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Abstract We propose a new approach to calculating the first passage time densities for
Brownian motion crossing piecewise linear boundaries which can be discontinuous. Using
this approach we obtain explicit formulas for the first passage densities and show that
they are continuously differentiable except at the break points of the boundaries. Further-
more, these formulas can be used to approximate the first passage time distributions for
general nonlinear boundaries. The numerical computation can be easily done by using the
Monte Carlo integration, which is straightforward to implement. Some numerical examples
are presented for illustration. This approach can be further extended to compute two-sided
boundary crossing distributions.
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passage time · Curved boundary
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1 Introduction

Let W = {Wt, t ≥ 0} be a standard Brownian motion starting at W0 = 0 and c(t), t ≥ 0 be
a real function with c(0) > 0. The first passage time (FPT) of W with respect to c is defined
as

τc = inf{t > 0 : Wt ≥ c(t)}, (1)
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and the corresponding boundary non-crossing probability (BNCP) at any t > 0 is

P(t; c) = P(τc > t) = P(Ws < c(s),∀s ∈ [0, t]). (2)

Then the first passage density (FPD) of W at t > 0 is the rate of decrease of P(t; c) and, if
exists, is given by

fc(t) = −dP(t; c)

dt
. (3)

The first passage time plays an important role in stochastic modelling in many scien-
tific disciplines, including biology, chemistry, physics, environmental science, engineering,
epidemiology, as well as in finance, economics, and business and management. However,
the calculation of the FPT distributions is difficult in general and has been the subject of
research for many decades. Explicit formulas exist only in a few special cases, such as for
Brownian motion and linear boundaries. For example, for a linear boundary c(t) = at + b

with b > 0, the BNCP and FPD have simple closed-form expressions

P(t; c) = �

(
at + b√

t

)
− exp(−2ab)�

(
at − b√

t

)
(4)

and

fc(t) = b√
2πt3

exp

[
− (at + b)2

2t

]
, (5)

where �(·) is the standard Gaussian distribution function (Karatzas and Shreve 1991).
For Brownian motion and more general boundaries various methods have been used

to find numerical approximations of the FPT densities, such as tangent approximation
(Strassen 1967; Ferebee 1982; Lerche 1986), method of images (Daniels 1982; 1996),
and series expansions (Durbin 1971; Ferebee 1983; Durbin and Williams 1992). Some
other researchers use Volterra integral equations to approximate the FPD for more general
diffusion processes (Ricciardi et al. 1984; Buonocore et al. 1987; Lehmann 2002). More
recently, Taillefumier and Magnasco (Taillefumier and Magnasco 2010) proposed a dis-
crete simulation-based algorithm to approximate the FPD of Gauss-Markov processes and
Hölder continuous boundaries, while Molini et al. (Molini et al. 2011) obtained the approx-
imation by solving a Fokker-Planck equation subject to an absorbing boundary and deriving
the transition probability using the method of image. Besides heavy computational cost, all
these methods apply to continuous or differentiable boundaries only.

In this paper, we propose a different approach that is applicable for discontinuous as
well as continuous boundaries. Using this approach we derive a formula for the FPT den-
sity for Brownian motion crossing a piecewise linear boundary. We show that the density
is differentiable everywhere except possibly at the break points of the boundary. Moreover,
we use this formula to approximate the FPT density for more general nonlinear smooth
boundaries. Numerical computation can be done by Monte Carlo integration method which
is straightforward and easy to implement. The numerical examples show that fairly good
approximation results can be obtained with moderate computational burden. This approach
is based on the method of iterative expectation of Wang and Pötzelberger (Wang and
Pötzelberger 1997) that combines the total probability andMarkov property of the Brownian
motion.

The rest of the paper is organized as follows. In Sections 2 and 3 we derive the
explicit formulas of the BCP and FPD for Brownian motion and piecewise linear bound-
aries. These formulas are used to approximate the BCP and FPD for general boundaries



Methodol Comput Appl Probab (2017) 19:237–253 239

in Section 4. The BCP and FPD for more general diffusion processes which can be
expressed as functionals of a standard Brownian motion are considered in Section 5, while
numerical computation and examples are presented in Section 6. Finally conclusions and
discussion are given in Section 7.

2 BCP for Piecewise Linear Boundary

In this section we first derive an explicit formula for the BCP and piecewise linear bound-
aries. Specifically, for any t > 0, let 0 = t0 < t1 < · · · < tn = t be a partition of [0, t] and
c(s), s ≥ 0 be a linear function on each interval [ti−1, ti] and satisfy lims→0+ c(s) = c(0) >

0. Further, denote c+
i = lims→0+ c(ti + s), c−

i = lims→0+ c(ti − s), ci = min{c+
i , c−

i },
c0 = c+

0 = c(0) and cn = c−
n = c(t). So the boundary can be discontinuous at some ti .

Theorem 1 For any t > 0 and piecewise linear boundary c(s) defined on the partition
(ti )

n
i=1 of [0, t], the BNCP is given by

P(t; c) = Egn(Wt1 , Wt2 , . . . , Wtn; c), (6)

where

gn(x; c) =
n∏

i=1

1{xi < ci}
{
1 − exp

[ − 2(c+
i−1 − xi−1)(c

−
i − xi)

ti − ti−1

]}
(7)

and x = (x1, x2, · · · , xn), x0 = 0 and 1{·} is the indicator function.

Proof By the Markov property of Brownian motion, we have

P(t; c) = P(Ws < c(s), 0 ≤ s ≤ t)

= EP(Ws < c(s),∀s ∈ ⋃n
i=1(ti−1, ti )|Wt1 ,Wt2 , . . . , Wtn)

= E
n∏

i=1
P(Ws < c(s), ti−1 < s < ti |Wti−1 ,Wti ).

The result follows then from

P(Ws < c(s), ti−1 < s < ti |Wti−1 = xi−1,Wti = xi)

= P(Ws < c(s + ti−1) − xi−1, 0 < s < ti − ti−1|Wti−ti−1 = xi − xi−1)

= 1{xi−1 < c+
i−1}1{xi < c−

i }
{
1 − exp

[ − 2(c+
i−1 − xi−1)(c

−
i − xi)

ti − ti−1

]}
,

where the last equality follows from the well-known formula of the conditional crossing
probability (Siegmund 1986).

When c(t) is continuous on [0, t], we have ci = c+
i = c−

i = c(ti), i = 1, 2, . . . , n, and
Eq. 6 reduces to the formula of Wang and Pötzelberger (Wang and Pötzelberger 1997) who
obtained the result by using the iterative integration. Here, we give an alternative form of
this formula which is obtained by a simple change of variable in the integration.
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Corollary 2 For any t > 0 and continuous piecewise linear boundary c(s) defined on the
partition (ti)

n
i=1 of [0, t], the BNCP is given by

P(t; c) = Egn(Wt1 − c1,Wt2 − c2, . . . , Wtn − cn), (8)

where

gn(x) = 1{x ∈ IRn+}
n∏

i=1

[1 − exp
( − 2xi−1xi

ti − ti−1

)], (9)

x0 = c0 and IRn+ = (0, ∞)n.

3 FPD for Piecewise Linear Boundary

Now we consider the FPT density for a piecewise linear boundary. Let 0 = t0 < t1 < · · · <

tn < · · · be a partition of [0, ∞) such that limn→∞ tn = ∞. Again let c(t), t ≥ 0 be a
linear function on each interval [ti−1, ti] and satisfy limt→0+ c(t) = c(0) > 0. Further, let
ci, c

+
i , c−

i be defined as before. Then we have the following result.

Theorem 3 For any piecewise linear boundary c(t) defined on the partition (ti)
∞
i=1, the

FPD of W at any t ∈ (tn−1, tn) is given by

f (t; c) = Ehn−1(Wt1 , Wt2 , . . . , Wtn−1; c), (10)

where

hn−1(x; c) = gn−1(x; c)φ(t − tn−1, xn−1, c(t))
c+
n−1 − xn−1

t − tn−1
(11)

and

φ(t − s, x, y) = 1√
2π(t − s)

exp
[ − (y − x)2

2(t − s)

]
(12)

is the transition density of W from (s, x) to (t, y). Furthermore, f (t; c) is continuously
differentiable at t .

Proof Let

fn(x) =
n∏

i=1

1√
2π(ti − ti−1)

exp
[ − (xi − xi−1)

2

2(ti − ti−1)

]

be the joint pdf of (Wt1 , Wt2 , . . . , Wtn). Then we can write the expectation Eq. 6 as

P(t; c) =
∫ n∏

i=1

1{xi < ci}
{
1 − exp

[ − 2(c+
i−1 − xi−1)(c

−
i − xi)

ti − ti−1

]}
fn(x)dx

=
∫ c(t)

−∞
p(t, x)dx, (13)

where

p(t, x) =
∫

q(t, x)gn−1(x; c)fn−1(x)dx
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with

q(t, x) = 1√
2π(t − tn−1)

exp[− (x − xn−1)
2

2(t − tn−1)
]
{
1 − exp

[ − 2(c+
n−1 − xn−1)(c(t) − x)

t − tn−1

]}
.

Now we show that function p(t, x) satisfies the following diffusion equation (also called
Fokker-Planck or Kolmogorov equation)

∂p(t, x)

∂t
= 1

2

∂2p(t, x)

∂x2
. (14)

To this end it suffices to show that q(t, x) satisfies the above equation because it is the only
part of p(t, x) that depends on (t, x). This can be verified by noting that q(t, x) can be
written as

q(t, x) = φ(t − tn−1, xn−1, x) − φ(t − tn−1, 2cn−1 − xn−1, x) exp[−2c′(t)(cn−1 − xn−1)]
where the Gauss kernel φ(t − s, y, x) is well-known to satisfy Eq. 14 and c′(t) is a con-
stant that is the slope of the piecewise linear boundary on interval (tn−1, t). Further, since
p(t, c(t)) = 0, it follows from Eqs. 13 and 14 that

∂P (t; c)

∂t
=

∫ c(t)

−∞
∂p(t, x)

∂t
dx

= 1

2

∫ c(t)

−∞
∂2p(t, x)

∂x2
dx

= 1

2

∂p(t, x)

∂x

∣∣∣∣
x↑c(t)

.

Therefore Eq. 10 follows from

∂q(t, x)

∂x

∣∣
x↑c(t)

= − 2(c+
n−1 − xn−1)√

2π(t − tn−1)3
exp

[ − (c(t) − xn−1)
2

2(t − tn−1)

]

and

f (t; c) = −∂P (t; c)

∂t
= −1

2

∂p(t, x)

∂x

∣∣∣∣
x↑c(t)

.

Furthermore, it is clear that f (t; c) is continuously differentiable at t .

Similar to the BCP, for a continuous piecewise linear boundary where ci = c+
i = c−

i =
c(ti), we have an alternative formula for the FPD.

Corollary 4 For any t ∈ (tn−1, tn), if the piecewise linear boundary c(s) in Theorem 3 is
continuous on [0, t], then the FPD is given by

f (t; c) = Ehn−1(Wt1 − c1, Wt2 − c2, . . . , Wtn−1 − cn−1), (15)

where

hn−1(x) = gn−1(x)xn−1

t − tn−1
φ(t − tn−1, cn−1 − xn−1, c(t)). (16)

From formula (10) we can see that the FPD for piecewise linear boundaries has the
following interesting monotone property (Fig 1).
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Corollary 5 Let b(s) and c(s) be two piecewise linear boundaries such that b(t) = c(t),
b(s) ≤ c(s), ∀s ∈ [0, t] and b(s) < c(s) for some s ∈ (0, t). Then the FPD for b(s) and
c(s) satisfy f (t; b) < f (t; c).

Proof From Eqs. 7 and 11 we can see that gn−1(x; c) and hn−1(x; c) are monotone increas-
ing functions of c+

i , c−
i , i = 1, 2, . . . , n. Therefore f (t; b) < f (t; c) if b(s) and c(s) are

defined on the same set of partition of [0, t]. However, if they are defined on two different
partitions, then we can merge the two sets of partition points and redefine the two boundaries
on the common partition. Apparently this will not change the monotone relation between
the two boundaries and their FPD values at t . Therefore we have f (t; b) < f (t; c).

The result of Corollary 5 is interesting and somewhat unexpected. While it is easy to see
the monotonicity property of the boundary crossing probability with respect to the boundary,
this is less obvious with boundary crossing density. Moreover, while the boundary crossing
probability is lower for the higher boundary, it is opposite for the density. In the following
we give an example to further illustrate this point.

Example 1 Let 0 < T1 < t be fixed and define c(s) = a1{0 ≤ s ≤ T1} + c1{s > T1} and
b(s) = b1{0 ≤ s ≤ T1} + c1{s > T1}, where a > b > c > 0 (Fig. 2). Then for any t > T1,

P(Ws < c(s), 0 ≤ s ≤ t)

=
∫ c

−∞
P(Ws < a, 0 ≤ t ≤ T1|WT1 = x)P (Ws < c − x, 0 < s ≤ t − T1)dx.

and therefore

f (t; c) = − ∂

∂t
P (Ws < c(s), 0 ≤ s ≤ t))

= −
∫ c

−∞
P(Ws < a, 0 ≤ s ≤ T1|WT1 = x)

∂

∂t
P (Ws < c − x, 0 < s ≤ t − T1)dx.

Similarly, for t > T1,

f (t; b) = − ∂

∂t
P (Ws < b(s), 0 ≤ s ≤ t))

= −
∫ c

−∞
P(Ws < b, 0 ≤ s ≤ T1|WT1 = x)

∂

∂t
P (Ws < c − x, 0 < s ≤ t − T1)dx.

Fig. 1 Boundaries in Corollary 5
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Fig. 2 Boundaries in Example 1

Since for any x < c,

P(Ws < b, 0 ≤ t ≤ T1|WT1 = x) < P (Ws < a, 0 ≤ s ≤ T1|WT1 = x),

it follows that f (t; b) < f (t; c).
Now we give an experimental explanation using the example of R. Brown in 1827 who

observed N pollen particles under a microscope. The displacement of each particle along a
fixed axis can be regarded as a standard Brownian motion. Let 0 < T1 < t be fixed. If a
particle does not reach c(s) = c before T1, then it is said to be in class 1. If a particle does
not reach b(s) = b before T1, then it belongs to class 2. If, after T1, a particle reaches c in a
small interval (t − 1

2�t, t + 1
2�t), then it is said to be in class A. Then for sufficiently large

N and small �t , N1/N and N2/N can be regarded as the approximate FPD values under
upper and lower boundaries respectively. It is clear that the number N1 of particles in both
class 1 and A is greater than or equal to the number N2 of particles in both class 2 and A,
that is, N1/N ≥ N2/N .

4 General Nonlinear Boundaries

In this section we obtain approximations of the BCP and FPD for general nonlinear bound-
aries using the corresponding formulas for piecewise linear boundaries derived in the
previous sections. To simplify notation, we consider a smooth concave boundary. More
general boundaries can be treated similarly.

Let c(s) be a concave and differentiable function on [0, t]. For any n > 1, let Tn = (ti)
n
0

be the set of partition points of [0, t] such that 0 = t0 < t1 < · · · < tn−1 < tn = t . In
addition, suppose Tn is a sequence of monotone increasing sets in the sense that Tn ⊂ Tn+1
for every n and limn→∞ max1≤i≤n(ti − ti−1) = 0. Let bn(s) be the polygonal function
connecting the knots (ti , c(ti )), i = 0, 1, · · · , n. Then it is clear that bn(s) converges to
c(s) uniformly on [0, t] as n → ∞. Therefore if An = {Ws < bn(s), 0 ≤ s ≤ t} and
A = {Ws < c(s), 0 ≤ s ≤ t}, then An ⊂ An+1 and

⋃∞
n=1 An = A. It follows from the
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Fig. 3 Increasing piecewise linear boundaries approximating a concave boundary

continuity property of the probability measure that limn→∞ P(An) = P(A). Thus we have
the following result.

Theorem 6 Let c(s) be concave and differentiable on [0, t] and bn(s) be the polygonal
function connecting the knots (ti , ci), i = 0, 1, · · · , n. Then limn→∞ P(t; bn) = P(t; c).

Unfortunately the corresponding result for the FPD cannot be obtained in this way. To
deal with the density, we construct two sequences of monotone boundaries approaching
c(s) from above and below respectively. Specifically, let bn(s) be defined as before. Then,
since c(s) is concave, bn+1(s) is above bn(s) for every n. It follows from Corollary 5 that
f (t; bn) < f (t; bn+1). Further, we can always define a piecewise linear boundary b(s) that
is above c(s) and such that b(t) = bn(t) for all n (the green boundary in Fig. 3). Then again
by Corollary 5 we have f (t; bn) < f (t; b) for all n. It follows that f (t; bn) is monotone
increasing and bounded from above. Therefore limn→∞ f (t; bn) exists and is finite.

Further, let an(s) be the piecewise linear function consisting of the tangent lines at (ti , ci)

(the green boundary in Fig. 4). Then it is easy to see that an(s) is decreasing and converges

Fig. 4 Two piecewise linear boundaries approximating a concave boundary
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uniformly to c(s) from above, which implies that the corresponding FPD f (t; an) is mono-
tone decreasing and bounded from below, and therefore limn→∞ f (t; an) exists. Finally, it
is obvious that f (t; bn) ≤ f (t; an) for any n. Thus we have the following results.

Theorem 7 Let c(s) be concave and differentiable on [0, t], bn(s) be the piecewise linear
function connecting the knots (ti , ci), i = 0, 1, · · · , n, and an(s) be the piecewise linear
function consisting of the tangent lines to c(s) at ti , i = 0, 1, · · · , n. Then their corre-
sponding FPDs have the following properties: (1) f (t; bn) is monotone increasing and
limn→∞ f (t; bn) exists; (2) f (t; an) is monotone decreasing and limn→∞ f (t; an) exists;
and (3) limn→∞ f (t; bn) ≤ limn→∞ f (t; an).

5 Other Diffusion Processes

The formulas of Sections 2 and 3 can be used to obtain explicit formulas for the
BCP and FPD of more general diffusion processes that can be expressed as function-
als of standard Brownian motion. Such processes include geometric Brownian motion,
Ornstein-Uhlenbeck processes and growth processes (Wang and Pötzelberger 2007).

Let X = {Xt, t ≥ 0, X0 = x0} be a diffusion process defined on a probability space
(�,A, P ) with state space either the real space R or a subinterval of it. Denote the BNCP
of X over boundary c(s) on interval [0, t] by

PX(t; c) = P(Xs < c(s), 0 < s ≤ t)

and the corresponding FPD by

fX(t; c) = −∂PX(t; c)

∂t
.

Example 2 (Brownian motion with drift) It is well-known that a Brownian motion with time
dependent drift can be written as Xt = σWt + μ(t)t , where Wt is the standard Brownian
motion. Then the BCP for X crossing the boundary c(s) is given by

PX(t; c) = PW (t; d), d(s) = c(s) − μ(s)s

σ
.

Therefore the corresponding FPD is given by fX(t; c) = fW (t; d).

Example 3 (Ornstein-Uhlenbeck processes) An Ornstein-Uhlenbeck (OU) process is
defined in state spaceR and satisfies the stochastic differential equation

dXt = κ(α − Xt)dt + σdWt, X0 = x0,

where κ, σ ∈ R+ and α ∈ R are constants. Then by Wang and Pötzelberger (2007) the
BCP for X is given by PX(t; c) = PW (T ; d), where T = σ 2(e2κt − 1)/2κ ,

d(s) = α − x0 + [c(g(s)) − α]
(
1 + 2κs

σ 2

)1/2

,

and

g(s) = 1

2κ
log

(
1 + 2κs

σ 2

)
, s ≥ 0.

Therefore the FPD is given by fX(t; c) = σ 2e2κtfW (T ; d). In particular, consider a special
case where c(s) = h > 0, α = x0, σ 2 = 2κ = 1 and h = x0 + 1. Then d(s) = √

1 + s for
0 ≤ s ≤ T = et − 1. Therefore PX(t; h) = PW (T ; d) and fX(t; h) = etfW (T ; d).
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6 Numerical Computation and Examples

Numerical computation of the BCP and FPD formulas of the previous sections is straight-
forward by using the Monte Carlo integration method. For example, since the BNCP
P(t; c) in Eq. 6 is the mathematical expectation with respect to the Gaussian random vec-
tor W = (Wt1 ,Wt2 , · · · ,Wtn), a natural estimator is Pm = ∑m

j=1 gn(w
j
n; c)/m, where

wj = (wj1, wj2, . . . , wjn), j = 1, 2, . . . , m, are independent random vectors generated
from the multivariate Gaussian distribution of W . Then the strong law of large numbers
guarantees Pm → P(t; c) almost surely as m → ∞, and the central limit theorem implies
that Pm − P(t; c) = Op(m−1/2). Furthermore, the simulation precision can be assessed by
the corresponding simulation standard error

se = [
m∑

j=1

(gn(wj ) − Pm)2/m(m − 1)]1/2.

Therefore the approximation error can be reduced by increasing the simulation size m.
For continuous piecewise linear boundaries, the calculation using the alternative formula

(8) is even simpler because the random vectors wj = (wj1, wj2, . . . , wjn) can be directly
generated from the distribution of (Wt1 − c1,Wt2 − c2, · · · ,Wtn − cn), so that the integrant
gn(wj ) does not involve boundary points (c1, c2, . . . , cn) at all. The FPD can be calculated
similarly.

In the following we calculate some examples to further demonstrate this method. In all
examples, we use simulation sample size m = 2 × 105 except the results in Table 1, which
uses m = 2 × 106. The numerical calculations are done using the MATLAB on a 64-bit
Windows workstation with a 3.60GHz Intel CPU and 16GB RAM.

Example 4 (BCP for Daniels’ boundary) The Daniels’ boundary (Daniels 1996) is widely
used in the literature as a benchmark example for testing numerical methods for BCP and
FPD since the exact results are known. It is defined as

c(s) = 1

2
− s log

(
1

4
+ 1

4

√
1 + 8 exp(−1

s
)

)
, s ≥ 0.

For t = 1, the exact result is known to be P(t; c) = 0.520251. By using 64 partition points,
we obtain an estimate Pm = 0.520206 with simulation standard error se = 0.001086
and computation time 0.993175 seconds. In order to see how the approximation accuracy
improves with the increase of partition size n, we calculate the P(t; c) again for various n

with simulation size m = 2×106. The results in Table 1 show clearly that when n increases
the approximation becomes more and more accurate and stable. Note that the standard errors
do not change with n.

Table 1 The BNCP P(t; c), t = 1 for Daniels’ boundary with various n. The simulation standard errors are
in parentheses

n = 2 n = 4 n = 6 n = 8 n = 10 n = 12 n = 14

0.506537 0.518079 0.519547 0.519367 0.520332 0.520601 0.519925

(0.000282) (0.000309) (0.000319) (0.000324) (0.000328) (0.000330) (0.000332)

n = 16 n = 20 n = 26 n = 32 n = 64 n = 128 Exact

0.520183 0.520482 0.520777 0.520178 0.520454 0.520310 0.520251

(0.000334) (0.000336) (0.000338) (0.000339) (0.000347) (0.000346)
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Table 2 The BCP P(t; c), t = 1 for some nonlinear boundaries using various partition sizes. Simulation
standard errors are in parentheses

c(s) n = 4 n = 8 n = 16 n = 32 n = 64

√
1 + s 0.804894 0.804740 0.802533 0.804751 0.804485

(0.000799) (0.000826) (0.000849) (0.000858) (0.000867)

0.5
√
1 + s 0.450516 0.450433 0.452872 0.449928 0.450653

(0.000971) (0.001019) (0.001050) (0.001068) (0.001081)

exp(−s) 0.439668 0.437573 0.436956 0.438864 0.439186

(0.001047 ) (0.001019) (0.001065) (0.001079) (0.001088)

1 + s2 0.856445 0.852497 0.851839 0.853728 0.852372

(0.000689) (0.000728 ) (0.000748) (0.000759) (0.000771)

1 + s − s2 0.740651 0.741056 0.743063 0.744337 0.744190

(0.000903) (0.000925) (0.000939) (0.000949) (0.000957)

Example 5 Nowwe calculate the BCP for some nonlinear boundaries which have been used
before by Wang and Pötzelberger (Wang and Pötzelberger 1997) and some other authors.
The numerical results are given in Table 2, which are in line with the results obtained
previously in the literature.

Table 3 Exact and estimated FPD with various n for square-root boundary
√
1 + s

t Exact n = 16 n = 32 n = 64 n = 128

0.2 0.2234 0.2227 0.2223 0.2230 0.2229

0.3 0.2810 0.2803 0.2799 0.2794 0.2806

0.4 0.2772 0.2772 0.2771 0.2762 0.2782

0.5 0.2559 0.2558 0.2555 0.2552 0.2561

0.6 0.2311 0.2308 0.2315 0.2318 0.2316

0.7 0.2081 0.2076 0.2070 0.2082 0.2076

0.8 0.1871 0.1867 0.1869 0.1864 0.1868

0.9 0.1685 0.1686 0.1683 0.1688 0.1690

1.0 0.1529 0.1532 0.1532 0.1524 0.1539

1.2 0.1278 0.1276 0.1277 0.1280 0.1279

1.4 0.1089 0.1089 0.1091 0.1091 0.1091

1.6 0.0946 0.0941 0.0947 0.0942 0.0944

1.8 0.0827 0.0824 0.0827 0.0827 0.0822

2.0 0.0732 0.0732 0.0732 0.0731 0.0732

2.5 0.0564 0.0564 0.0565 0.0565 0.0562

3.0 0.0455 0.0453 0.0454 0.0455 0.0452

3.5 0.0376 0.0377 0.0377 0.0375 0.0379

4.0 0.0320 0.0320 0.0320 0.0321 0.0319

4.5 0.0277 0.0277 0.0278 0.0277 0.0278

5.0 0.0243 0.0243 0.0243 0.0244 0.0244

5.5 0.0216 0.0216 0.0217 0.0216 0.0216

6.0 0.0195 0.0194 0.0194 0.0195 0.0194
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Table 4 Exact and estimated FPD with various n for boundary 0.5
√
1 + s

t Exact n = 16 n = 32 n = 64 n = 128

0.05 1.2871 1.2926 1.2926 1.2890 1.2854

0.1 1.5976 1.5954 1.5954 1.5971 1.5972

0.15 1.3181 1.3173 1.3185 1.3201 1.3187

0.2 1.0570 1.0561 1.0548 1.0603 1.0568

0.25 0.8592 0.8576 0.8585 0.8556 0.8588

0.3 0.7085 0.7107 0.7087 0.7104 0.7100

0.35 0.5978 0.5996 0.5987 0.5997 0.5988

0.4 0.5137 0.5151 0.5141 0.5133 0.5140

0.45 0.4461 0.4452 0.4458 0.4465 0.4463

0.5 0.3924 0.3929 0.3929 0.3918 0.3921

0.6 0.3122 0.3120 0.3116 0.3123 0.3118

0.7 0.2568 0.2563 0.2559 0.2563 0.2563

0.8 0.2152 0.2151 0.2153 0.2140 0.2153

0.9 0.1837 0.1842 0.1843 0.1837 0.1838

1.0 0.1598 0.1597 0.1599 0.1593 0.1599

1.2 0.1253 0.1252 0.1252 0.1247 0.1252

1.4 0.1012 0.1017 0.1015 0.1023 0.1019

1.6 0.0848 0.0846 0.0844 0.0846 0.0847

1.8 0.0720 0.0719 0.0719 0.0721 0.0721

2.0 0.0621 0.0621 0.0623 0.0621 0.0622

2.2 0.0545 0.0546 0.0547 0.0542 0.0544

2.4 0.0485 0.0483 0.0484 0.0483 0.0484

Fig. 5 Exact and estimated FPD with n = 64 for boundary
√
1 + s
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Fig. 6 Exact and estimated FPD with n = 64 for boundary 0.5
√
1 + s

Example 6 (FPD for square-root boundary) Square-root boundary is another benchmark
example that is widely used in the literature to test various numerical algorithms. We also
calculate the FPD for two such boundaries with various partition sizes and the results are
given in Tables 3 and 4, where the exact values are taken from (Daniels 1996). These
results show that our method provides fairly good estimates. The exact and estimated
FPD with n = 64 are also plotted in Figs. 5 and 6. The two curves are too close to be
distinguishable.

Example 7 (FPD for nonlinear boundaries) Now we calculate the FPD for some nonlinear
boundaries c(s) = 1+s2, c(s) = 1+s−s2 and c(s) = exp(−s). The numerical results with
partition size n = 64 are respectively shown in Tables 5, 6 and 7, while their corresponding
line plots are shown in Figs. 7, 8 and 9.

Table 5 The approximated FPD with n = 64 for boundary 1 + s2

t 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

FPD 0.0008 0.0763 0.2067 0.2941 0.3148 0.3102 0.2902 0.2583

0.45 0.5 0.55 0.60 0.65 0.70 0.75 0.80

0.2231 0.1932 0.1663 0.1400 0.1133 0.0956 0.0788 0.0633

0.85 0.9 0.95 1.0 1.1 1.2 1.3 1.4

0.0507 0.0409 0.0328 0.0255 0.0254 0.0149 0.0086 0.0049
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Table 6 The approximated FPD with n = 64 for boundary 1 + s − s2

t 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

FPD 0.0002 0.0317 0.1012 0.1547 0.1968 0.2267 0.2492 0.2613

0.45 0.5 0.55 0.60 0.65 0.70 0.75 0.80

0.2742 0.2821 0.2928 0.3024 0.3151 0.3271 0.3409 0.3580

0.85 0.9 0.95 1.0 1.1 1.2 1.3 1.4

0.3761 0.3894 0.4097 0.4269 0.4699 0.5046 0.5472 0.5795

1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2

0.5989 0.6110 0.6062 0.5850 0.5456 0.4891 0.4244 0.3526

2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0

0.2784 0.2115 0.1489 0.1020 0.0649 0.0386 0.0223 0.0111

3.1 3.2 3.3 3.4 3.5

0.0056 0.0024 0.0010 0.0004 0.0002

Table 7 The approximated FPD with n = 64 for boundary exp(−s)

t 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

FPD 0.0045 0.2074 0.5931 0.8312 0.9206 0.9334 0.9084 0.8632

0.45 0.5 0.55 0.60 0.65 0.70 0.75 0.80

0.7917 0.7289 0.6668 0.6098 0.5529 0.5055 0.4673 0.4283

0.85 0.9 0.95 1.0 1.1 1.2 1.3 1.4

0.3904 0.3597 0.3298 0.3063 0.2637 0.2304 0.1994 0.1743

1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2

0.0596 0.0571 0.0525 0.0483 0.0462 0.0434 0.0870 0.0759

2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0

0.0702 0.0655 0.0596 0.0571 0.0525 0.0483 0.0462 0.0434

3.1 3.2 3.3 3.4 3.5

0.0406 0.0385 0.0361 0.0344 0.0324
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Fig. 7 The approximated FPD with n = 64 for boundary 1 + s2

Fig. 8 The approximated FPD with n = 64 for boundary 1 + s − s2
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Fig. 9 The approximated FPD with n = 64 for boundary exp(−s)

7 Conclusions and Discussion

The calculation of boundary crossing probabilities and first passage time densities are
important but challenging problems. The main stream approaches are based on certain
differential or integral equations and deal with smooth boundaries only. We proposed an
approach that apply to smooth as well as discontinuous boundaries. Using this approach we
have derived explicit formulas for the piecewise linear boundary crossing probability and
density for Brownian motion. The derived formulas can be used to approximate the BCP or
FPD for more general nonlinear boundaries.

We have demonstrated that the numerical calculation can be easily done by Monte Carlo
simulation method and the simulation error can be easily assessed. We have tested our
method on some well-known benchmark examples and our numerical results show that this
method produces fairly good approximations.

We have also shown how to obtain closed-form BCP or FPD for a class of diffusion
processes that can be expressed as piecewise monotone functionals of Brownian motion,
including geometric Brownian motion, O-U processes and growth processes. Moreover, this
method can be extended to two-sided boundary crossing problems.
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