufficient condition is that A has at most two eigenvalues
being 1, i.e., rank (I −A) ≥ p− 2. 2

From this theorem we obtain the following results.

Corollary 2.1.

(1) bOLS is admissible if and only if p ≤ 2.

(2) bRR (K) is admissible if and only if rank (K) ≥ p− 2.

(3) bPC (r) is admissible if and only if r ≤ 2.

(4) Any bSLS (α) is admissible.

(5) Any bI (α, n) is admissible.

Let E be the class of all estimators based on bOLS . Under normality assumption we have
bOLS ∼ N

(
β, σ2 (X ′X)−1

)
. Completely analogously we can show the following results.

Theorem 2.2.

(1) bOLS is E–admissible for β.

(2) If A 6= I, then PAP ′bOLS is E–admissible for β if and only if rank (I −A) ≥ p− 2.

3 Comparison under matrix mean square error criterion

If b is an estimator of β, then the matrix mean square error of b is defined as

MSE (b) = E
[
(b− β) (b− β)′

]
.

If bGS (A) is a GSLS estimator, then it is easy to see that

MSE (bGS (A)) = σ2PAΛ−1AP ′ + P (I −A)P ′ββ′P (I −A)P ′.

Denote α = 1
σ2P

′β and

M (A) =
1

σ2
P ′ [MSE (bGS (A))]P

= AΛ−1A+ (I −A)αα′ (I −A) .

Then bGS(A) is better than bGS(B), i.e. MSE (bGS (A)) ≤MSE (bGS (B)) at point
(
β, σ2

)
, if and

only if
M (A) ≤M (B) (3.1)

at α = P ′β/σ2.
The main goal of this section is to compare any two GSLS estimators under the MSE criterion

and to discuss some special cases. First we prove the following result.

Theorem 3.1. For any two GSLS estimators bGS (A) and bGS (B), if M (A) ≤ M (B) for all α,
then A = B.
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Proof: Under the theorem’s condition it holds

trace
[(
B2 −A2

)
Λ−1

]
+ α′

[
(I −B)2 − (I −A)2

]
α ≥ 0

for all α. Since A and B are diagonal and satisfy 0 ≤ A ≤ I and 0 ≤ B ≤ I, the above inequality
implies A = B. 2

Theorem 3.1 shows that in the class of GSLS estimators no one estimator is uniformly better
than another one (i.e., for all β, σ2). The following theorems provide conditions for (3.1) to hold.
First we need the following lemma.

Lemma 3.1. Let h and g be two p × 1 vectors and let c be a constant. Then the eigenvalues of
H = hh′ + cgg′ are given by

h′h+ cg′g

2
±
[(h′h− cg′g)2

4
+ c

(
h′g
)2]1/2

.

Proof: It is obvious that matrix H and

G =

(
h′

g′

)(
h cg

)
=

(
h′h ch′g
g′h cg′g

)
have the same nonzero eigenvalues. It is also easy to calculate the characteristic equation for G as

det (λI −G) = λ2 −
(
h′h+ cg′g

)
λ+ c

(
h′h · g′g − (h′g)2

)
.

The conclusion follows. 2

Theorem 3.2. Let bGS (A) and bGS (B) be two GSLS estimators such that A < B (i.e., B −A is
positive definite). Then M (A) ≤M (B) if and only if

u1 − u2 + u1u2 − v21 ≤ 1, (3.2)

where u1 = α′Λ
(
B2 −A2

)+
(I −A)2 α, u2 = α′Λ

(
B2 −A2

)+
(I −B)2 α and

v1 = α′Λ
(
B2 −A2

)+
(I −A) (I −B)α. (M+ denotes the Moore-Penrose inverse of matrix M .)

Proof: Denote U =
(
B2 −A2

)
Λ−1 and V = (I −A)αα′ (I −A)− (I −B)αα′ (I −B). Then

M (B)−M (A) = U − V = U1/2
(
I − U−1/2V U−1/2

)
U1/2.

Hence M (A) ≤ M (B) if and only if U−1/2V U−1/2 ≤ I, i.e., all eigenvalues of U−1/2V U−1/2 are
less than or equal to 1. Now take h = U−1/2 (I −A)α, g = U−1/2 (I −B)α and c = −1. Then it
follows from Lemma 3.1 that the necessary and sufficient condition is

u1 − u2
2

±
[(u1 + u2)

2

4
− v21

]1/2
≤ 1,

which is equivalent to (3.2). 2

Theorem 3.3. If A ≤ B and A 6= B, then M (A) ≤M (B) if and only if (3.2) and

(B −A)αα′ (I −B)
[
I − (B −A) (B −A)+

]
= 0 (3.3)

hold.
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Proof: Without loss of generality we assume

A =

(
A1 0
0 A2

)
, B =

(
B1 0
0 A2

)
,

where A1 < B1. Correspondingly denote

Λ =

(
Λ1 0
0 Λ2

)
, α =

(
α1

α2

)
.

Then

M (B)−M (A) =

(
C11 C12

C ′12 0

)
,

where

C11 =
(
B2

1 −A2
1

)
Λ−11 + (I −B1)α1α

′
1 (I −B1)− (I −A1)α1α

′
1 (I −A1) ,

C12 = (A1 −B1)α1α
′
2 (I −A2) .

By the property of non-negative definite matrices, M (A) ≤ M(B) if and only if C12 = 0 and
C11 ≥ 0. By Theorem 3.2, C11 ≥ 0 if and only if (3.2) holds for A1, B1, Λ1 and α1. However, under
the theorem’s condition, the left-hand side of (3.2) remains unchanged for A1, B1, Λ1, α1 and for
A, B, Λ, α. Furthermore, it is easy to see that C12 = 0 is equivalent to (3.3). 2

Theorem 3.4. Let bGS (A) and bGS (B) be two GSLS estimators. If there are two or more i’s such
that ai > bi, then M (A) ≤M (B) can never hold.

Proof: Without loss of generality suppose ai > bi for i = 1, 2. Let A1, B1 and Λ1 be the two
dimensional matrices on the upper left corner of A, B and Λ respectively and let α1 be the subvector
of α consisting of the first two elements. Then

M (B)−M (A) =

(
C11 ∗
∗ ∗

)
,

where C11 is the same as in the proof of the previous theorem. Since

rank
[
(I −B1)α1α

′
1 (I −B1)

]
≤ 1,

and
(
B2

1 −A2
1

)
Λ−11 < 0, the matrix

(
B2

1 −A2
1

)
Λ−11 +(I −B1)α1α

′
1 (I −B1) cannot be non-negative

definite. It follows that C11 ≥ 0 and, therefore, M (A) ≤M (B) cannot hold. 2

In the following we need only consider the case where ai > bi for at most one i. We consider
the case

A =

 1 0 0
0 A2 0
0 0 A3

 , B =

 b1 0 0
0 B2 0
0 0 A3

 ,

where b1 < 1, A2 < B2, b1 is a constant and A2, B2, A3 can be matrices. Correspondingly denote

Λ =

 λ1 0 0
0 Λ2 0
0 0 Λ3

 , α =

 α1

α2

α3

 .

Then

M (B)−M (A) =

 F11 F12 F13

∗ F22 F23

∗ ∗ F33

 ,
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where

F11 =
(
b21 − 1

)
λ−11 + (1− b1)2 α2

1,

F12 = (1− b1)α1α
′
2 (I −B2) ,

F13 = (1− b1)α1α
′
3 (I −A3) ,

F22 =
(
B2

2 −A2
2

)
Λ−12 + (I −B2)α2α

′
2 (I −B2)− (I −A2)α2α

′
2 (I −A2) ,

F23 = (A2 −B2)α2α
′
3 (I −A3) .

Hence M (A) ≤M (B) if and only if F13 = 0, F23 = 0 and(
F11 F12

∗ F22

)
≥ 0.

It is easy to see that the first two equalities above is equivalent to (3.3) and the matrix inequality
holds if and only if

F11 = 0, F12 = 0, F22 ≥ 0 (3.4)

or
F11 > 0, F22 − F−111 F

′
12F12 ≥ 0. (3.5)

Further denote

E1 =

(
0 0
0 Ip−1

)
.

Then analogous to Theorem 3.2 it can be shown that (3.4) is equivalent to{
α2
1 = 1+b1

(1−b1)λ1 , (I −B) (B −A)E1α = 0,

u1 − u3 + u1u3 − v21 ≤ 1,
(3.6)

where u3 = α′Λ
(
B2 −A2

)+
(I −B)2E1α, and u1 and v1 are the same as in (3.2). Further, (3.5) is

equivalent to

α2
1 >

1 + b1
(1− b1)λ1

,
u1 + u4

2
+
[(u1 − u4)2

4
+ v22

]1/2
≤ 1, (3.7)

where

u4 =
(1 + b1)u3

(1− b1)λ1α2
1 − (1 + b1)

, v2 = v1

[ 1 + b1
(1− b1)λ1α2

1 − 1− b1

]1/2
.

Thus we have shown the following result.

Theorem 3.5. Suppose bGS (A) and bGS (B) are two GSLS estimators and A, B have the form

A =

(
1 0
0 A2

)
, B =

(
b 0
0 B2

)
,

where b < 1 and A2 ≤ B2. Then M (A) ≤ M (B) if and only if either (3.3), (3.6) or (3.3), (3.7)
hold.

The above theorems give the ranges of parameter values in which one GSLS estimator is better
than another. Some expressions look rather complicated. If in practical applications only the
sufficient or necessary condition is needed, then some simpler forms can be used. For example, a
sufficient condition for (3.2) to hold is u1 ≤ 1.

By taking special forms of A and B, the above theorems give the comparison results among
some common estimators (e.g., bOLS , bRR, bPC , bSLS and bI). These results include that of Price
(1982). To illustrate, we consider the following two special cases.
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(i) Comparison between GSLS and bOLS

Corollary 3.1. Let bGS (A) be a GSLS estimator and A 6= I. Then

(1) M (A) ≤M (I) if and only if α′Λ (I −A) (I +A)−1 α ≤ 1; and

(2) M (I) ≤M (A) if and only if rank (I −A) ≤ 1 and α′Λ (I −A) (I +A)−1 α ≥ 1.

(ii) Admissible principal components estimators

Corollary 3.2. Suppose

A =

(
Ar 0
0 0

)
, B =

(
Is 0
0 0

)
,

where r ≤ s < p and Ar < Ir. Then

(1) If s ≥ 2, then M (B) ≤M (A) can never hold; and

(2) M (A) ≤M (B) if and only if (I −B)α = 0 and α′Λ (B −A) (B +A)+ α ≤ 1.
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