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In this paper, we employ the sparsity-constrained least squares method to reconstruct
sparse signals from the noisy measurements in high-dimensional case, and derive the
existence of the optimal solution under certain conditions. We propose an inexact sparse-
projected gradient method for numerical computation and discuss its convergence. More-
over, we present numerical results to demonstrate the efficiency of the proposed method.

Keywords: Quadratic measurements regression; sparsity; uniform s-regularity; unique-
ness; greedy algorithm.

1. Introduction

The sparsity-constrained linear models have been intensively studied and widely
applied in the literature. The main goal is to reconstruct sparse signals from the
sampled measurements. Recently, the theory has been extended to nonlinear models,
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see, e.g., Beck and Eldar (2013), Blumensath (2013), Ohlsson et al. (2012, 2013),
Shechtman et al. (2011, 2012) for more details. Particularly, there is a large number
of real-data problems, especially in phase retrieval, localization problems, where the
regression relationships are in the form of quadratic functions of unknown param-
eters. To deal with such problems in the high-dimensional case, Fan et al. (2018)
introduced a unified framework for the sparsity-constrained models. In particular,
they proposed a quadratic measurements regression (QMR) model as follows:

yi = xT Aix + bT
i x + εi, i = 1, . . . , m s.t. ‖x‖0 ≤ s, (1)

where yi, bi ∈ R
n and Ai ∈ S

n×n, i = 1, . . . , m are the given real vectors and
symmetrical matrices, respectively, x ∈ R

n is unknown parameter, and εi ∈ R is
the random noise. Here ‖x‖0 denotes the number of nonzero elements in x and s > 0
is an integer smaller than m. It is obvious that when Ai ≡ 0, model (1) reduces to
the sparse linear model,

yi = xT bi + εi, i = 1, . . . , m s.t. ‖x‖0 ≤ s.

On the other hand, if bi ≡ 0, model (1) becomes a purely sparse QMR (Fan et al.
(2018))

yi = xT Aix + εi, i = 1, . . . , m s.t. ‖x‖0 ≤ s. (2)

We provide two real examples of model (1) as follows.

Example 1 (Phase retrieval problem). Phase retrieval problem plays an
important role in X-ray crystallography, transmission electron microscopy, coher-
ent diffractive imaging, etc. (Candès et al., 2013a, 2013b; Eldar et al., 2015;
Shechtman et al., 2014). Generally speaking, the phase retrieval problem is to
recover the lost phase information through the observed magnitudes. For the real
case, the sparse phase retrieval model is formulated as

yi = 〈ai, x〉2 + εi, i = 1, . . . , m s.t. ‖x‖0 ≤ s.

For more details, see Candès et al. (2013a), Eldar and Mendelson (2014),
Lauer and Ohlsson (2014), Li and Voroninski (2012), Ohlsson and Eldar (2014),
Wang and Xu (2014).

Example 2 (Localization problem). Localization problem arises in many
important applications, including mobile phone, wireless E911 calls, GPS, as well
as robot localizations (Biswas and Ye, 2004; Mao et al., 2007). Since a common
feature in high-dimensional data analysis is the sparsity of the unknown source
localization, the sparsity-constrained QMR can also be used in localization prob-
lems in high-dimensional case. Specifically, Beck et al. (2008a,b), Meng et al. (2008)
and Qi et al. (2013) studied the single source localization problem, while Chen et al.
(2007), Lévyleduc and Roueff (2009), Lung-Yut-Fong et al. (2012) and Vlassis et al.
(2002) considered the high-dimensional localization. The known sensor position are
a set of n-dimensional vectors b1, b2, . . . , bn and the signal source location is unknown
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vector x ∈ R
n. Then the measured distance yi from the source to each sensor node

is given by

yi = ‖bi − x‖2
2 + εi, i = 1, . . . , m s.t. ‖x‖0 ≤ s.

Clearly, the above relation can be written as yi − ‖bi‖2
2 = xT x − 2bT

i x + εi.

Moreover, quadratic compressive sensing, as an extension of the popular com-
pressive sensing, aims to recover the sparse unknown signal in model (1). For exam-
ple, Shechtman et al. (2011, 2012) used a noiseless version of this model to study
sub-wavelength imaging.

To reconstruct sparse signals using (1), we employ the �0-constrained least
squares method as

min
x∈Rn

f(x) :=
m∑

i=1

(xT Aix + bT
i x − yi)2

s.t. ‖x‖0 ≤ s, (3)

where s < n is a positive integer. However, (3) is generally NP-hard, and hence it
is challenging to design a suitable and fast algorithm to solve it. Indeed, Natarajan
(1995) showed that the above minimization problem is NP-hard in linear model
that is a relatively simple case of (3).

Some special cases of the optimization (3) have attracted considerable attention,
such as Beck and Eldar (2013) for quadratic compressive sensing with bi ≡ 0, i =
1, . . . , m, Shechtman et al. (2014) for phase retrieval. In this paper, we establish
the existence and uniqueness of the minimizer problem (3) through the uniform
s-regularity which was first introduced by Fan et al. (2016, 2018). As a direct result,
we obtain the identifiability result of model (1) which is a general and fundamental
problem as a concomitant of the scientific procedure that postulates the existence
of a structure. Under the uniform s-regularity, we use majorization and variable-
splitting methods to establish a fixed-point equation for the minimization (3) and
consequently provide an inexact projected gradient algorithm which permits the use
of the inexact gradient and then makes the algorithm more flexible. we also prove the
convergence of this algorithm under appropriate conditions. Our simulation studies
demonstrate that the proposed method performs well and the uniform s-regularity
is an important condition for successful sparse recoveries. The results obtained
generalize those in Fan et al. (2016). Moreover, we propose a novel inexact gradient
algorithm and apply it to the application to localization problem.

Throughout the paper, we use the following notations. For any d-dimensional
vector v = (v1, . . . , vd)T , let ‖v‖2 = (

∑d
i=1 v2

i )
1
2 . For any set Γ ⊆ {1, . . . , d}, |Γ|

denotes its cardinality and Γc = {1, . . . , d}/Γ. For any n × d matrix A, denote by
AΓ the sub-matrix of A consisting of the columns of A with index in Γ ⊆ {1, . . . , d},
by AΓ′

the sub-matrix of A consisting of the rows with index in Γ′ ⊆ {1, . . . , n},
and by AΓ′Γ the sub-matrix of A consisting of the rows and columns indexed by Γ′
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and Γ, respectively. Especially, we use the notation vΓ to denote the sub-vector for
either a column or a row vector v.

The rest of this paper is organized as follows. In Sec. 2, we study the uniform
s-regularity and discuss the existence and uniqueness of the minimizer problem (3).
By using the fixed-point equation and Armijo-type line search method, we present
the algorithm and further prove its convergence in Sec. 3. In Sec. 4, we give some
numerical experiments.

2. Existence and Uniqueness

In this section, we will further clarify the concept of uniform s-regularity intro-
duced by Fan et al. (2018) and study the existence and uniqueness of the minimizer
problem (3). Especially, the corresponding results are applied to Examples 1 and 2.

2.1. Uniform regularity

For a sparse linear model, Beck and Eldar (2013) introduced the s-regularity of B,
i.e., any s columns of B are linearly independent and showed that the uniqueness
of the underlying signal x can be characterized through it. The author stated that
if the components of B are independently randomly generated from a continuous
distribution, then the s-regularity property will be satisfied with probability one
when s ≤ m. That means it is rather mild for the design matrix B. Note that in
linear model, −B is the Jacobian matrix of the residual function R(x) = y − Bx,
where y = (y1, . . . , yn)T . Correspondingly, in our model (1), the Jacobian of the
residual function R(x) = (R1(x), . . . , Rn(x))T , where Ri(x) = yi−xT Aix−bT

i x−ci,
is (−2A1x − b1, . . . ,−2Anx − bn)T . This leads to the following definitions.

Definition 1. The linear transform A(x) = (A1x, . . . , Amx)T is said to be
uniformly s-regular if A(x)Γ has full column rank for any Γ ⊆ {1, . . . , n} with
|Γ| = s and x ∈ R

n/{0} with supp(x) ⊆ Γ.

Definition 2. The affine transform A(x) = (A1x + b1, . . . , Amx + bm)T is said to
be uniformly s-regular if A(x)Γ has full column rank for any Γ ⊆ {1, . . . , n} with
|Γ| = s and x ∈ R

n with supp(x) ⊆ Γ.

The following proposition reveals the relationship between the uniform
s-regularity of A(·) and A(·).
Proposition 1. Assume

∑m
i=1 bi ⊗ Ai = 0, where ⊗ stands for the Kronecker

product. Then A(·) = A(·)+B is uniformly s-regular if and only if A(·) is uniformly
s-regular or B is s-regular.

Proof. Denote by ej the jth column of the n × n identity matrix In. For each
k, l = 1, 2, . . . , n, it follows that

eT
k

(
n∑

i=1

AixbT
i

)
el = xT

(
m∑

i=1

AT
i ekeT

l bi

)
= 0,
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where the last equality follows from the assumption that
∑m

i=1 bi ⊗ Ai = 0. There-
fore, we have

n∑
i=1

AixbT
i = 0. (4)

Since

(A(x) + B)T (A(x) + B) = A(x)T A(x) + A(x)T B + BTA(x) + BT B,

A(x)T B =
n∑

i=1

AixbT
i

and BT A = (AT B)T , we have

(A(x) + B)T (A(x) + B) = A(x)T A(x) + BT B.

For an index set Γ ⊆ {1, . . . , n} with |Γ| = s, we then conclude that for any
u ∈ R

s/{0},
(AΓ(u) + BΓ)T (AΓ(u) + BΓ) = AΓ(u)T AΓ(u) + BT

Γ BΓ

is positive definite if only if either AΓ(u)TAΓ(u) or BT
Γ BΓ is positive definite.

rank(AΓ(u) + BΓ)T (AΓ(u) + BΓ) = s. Combining this, the definition of A(·) and
A(·) and the fact that rank(AΓ(u)+BΓ) = rank((AΓ(u)+BΓ)T (AΓ(u)+BΓ)), we
get the desired result.

It is easy to see that when all Ai are zero matrices, the affine transform A(x)
reduces to the constant transform B and therefore the uniform s-regularity coincides
with s-regularity. Further, by taking x = 0, one can see that the uniform s-regularity
of the affine transform A(x) implies the s-regularity of B.

In the phase retrieval problem, Balan et al. (2006) and Bandeira et al. (2014)
introduced the complement property and showed that it is a necessary and suffi-
cient condition for the measurement vectors to yield injective and stable intensity
measurements. For the sparse case, Ohlsson and Eldar (2014) propose the concept
of s-complement property, i.e., either {aΓ

i }i∈K or {aΓ
i }i∈Kc span R

s for every subset
K ⊆ {1, . . . , m} and Γ ⊆ {1, . . . , n} with |Γ| = s, which is less restrictive than the
complement property and then provide theoretical result on unique recovery of a
s-sparse real signal. While the next result showing the uniform regularity of A(x)
coincides with the complement property.

Proposition 2. Let Ai = aia
T
i for some {ai} ∈ R

n/{0}, i = 1, . . . , m. Then the
uniform s-regularity of A(·) is equivalent to the s-complement property of {ai}.

Proof. Suppose {ai} ∈ R
n/{0} satisfies the s-complement property. For any Γ ⊆

{1, . . . , n} with |Γ| = s and x ∈ R
n/{0} with supp(x) ⊆ Γ, it is not hard to check
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that

(A(x)Γ)T = ((aT
1ΓxΓ)a1Γ, . . . , (aT

mΓxΓ)amΓ)

= (a1Γ, . . . , amΓ)diag(aT
1ΓxΓ, . . . , aT

mΓxΓ),

where diag(aT
1ΓxΓ, . . . , aT

mΓxΓ) is a diagonal matrix and aT
iΓxΓ is the ith main diag-

onal entry. Denote T(x) = {i : aT
iΓxΓ = 0} and t = |T|. Without loss of generality,

we let T(x) = {1, 2, . . . , t} and then obtain

(A(x)Γ)T = (0, (at+1Γ, . . . , amΓ)D),

where D = diag(aT
t+1ΓxΓ, . . . , aT

mΓxΓ). Based on x ∈ R
n/{0} and supp(x) ⊆ Γ, it

follows that xΓ 	= 0 which together with the s-complement property of {ai} yields
that t < n and rank(a1Γ, . . . , atΓ) < s. Since D is a invertible matrix, we conclude
that for any x ∈ R

n/{0} with supp(x) ⊆ Γ,

rank(A(x)Γ) = rank(A(x)T
Γ ) = rank(at+1Γ, . . . , amΓ).

Again, the s-complement property of {ai} implies that rank(at+1Γ, . . . , amΓ) = s

since rank(a1Γ, . . . , atΓ) < s. Then, rank(A(x)Γ) = s which means A(·) is uniformly
s-regular.

Given that A(·) is uniformly s-regular, we now show that {ai} satisfy the
s-complement property. To this end, it suffices to prove that either {aΓ

i }i∈K

or {aΓ
i }i∈Kc span R

s for every subset K ⊆ {1, . . . , m}. Without loss of gen-
erality, we assume that K = {1, . . . , k}. We prove the result by contradiction.
Suppose that both a1Γ, . . . , akΓ and ak+1Γ, . . . , amΓ cannot span R

s and denote
Ã1 = (a1Γ, . . . , akΓ)T and Ã2 = (ak+1Γ, . . . , amΓ)T . Then there exists u0 ∈ R

s/{0}
such that Ã1u0 = 0 and it follows that

((aT
1Γu0)a1Γ, . . . , (aT

mΓu0)amΓ)T = (0, ÃT
2 diag(aT

k+1Γu0, . . . , a
T
mΓu0))T

and therefore

rank((aT
1Γu0)a1Γ, . . . , (aT

mΓu0)amΓ)T = rank(0, ÃT
2 diag(aT

k+1Γu0, . . . , a
T
mΓu0))T .

Since ak+1Γ, . . . , amΓ cannot span R
s, it follows that rank(Ã2) < s, which implies

that

rank(0, ÃT
2 diag(aT

k+1Γu0, . . . , a
T
mΓu0)) = rank(ÃT

2 diag(aT
k+1Γu0, . . . , a

T
mΓu0))

≤ rank(Ã2)

< s.

However, the uniform s-regularity of A(·) implies that

rank(AΓ(u)) = rank((aT
1Γu0)a1Γ, . . . , (aT

mΓu0)amΓ)T

has full column rank, which is a contradiction.

1940008-6



April 30, 2019 16:5 WSPC/S0217-5959 APJOR 1940008.tex

An Inexact Sparse Projected Gradient Method for Sparse QMR

Note that in Example 2, Ai = I, i = 1, . . . , m. Thus, from Proposition 1, we
have the following proposition.

Proposition 3. For Example 2, A(·) = A(·)+B is uniformly s-regular if
∑m

i=1 bi =
0 and B is s-regular.

2.2. Existence and uniqueness

Here, we employ the concept of uniform regularity to discuss the existence and the
uniqueness of problem (3). To do that, we first provide a lemma as follows.

Lemma 1. Let Γ ⊆ {1, 2, . . . , n} be any index set with |Γ| = s. If A(·) is uniformly
s-regular, then

lim
‖u‖→∞

m∑
i=1

(uT AΓΓ
i u + uT biΓ − yi)2 = ∞, u ∈ R

s.

Proof. It suffices to prove that

lim
‖u‖→∞

m∑
i=1

(uT AΓΓ
i u + uT biΓ)2 = ∞ for any x ∈ R

n and supp(x) ⊆ Γ. (5)

For the case A(·) = A(·), i.e., bi ≡ 0, i = 1, 2, . . . , m, denote f1Γ(u) =∑m
i=1(u

T AΓΓ
i u)2. Note that there exists a vector v∗ ∈ R

s satisfying ‖v∗‖ = 1 and

f1Γ(v∗) = min f1Γ(v) s.t. ‖v‖ = 1

because f1Γ(·) is continuous and the set ‖v‖ = 1 is compact. Then the uniform
s-regularity of A(·) implies that the matrix

∑m
i=1 AΓΓ

i v∗v∗T AΓΓT
i is positive definite,

and therefore f1Γ(v∗) > 0. For any nonzero vector u ∈ R
n with supp(x) ⊆ Γ, it

follows that

f1Γ(u) = ‖u‖4
m∑

i=1

((
u

‖u‖
)T

AΓΓ
i

(
u

‖u‖
))2

≥ ‖u‖4f1Γ(v∗)

which implies that f1Γ(u) → ∞ as ‖u‖ → ∞. Therefore, (5) holds for the case
A(·) = A(·).

For the general case, denote f2Γ(u) =
∑m

i=1(u
T AΓΓ

i u + uT biΓ)2. Then we have

f2Γ(u) =
m∑

i=1

(uT AΓΓ
i u + uT biΓ)2

=
m∑

i=1

(uT AΓΓ
i u)2 + 2

m∑
i=1

(uT AΓΓ
i u)(uT biΓ) +

m∑
i=1

(uT biΓ)2
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for any vector u ∈ R
s. For the case

∑m
i=1(u

T AΓΓ
i u)2 is bounded for any u ∈ R

s, we
conclude from Cauchy’s inequality that

f2Γ(u) ≥
m∑

i=1

(uT AΓΓ
i u)2 − 2

√√√√ m∑
i=1

(uT AΓΓ
i u)2

√√√√ m∑
i=1

(uT biΓ)2 +
m∑

i=1

(uT biΓ)2.

Note that the uniform s-regularity of A(·) implies that
∑m

i=1(u
T biΓ)2 → ∞ as

‖u‖ → ∞. Then we have

f2Γ(u) ≥
(∑m

i=1(u
T AΓΓ

i u)2∑m
i=1(uT biΓ)2

− 2

√∑m
i=1(uT AΓΓ

i u)2∑m
i=1(uT biΓ)2

+ 1

)
m∑

i=1

(uT biΓ)2

→ ∞.

If
∑m

i=1(u
T AΓΓ

i u)2 is unbounded as ‖u‖ → ∞, then

f1Γ(u) = ‖u‖4
m∑

i=1

((
u

‖u‖
)T

AΓΓ
i

(
u

‖u‖
))2

= ‖u‖4f1Γ(v)

and f1Γ(v) > 0 where v ∈ R
s and ‖v‖ = 1. By Cauchy’s inequality, we have

f2Γ(u) ≥
m∑

i=1

(uT AΓΓ
i u)2 − 2

m∑
i=1

|uT AΓΓ
i u||uT biΓ| +

m∑
i=1

(uT biΓ)2

≥
m∑

i=1

(uT AΓΓ
i u)2 − 2‖u‖ max

1≤i≤m
‖biΓ‖

m∑
i=1

|uT AΓΓ
i u| +

m∑
i=1

(uT biΓ)2

≥
m∑

i=1

(uT AΓΓ
i u)2 − 2‖u‖ max

1≤i≤m
‖biΓ‖

√
m

√√√√ m∑
i=1

(uT AΓΓ
i u)2 +

m∑
i=1

(uT biΓ)2

≥ ‖u‖4

(
f1Γ(v) − 2‖u‖−1 max

1≤i≤m
‖biΓ‖

√
m
√

f1Γ(v)
)

→ ∞

as ‖u‖ → ∞. Then we complete the proof of (5).

Theorem 1. If A(·) is uniformly s-regular, then there exists a vector x̂ ∈ R
n that

is a minimizer of problem (3). Furthermore, if A(·) is uniformly 2s-regular and the
optimal value of (3) is zero, then the problem (3) has a unique solution x̂, i.e., x̂ is
a unique vector satisfying (1) in the noiseless case.

Proof. (i) Based on Lemma 1, it is easy to show that f(x) → ∞ as ‖x‖ → ∞ and
‖x‖0 ≤ s. It follows that there exists a positive constant r̂ such that the problem
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(3) is equivalent to

min
x∈Rn

f(x) s.t. ‖x‖0 ≤ s, ‖x‖ ≤ r̂.

Since f is continuous and the constrained set is compact, it follows that the problem
(6) has a minimizer x̂ which is also a solution of (3).

(ii) We now prove the second result for the purely sparse quadratic measure-
ments model (2) by contradiction. Assume that x̃ 	= ±x∗, ‖x̃‖0 ≤ ‖x∗‖0,M(x̃) =
M(±x∗), x̃ ∈ R

n, where the operator M is defined as
(M(x)

)
(i) = xT Aix.

Denote Γ = supp(x̃) ∪ supp(x∗). Then, |Γ| ≤ 2s. For any x ∈ R
n, it follows that

(M(x̃))(i) = (xΓ)T AΓΓ
i xΓ and therefore

0 = M(x̃) −M(x∗)

= ((x̃Γ − x∗Γ)T AΓΓ
1 (x̃Γ + x∗Γ), . . . , (x̃Γ − x∗Γ)T AΓΓ

m (x̃Γ + x∗Γ))T

= AΓ(x̃Γ + x∗Γ)(x̃Γ − x∗Γ).

Since 0 	= x̃Γ + x∗Γ and A(·) is uniformly 2s-regular, it follows that AΓ(x̃Γ + x∗Γ)
has full column rank, which implies x̃Γ = x∗Γ. This is a contradiction.

Similar to the above proof, we can get the desired result for model (1). So, we
omit the details.

Clearly, Theorem 1 can be applied to the purely sparse quadratic model (2)
since the affine transform A(·) reduces to A(·) when B = 0. Particularly, note that
x and −x are not distinguishable from the observed data in model (2). To deal with
it, when referring to a unique solution for model (2), it is always understood that
it is up to a global sign change. This method is widely used in the phase retrieval
literature such as Balan et al. (2006), Bandeira et al. (2014) and Ohlsson and Eldar
(2014).

We now use Theorem 1 to study the identifiability problem for the model (1).
Roughly speaking, we say that a model is identifiable if all parameters have a unique
solution within the full domain of the parameter space, given specific observation
points within the model. Especially, in signal process, identifiability analysis is a
critical step which addresses whether it is possible to uniquely recover the model
parameter from a given set of data.

Corollary 1. Let x∗ satisfy the model (1) with noiseless. If A(·) is uniformly 2s-
regular, then x∗ is a unique vector satisfying the system.

Note Ai = aia
T
i in Example 1. One can use the equivalence between the uniform

s-regularity of A(·) and the s-complement property of {ai} to reduce Corollary 1
to Theorem 4 in Ohlsson and Eldar (2014). Theorem 1 and Corollary 1 also can be
used to study Example 2.

Corollary 2. Assume
∑m

i=1 bi = 0 in Example 2. If B = (b1, . . . , bm)T is s-regular,
then there exists a vector x̂ ∈ R

n that is a minimizer of problem (3). Further, if B is
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2s-regular and the optimal value of (3) is zero, then the minimizer of (3) is unique.
Especially, let x∗ be the true signal source location satisfying (3) with noiseless. If∑m

i=1 bi = 0 and B is 2s-regular, then x∗ is the unique vector satisfying the system.

3. Optimization Algorithm

In this section, we discuss the numerical computation of problem (3). To this end,
we define S = {x ∈ R

n : ‖x‖0 ≤ s} for a positive integer s and PS(x) to be the
nonlinear operator that sets all but the largest (in magnitude) s elements of x to
zero. If there is no unique such set, a set can be selected either randomly or based
on a predefined ordering of the elements.

We first establish a fixed point equation for the optimization problem (3), which
is used to construct a projected gradient algorithm.

Theorem 2. If A(·) is uniformly s-regular, then there exists a positive constant L̂

related to x̂, a minimizer of the optimization (3), such that

x̂ ∈ PS(x̂ − τ∇f(x̂)) (6)

for any τ ∈ (0, min{L̂−1, 1}] where ∇f(x) = 2
∑m

i=1(x
T Aix + bT

i x− yi)(2Aix + bi).

Proof. From Theorem 1, one can see that the optimization (3) has a minimizer
x̂. Let r̂ be a positive constant with ‖x̂‖ ≤ r̂. For any τ > 0, define Fτ (x, x̂) :=
f(x̂) + 〈∇f(x̂), x − x̂〉 + 1

2τ ‖x − x̂‖2
2 and consider the following auxiliary problem:

min Fτ (x, x̂)

s.t. ‖x‖0 ≤ s,

x ∈ R
n. (7)

Denote Br̂,s = {x ∈ R
n : ‖x‖2 ≤ r̂, ‖x‖0 ≤ s} and Br̂,2s = {x ∈ R

n : ‖x‖2 ≤
r̂, ‖x‖0 ≤ 2s}. It is clear that there exists a positive constant L̂ such that L̂ =
supx∈Br̂,2s

‖∇2f(x)‖2. Note that for any x, y ∈ Br̂,s, the line segment [x, y] ∈ Br̂,2s.
Therefore, for any τ ∈ (0, L̂−1] and x ∈ Br̂,s, we have

f(x) = f(x̂) + 〈∇f(x̂), x − x̂〉 +
1
2
(x − x̂)T∇2f(ξ)(x − x̂)

= Fτ (x, x̂) +
1
2
(x − x̂)T∇2f(ξ)(x − x̂) − 1

2τ
‖x − x̂‖2

2

≤ Fτ (x, x̂) +
1
2
‖∇2f(ξ)‖2‖x − x̂‖2

2 −
1
2τ

‖x − x̂‖2
2

≤ Fτ (x, x̂) +
L̂

2
‖x − x̂‖2

2 −
1
2τ

‖x − x̂‖2
2

≤ Fτ (x, x̂), (8)

where ξ = x̂ + α(x − x̂) for some α ∈ (0, 1) and the second inequality follows from
the fact that ξ ∈ Br̂,2s and hence ‖∇2f(ξ)‖2 ≤ L̂.
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Further, let

x̄ ∈ arg min
x∈Rn

Fτ (x, x̂) s.t. ‖x‖0 ≤ s,

where τ ∈ (0, L̂−1]. Since f(x̂) = Fτ (x̂, x̂), one can conclude from the inequality (8)
that for any τ ∈ (0, L̂−1],

Fτ (x̄, x̂) ≤ Fτ (x̂, x̂) = f(x̂) ≤ f(x̄) ≤ Fτ (x̄, x̂),

which leads to Fτ (x̂, x̂) = Fτ (x̄, x̂). Therefore, x̂ is also a minimizer of the prob-
lem (7).

On the other hand, it is easy to check that the problem (7) is equivalent to the
following minimization problem:

min
x∈Rn

1
2
‖x − (x̂ − τ∇f(x̂))‖2

2 s.t. ‖x‖0 ≤ s

which together with the definition of projection operator PS(·) leads to the desired
result.

Beck and Eldar (2013) studied the sparsity-constrained optimization problem

min
x∈Rn

h(x) s.t. ‖x‖0 ≤ s, (9)

where h(·) is a continuously differentiable function, and introduced the so-called
τ -stationary point x that satisfies

x ∈ PS(x − τ∇h(x)), τ > 0.

Furthermore, it is shown in Beck and Eldar (2013) that under the assumption
that the gradient of the objective function ∇h is Lipschitz with constant Lh, the
minimizer of problem (9) must be an τ -stationary point when τ < 1/Lh. The
author pointed out that the famous Iterative Hard Thresholding (IHT) algorithm
(Blumensath and Davies, 2009) can be viewed as a fixed-point method for solving
the condition for τ -stationarity. For the nonnegativity and sparsity-constrained opti-
mization problem, Pan et al. (2017) used the classical Armijo rule in IHT and then
presented an improved IHT algorithm where it was permitted that the objective
function h(·) does not have Lipschitz gradient but must be 2s-restricted strongly
smooth with parameter L2s > 0. It is worth mentioning that the constants Lh

and L2s play an important role in their algorithms because the step size depends
on them. Unfortunately, our function f(·) does not satisfy such conditions. Recall
Theorem 2 which states that the minimizer of problem (3) is still an L-stationary
point with the help of the uniform regularity. Inspired by the fixed point itera-
tive algorithm in Fan et al. (2018), we use the inexact gradient information and
the projection operator PS(·) to propose a greedy algorithm, called inexact sparse
projected gradient (ISPG) algorithm as follows.
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Algorithm (ISPG):

Step 0. Given λ > 0, ε ≥ 0, γ, α ∈ (0, 1), β ∈ [0, 1), δ > 2β, choose an arbitrary
x0 and set x−1 = x0 and k = 0.

Step 1. (a) Compute ∇f(xk) and zk = ∇f(xk)+ ek, where ek = βk(xk −xk−1)
and βk ∈ [0, β].

(b) Compute xk+1 = PS(xk − τkzk), where τk = γαjk and jk is the smallest
nonnegative integer such that

f(xk) − f(xk+1) ≥ δ

2
‖xk − xk+1‖2

2 + 〈xk+1 − xk, ek〉. (10)

Step 2. Stop if ‖xk+1 − xk‖2 ≤ ε max{1, ‖xk‖2}. Otherwise, replace k by k + 1
and go to Step 1.

It is clear that ISPG reduces to the algorithm in Fan et al. (2016) if one take
βk = 0. For the choice of step size, the Armijo-type line search (10) is adopted
to achieve an adequate reduction. A key point is to find the smallest nonnegative
integer jk such that (10) holds, which can be done successfully by Lemmas 2 and 3.

Lemma 2. Let gk = ‖∇f(xk)‖2 and Gk = supβ∈Bk
‖∇2f(x)‖2, where Bk = {x ∈

R
n : ‖x‖2 ≤ ‖xk‖2 + ‖xk−1‖ + gk}. For any δ > 0, γ, α ∈ (0, 1), define

jk =

{
0, if γ(Gk + δ) ≤ 1;

−[logα γ(Gk + δ)] + 1, otherwise.

Then (10) holds.

Proof. Based on the update formula of xk+1, it is clear that xk, gk and Gk are
finite for each k. From the definition of τk and jk, it is easy to verify that

Gk − 1
τk

≤ −δ. (11)

Indeed, by taking τk = γ, we have

Gk − 1
τk

=
γGk − 1

γ
≤ −δ,

when γ(Gk + δ) ≤ 1. If γ(Gk + δ) > 1, then

τk = γαjk ≤ γαlogα γ(Gk+δ) =
1

Gk + δ

which also leads to (11).
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Note that

‖xk+1‖2 ≤ ‖xk − τk(∇f(xk) + ek)‖2

= ‖(1 − τkβk)xk − τk∇f(xk) − τkβkxk−1‖2

≤ |1 − τkβk|‖xk‖2 + τk‖∇f(xk)‖2 + τkβk‖xk−1‖2

≤ ‖xk‖2 + gk + ‖xk−1‖2

which implies that xk+1 ∈ Bk. Recall the definition of Fτ (·, ·) in the proof of
Theorem 2. Similar to (8), we conclude from (11) that

f(xk+1) ≤ Fτk
(xk+1, xk) +

1
2
‖xk+1 − xk‖2

2

(
‖∇2f(ξk)‖2 − 1

τk

)

≤ Fτk
(xk+1, xk) +

1
2
‖xk+1 − xk‖2

2

(
Gk − 1

τk

)

≤ Fτk
(xk+1, xk) − δ

2
‖xk+1 − xk‖2

2, (12)

where ξk = xk + �(x̃k,t − xk) for some � ∈ (0, 1) and hence the second inequality
follows from ξk ∈ Bk.

By simple calculation, we have

min
x∈Rn,‖x‖0≤s

1
2

∥∥x − (xk − τk(∇f(xk) + ek)
)∥∥2

= min
x∈Rn,‖x‖0≤s

1
2
‖x − xk‖2 + τk〈x − xk,∇f(xk)〉 + τk〈x − xk, ek〉

= min
x∈Rn, ‖x‖0≤s

f(xk) + 〈x − xk,∇f(xk)〉 +
1

2τk
‖x − xk‖2 + 〈x − xk, ek〉

= min
x∈Rn, ‖x‖0≤s

Fτk
(x, xk) + 〈x − xk, ek〉

which together with the update formula of xk+1 implies that

xk+1 ∈ arg min
x∈Rn,‖x‖0≤s

Fτk
(x, xk) + 〈x − xk, ek〉.

Combining this and (12), we have

f(xk) − f(xk+1) = Fτk
(xk, xk) + 〈xk − xk, ek〉 − f(xk+1)

≥ Fτk
(xk+1, xk) + 〈xk+1 − xk, ek〉 − f(xk+1)

≥ δ

2
‖xk+1 − xk‖2

2 + 〈xk+1 − xk, ek〉,
which completes the proof.
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Lemma 3. Let {xk} and {τk} be generated by ISPG. Assume that A is uniformly
s-regular. Then,

(i)
∑∞

k=0 ‖xk+1 − xk‖2
2 ≤ 2(δ − 2β)−1f(x0);

(ii) {xk} is bounded;
(iii) there is a nonnegative integer j̄ such that τk ∈ [γαj̄ , γ].

Proof. By (10), we obtain that

f(x0) − f(xK+1) =
K∑

k=0

(f(xk) − f(xk+1))

≥ δ

2

K∑
k=0

‖xk+1 − xk‖2
2 +

K∑
k=0

〈xk+1 − xk, ek〉

which together with Cauchy’s inequality yields that

f(x0) − f(xK+1) ≥ δ

2

K∑
k=0

‖xk+1 − xk‖2
2 −

√√√√ K∑
k=0

‖xk+1 − xk‖2
2

√√√√ K∑
k=0

‖ek‖2.

Combining this and√√√√ K∑
k=0

‖ek‖2 = β

√√√√ K∑
k=0

‖xk+1 − xk‖2
2 − ‖xK+1 − xK‖2

2

≤ β

√√√√ K∑
k=0

‖xk+1 − xk‖2
2,

we have

f(x0) − f(xK+1) ≥
(

δ

2
− β

) K∑
k=0

‖xk+1 − xk‖2
2

and then
K∑

k=0

‖xk+1 − xk‖2
2 ≤ 2

δ − 2β
(f(x0) − f(xK+1)) (13)

since δ > 2β ≥ 0. By f(·) ≥ 0, we get result (i) immediately.
We prove result (ii) by contradiction. Suppose {xk} is unbounded, which implies

that there exists a subsequence {xkj} tending to infinity as j → ∞. By the uniform
s-regularity of A(·) and Lemma 1, we have f(xkj ) → ∞ as j → ∞. On the other
hand, we conclude from (13) and result (i) that lim supk→∞{f(xk)} < ∞, which is
a contradiction.

To show (iii), we note that since f(·) is a twice continuous differentiable function,
it follows from the boundedness of {xk} that there exist two positive constants ḡ and
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Ḡ such that supk≥0{gk} ≤ ḡ and supk≥0{Gk} ≤ Ḡ. Define j̄ = max(0, [−logαγ(Ḡ +
δ)] + 1). Therefore, 0 ≤ jk ≤ j̄ and it follows from the definition of τk that τk ∈
[γαj̄ , γ].

Remark 1. Another key point is the choice of the sparsity parameter s which may
not be known a priori in some applications. A popular and efficient method for
choosing the penalty parameter in �1-regularized minimization is cross-validation
which can be applied to problems such as compressed sensing. In the next section, we
will calculate some numerical examples using five-fold cross-validation to determine
the sparsity parameter s. The numerical results demonstrate the efficiency of this
method. Moreover, one can use the similar method in Beck and Eldar (2013) to get
the convergence of the proposed algorithm.

Now, we consider the convergence of ISPG.

Theorem 3. Let {xk} be the sequence generated by ISPG. Assume that A is uni-
formly s-regular. Then,

(i) limk→∞ ‖xk+1 − xk‖2 = 0;
(ii) any accumulation point of {xk} is a stationary point of the minimization

problem (3).

Proof. (i) By result (i) of Lemma 3, we get result (i) immediately.
(ii) Since {xk} is bounded, it has at least one accumulation point. Let x̃ be an

accumulation point and suppose that the subsequence {xkj} tends to x̃. We now
prove it satisfies (6) for some τ > 0. By result (i), the notation of ek and βk ∈ [0, β],
we have

‖ek‖ → 0 as k → ∞. (14)

Denote Γ̃ = supp(x̃) and let xi be the ith element of a vector x.
For each i ∈ Γ̃, there exists a positive integer j0 such that x

kj

i 	= 0 for j ≥ j0.
Based on the property of the projection PS(·) and the algorithm, it follows that

x
kj+1
i = x

kj

i − τkj∇f(xkj )i + e
kj

i .

Since x
kj

i → x̃i and ∇f is continuous, the first result, the limit (14) and the second
of Lemma 3 imply that

∇f(x̃)i = 0 for each i ∈ Γ̃. (15)

We now consider the case that i /∈ Γ̃. If there exists an infinite number of indices
kjl

such that x
kjl

+1

i 	= 0. As before, it follows that

x
kjl

+1

i = x
kjl

i − τkjl
∇f(xkjl )i + ekjl
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which yields that ∇f(x̃)i = 0 and then

|∇f(x̃)i| ≤ τMs(x∗) for any τ > 0. (16)

If there exists a positive integer j′0 such that x
kj+1
i = 0 for j ≥ j′0. Based on the

projection operator PS(·), it follows that

|xkj

i − τkj (∇f(xkj )i + e
kj

i )| ≤ Ms(xkj − τkj (∇f(xkj ) + ekj )

which together with the first result, the limit (14) and the second of Lemma 3 yields
that

lim sup
j→∞

τkj |(∇f(x̃))i| = lim sup
j→∞

|xkj

i − τkj (∇f(xkj )i + e
kj

i )|

≤ lim sup
j→∞

Ms(xkj − τkj (∇f(xkj ) + ekj ))

= lim sup
j→∞

Ms(xkj+1)

= Ms(x̃).

Combining this, (15) and (16), we conclude from Lemma 2.2 in Beck and Eldar
(2013) that

x̃ ∈ PS

(
x̃ − lim sup

j→∞
τkj∇f(x̃)

)
.

We then complete the proof.

4. Numerical Examples

In this section, we demonstrate the efficiency of our proposed algorithm by calcu-
lating Examples 1 and 2. Both in these examples, let the true value x∗ be generated
randomly with s nonzero components from the standard Gaussian distribution and
the noise εi ∼ N(0, σ2). To recover x∗, we use the �0-constrained least squares
method (3). To evaluate the performance of our method, we carry out 100 Monte
Carlo runs in each simulation and report the successful recovery (SR) rate using
the criterion ‖x̂ − x∗‖2 ≤ 0.01.

Example 1 (Continued). Consider the sparse phase retrieval problem where the
sparsity s is assumed to be unknown. For the noise, let its standard deviation
σ = 0.01. As mentioned in Remark 1, we use cross-validation method to choose the
sparsity s and report the mean and standard error (SE) of ‖x̂‖0 to demonstrate
its efficiency. The vectors {ai} ∈ R

n are generated from the standard Gaussian
distribution. Similar to Beck and Eldar (2013), we consider the cases n = 120 and
m = 80 with s = 3, 4, . . . , 10 respectively. In view of Ohlsson and Eldar (2014), {ai}
satisfies the 2s complement property with probability 1.
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Table 1. The average results of 100 simulations with n = 120 and m = 80.

‖x‖0 3 4 5 6 7 8 9 10

‖x̂‖0 3.7 4.9 5.8 6.9 8.0 9.1 10.1 10.7
SE 0.078 0.127 0.099 0.115 0.113 0.130 0.111 0.087

SR 0.93 0.97 0.93 0.97 0.98 0.96 0.95 0.90

The numerical results are given in Table 1. These results show that the averages
of ‖x̂‖0 are fairly close to the corresponding true values ‖x∗‖0 and the SE are very
small overall. They also confirm that the cross-validation method works well in
choosing the right sparsity parameter. The rates of SR are over 90% which show
that the �0-constrained least squares method and corresponding algorithm perform
well for the lower dimensional case.

To assess the efficiency of our method in the situation of high-dimensional signal
recovery with low sample size, we also run the simulations with m = 3n/4, s = 0.05n

and n = 100, 200, 300, 400, 500, respectively. The numerical results are given in
Table 2 which demonstrate further that cross-validation is an appropriate method
for the choice of sparsity used in the projection operator. While the last column in
Table 2 show that our method can recover the unknown signal with higher success
rates even in relatively high-dimensional cases.

Example 2 (Continued). Consider the localization problem (3) for the cases
n = 2000, 3000, m = 800, 1200 and s = 2, 3, . . . , 20. For the sensors b1, . . . , bm ∈ R

n,
we consider Case 1, bi = ai−

∑m
i=1 ai for i = 1, . . . , m where ai is generated randomly

and independently generated from a Gaussian random vector with nonzero mean;
Case 2, the sensors are generated randomly and independently generated from a
Gaussian random vector with nonzero mean. We use the �0-constrained least squares
method (3) to find x∗. Here, we assume the sparsity s is given, otherwise, it can
be chosen by cross-validation method like the next example. Based on the sample
method and

∑m
i=1 bi = 0 for Case 1, the conditions of Corollary 1 hold for Case

1 with high probability but Case 2 does not guarantee those. Indeed, both Figs. 1
and 2 show that the SR for Case 1 is far higher than that for Case 2 and the error
‖x̂ − x∗‖2

2 for Case 1 is far smaller than that for Case 2. Comparing to SR and
the error ‖x̂ − x∗‖2

2 for the two cases, one can see the importance of the uniform
regularity. By the way, we think it is interesting to extend this concept to symmetric

Table 2. The average results of successful
recoveries.

n ‖x∗‖0 (‖x̂‖0, SE) SR

100 5 (5.9, 0.120) 0.90

200 10 (10.6, 0.103) 0.96

300 15 (15.67, 0.111) 0.98

400 20 (20.6, 0.133) 0.97

500 25 (26.2, 0.233) 0.94
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Fig. 1. Simulation results for Example 2 with σ = 0.1.

Fig. 2. Simulation results for Example 2 with σ = 0.1.

tensor in Wang et al., (2009, 2015a) and Zhang and Wang (2016) or tensor sparse
decompositions in Wang et al. (2015b).
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Lévyleduc, C and F Roueff (2009). Detection and localization of change-points in high-
dimensional network traffic data. Annals of Applied Statistics, 3(2), 3483–3485.

Li, X and V Voroninski (2012). Sparse signal recovery from quadratic measurements via
convex programming. SIAM Journal on Mathematical Analysis, 45(5), 3019–3033.
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