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We consider censored structural latent variables models where some exogenous vari-
ables are subject to additive measurement errors. We demonstrate that overidentifi-
cation conditions can be exploited to provide natural instruments for the variables
measured with errors, and we propose a two-stage estimation procedure. The first
stage involves substituting available instruments in lieu of the variables that are
measured with errors and estimating the resulting reduced form parameters using
consistent censored regression methods. The second stage obtains structural form
parameters using the conventional linear simultaneous equations model estimators.

1. INTRODUCTION

In this paper we consider structural latent variables models where the response
variables are censored and explanatory variables are measured with errors. Latent
variables models have been widely used in econometrics (e.g., Amemiya, 1973,
1974; Maddala, 1983). Most authors in the literature treat the latent variables
models as some sort of reduced form specification. However, many variables are
jointly dependent and also censored.

We consider models where the joint dependence or simultaneity is in the latent
structure, i.e., the latent variables follow the Cowles Commission structural form
(e.g., Koopmans and Hood, 1953). It is the observed values that are censored.
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Measurement errors further complicate the issues. Linear errors-in-variables
models have been extensively studied in the literature (see, e.g., the survey of
Aigner, Hsiao, Kapteyn, and Wansbeek, 1984). However, censoring introduces
noninvertibility between the latent variables and observables, which leads to
nonlinearity in the observed data. Nonlinear errors-in-variables models raise
complicated identification and estimation issues (see, e.g., Carroll, Ruppert,
Stefanski, and Crainiceanu, 2006; Wang and Hsiao, 2011). In this paper, we
explore the specific structures of our models to derive identification conditions
and root-n consistent and asymptotically normal estimators. We also follow
the literature on linear simultaneous equations models with measurement error
(e.g., Geraci, 1976; Hsiao, 1976, 1977, 1979) to explore the trade-off between
overidentification of a model with the underidentification due to measurement
errors.

Section 2 introduces our model, and Section 3 considers the issues of identifi-
cation and estimation. Concluding remarks are in Section 4.

2. THE MODEL

Let (y′
i , x ′

i , z′
i ), i = 1,2, ...,n, be m + k + � observed variables and let (y′

i , x ′
i ) be

related to latent variables (y∗′
i , x∗′

i ) in the form

yg = y∗
g1( y∗

g > 0), g = 1, ...,m, (2.1)

x = x∗ + δ, (2.2)

where yg and y∗
g denote the gth component of y and y∗, respectively, and 1(A) = 1

if A occurs and 0 otherwise. We make the following assumptions.

A1. The k × 1 random vectors {x∗
i , i = 1,2, ...,n} are independent and identi-

cally distributed with finite sixth-order moments, and E(x∗
i x∗′

i ) is nonsingular.

A2. The measurement error δ is independent of (x∗, z) and is symmetrically
distributed with mean zero and covariance matrix �δ .

A3. The latent variables x∗ are related to z through

x∗ = Az + ε, (2.3)

where A is a k ×� constant matrix with rank(A) = k and ε is independent of (z,δ)
and symmetrically distributed with mean zero and covariance matrix �ε.

Remark 2.1. Note that in A2 �δ needs not to be nonsingular. If one or more
components of x∗ are directly observed, then the corresponding diagonal ele-
ments of �δ can be zero. However, for ease of exposition, we assume �δ to be
nonsingular. Also note that although the relationship (2.3) follows from the usual
instrumental variables assumption on z, it is a relatively strong condition. For
instance, if x∗ is discrete, then A3 is unlikely to be satisfied.
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We assume the data generating process for y∗ takes the form1

y∗ = �y∗ + Bx∗ +u, (2.4)

where � is an m ×m constant matrix with diagonal elements equal to zero and B
is an m × k constant matrix. We make the following assumptions.

A4. The parameters (�, B, A) lie in the interior of a compact space �.

A5. The error term u is independent of (x∗,δ,ε) and symmetrically distributed
with mean zero and nonsingular covariance matrix �u .

Model (2.4) is in the form of the Cowles Commission structural equations
model. To ensure that given x∗ there is a one-to-one correspondence between
a random draw of u from its distribution f (u) and y∗ in model (2.4), we make the
following assumption.

A6. The determinant det(Im −�) �= 0, where Im is the m ×m identity matrix.

3. IDENTIFICATION AND ESTIMATION

Let the structure of model (2.4) be denoted by F = (I −�,−B) where f ′
g denotes

the gth row of F . We assume that f ′
g is subject to the linear restrictions in the

form

f ′
g�g = 0, (3.1)

where �g is an (m +k)×rg known matrix with full column rank. Then a standard
necessary and sufficient condition for the identification of the gth equation in (2.4)
from (y∗′

, x∗′
) is as follows.

A7. rank(F�g) = m −1.

If all equations in (2.4) satisfy A7, the whole model (2.4) is identified. If we ob-
serve x in (2.2) rather than x∗, A7 may not be sufficient to identify (2.4). However,
identifiability can be achieved if instrumental variables are available. Because y∗
is censored, there is no one-to-one correspondence between u and y; we derive
the identifiability from the existence of consistent estimators.

PROPOSITION 3.1. Under A1, A2, and A4–A6, the sufficient conditions for
the identification of the gth equation of (2.4) are A3 and A7.

Proof. Substituting (2.3) into (2.4) yields

y∗ = (I −�)−1 B Az + (I −�)−1(u + Bε)

= 	z + v, (3.2)

where 	 = 	∗ A and 	∗ = (I −�)−1 B. Because u and ε are symmetric about
zero, −v = (I − �)−1(−u + B(−ε)) has the same distribution as v , which im-
plies that v is also symmetric about zero. Therefore standard single equation
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censored estimation methods (e.g., Amemiya, 1973, 1974; Powell, 1984, 1986)
can be used equation by equation to obtain a consistent estimator of 	. Further-
more, by A2 and A3 δ is independent of z, and hence A can be identified by
A = E(xz′)[E(zz′)]−1. It follows that the consistent estimator of 	∗ can be solved
as

	∗ = 	A′(AA′)−1 (3.3)

because AA′ is nonsingular by A3. Given that 	∗ = (I −�)−1 B is known, the
identification conditions follow straightforwardly from standard derivation. 2

Under the additional assumption that the random measurement errors are un-
correlated (i.e., �δ is diagonal), the gth equation may be identified without the
presence of additional instruments (i.e., � = 0) because the excluded exogenous
variables can be used as instruments. Therefore, instead of A2 we have the fol-
lowing assumption.

A2′. The measurement error δ is independent of (x∗, z) and is symmetrically
distributed with mean zero and diagonal covariance matrix �δ .

Then equations (2.2) and (2.4) imply the reduced form

y∗ = 	∗x + (I −�)−1u −	∗δ
= 	∗�δ�

−1
x μx +	∗(I −�δ�

−1
x )x + ṽ

= π̃ + 	̃x + ṽ, (3.4)

where μx = E(x) and ṽ = (I −�)−1u −	∗(δ −�δ�
−1
x (x −μx )). It is easy to

verify that ṽ has zero mean and is uncorrelated with x . For each 1 ≤ g ≤ m, the
reduced form equation for y∗

g is given by

y∗
g = π̃g + 	̃gx + ṽg (3.5)

independent of whether other elements of y∗ are zero or positive. In other words,
censoring on y∗

g happens only if ṽg < −π̃g − 	̃gx . Therefore we can ignore
the correlations across equations and try to obtain a consistent estimator of
	̃ = 	∗(I −�δ�

−1
x ) equation by equation. Given 	̃, we can derive the identifi-

cation conditions similarly as in Hsiao (1976) if the included elements of x∗ are
correlated with the excluded elements of x∗.

To implement the estimators of Amemiya (1973) or Powell (1984, 1986), we
impose an additional condition.

A3′. The conditional distribution of ṽ given x is symmetric about 0, and the
elements of x∗ that are included in the first equation are correlated with the other
elements of x∗.

Note that by construction the conditional distribution f (ṽ|x) is symmetric
when (x∗,δ,u) have an elliptical distribution. The family of elliptical distri-
butions contains many commonly seen distributions such as uniform, normal,
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Cauchy, Student’s t , double exponential, and many other distributions. See, e.g.,
Fang and Zhang (1990).

To illustrate how excluded exogenous variables can be used as instruments for
the included exogenous variables that are measured with error, without loss of
generality we consider the case where g = 1 and the prior restrictions are in the
form of exclusion restrictions (e.g., Fisher, 1966; Hsiao, 1983). For notational
ease, we assume that all m endogenous variables appear in the first equation and
the exclusion restrictions are in the form

f ′
1 = (γ̃ ′

1,β
′
1,0′

k2
), (3.6)

where γ̃1 = (1,γ ′
1)

′ is m × 1, β1 is k1 × 1, 0k2 is a k2 × 1 vector of zeros,
and k1 + k2 = k. Correspondingly, we partition the vectors as x∗ = (x∗′

1 , x∗′
2 )′,

x = (x ′
1, x ′

2)
′ and the covariance matrix as

�x =
(

�11 �12
�21 �22

)
.

Then we can write the linear projection of x∗
1 onto x2 as

x∗
1 = μ1 −�12�

−1
22 μ2 +�12�

−1
22 x2 + ε1

= a1 + A1x2 + ε1, (3.7)

where μj = E(xj ), j = 1,2. Further, from A2′ it is easy to verify by construction
that ε1 has zero mean and is uncorrelated with x2. Substituting (3.7) into the
reduced form of (2.4) yields

y∗ = (	∗
1,	

∗
2)

(
x∗

1
x∗

2

)
+ (I −�)−1u

= π̃2 + 	̃∗
2(x2 −μ2)+ ṽ2, (3.8)

where π̃2 = 	∗
1μ1 +	∗

2μ2, 	̃∗
2 = 	∗

1 A1 +	∗
2(I −�δ2�

−1
22 ), and

ṽ2 = (I −�)−1u +	∗
1ε1 −	∗

2δ2 +	∗
2�δ2�

−1
22 (x2 −μ2)

is symmetrically distributed conditional on x2 under A3′. Further, the prior re-
strictions on the first equation

γ̃ ′
1	

∗
1 = β ′

1, γ̃ ′
1	

∗
2 = 0 (3.9)

imply

γ̃ ′
1	̃

∗
2 = β ′

1 A1. (3.10)

On the other hand, the reduced form of y∗ conditional on x takes the form of (3.4)
with

	̃ = 	∗(Ik −�δ�
−1
x ) = (	̃1,	̃2), (3.11)

	̃1 = 	∗
1(Ik1 −�δ1�

11)−	∗
2�δ2�

21, (3.12)

	̃2 = 	∗
2(Ik2 −�δ2�

22)−	∗
1�δ1�

12, (3.13)
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where �11,�12,�21,and�22 are the corresponding components of the inverse
matrix of �x , i.e.,

�−1
x =

(
�11 �12

�21 �22

)
.

Let

H = 	̃∗
2 − 	̃1 A1 + 	̃2�

21(�12�21)−1�11 A1

= 	∗
2

[
I −�δ2�

−1
22 +�δ2�

21 A1 + (I −�δ2�
22)�21

× (�12�21)−1�11 A1

]
. (3.14)

Then the prior restriction γ̃ ′
1	

∗
2 = 0 implies

γ̃ ′
1 H = 0. (3.15)

Further, note that the matrices �x and �−1
x can be consistently estimated using

the observations on x . Thus, the model parameters can be consistently estimated
using the following procedure.

Step 1. Applying the single equation censored regression methods of Amemiya
(1973) or Powell (1984, 1986) to each equation of (3.4) to obtain a con-

sistent estimator ˆ̃	 of 	̃ = 	∗(Ik −�δ�
−1
x ) = (	̃1,	̃2).

Step 2. Applying censored regression methods to (3.8) yields ˆ̃	∗
2, which con-

verges to 	̃∗
2 = 	∗

1 A1 +	∗
2(I −�δ2�

−1
22 ).

Step 3. Regressing x1 on x2 yields Â1, which converges to A1.
Step 4. Substituting the preceding estimators into (3.14) to obtain a consistent

estimator Ĥ of H ; then obtaining the consistent estimators of γ̃1 and
β1 through a minimum distance estimation procedure based on the prior
restrictions (3.15) and (3.10).

Note that in step 4 applying the least squares method yields the censored ana-
logue of the two-stage least squares of a linear simultaneous equations model.
Therefore we have the following results.

PROPOSITION 3.2. Under A1, A2′, A3′, and A4–A7, the first equation
of (2.4) is identifiable if the number of overidentifying restrictions k2 ≥ k1 +m −1.

Because both the excluded variables and z can serve as instruments for the first
equation (g = 1), it follows from the preceding result and those of Hsiao (1976)
that when k2 < k1 +m −1, additional instruments are needed to identify the first
equation.

PROPOSITION 3.3. Under the conditions of Proposition 3.2, a necessary
condition to identify the first equation is that there exist at least m − 1 + k1 − k2
additional instruments.
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In general if only m1 < m endogenous variables appear in the first equation so
that γ̃1 in (3.6) contains m −m1 zeros, then in Propositions 3.2 and 3.3 m should
be replaced by m1.

4. CONCLUSION

We discussed the identification and estimation of censored latent structural mod-
els with measurement errors. We postulate a latent structure in the spirit of the
Cowles Commission structural equation model. It is the observed values that are
censored. We showed that identification and consistent estimation can be achieved
using instrumental variables. We also showed that, as in the linear simultaneous
equations model with measurement errors, the overidentification conditions could
be used to trade off the unidentification due to measurement errors. However, be-
cause of the censoring efficient estimation of the structural model becomes very
complicated. In this paper we proposed a simple and easy to implement multistep
consistent estimator.

NOTE

1. Amemiya (1979) considered a mixture case where y∗
1 and y∗

2 depended on each other as in (2.4);
however, the observed y1 = y∗

1 and y2 = y∗
2 1(y∗

2 > 0). Because the reduced forms for y∗
1 and y∗

2 are
identical to the reduced form of (2.4), our two-step procedure can also be applied to this case except
that the reduced form for the y1 equation will be estimated by the least squares method.

REFERENCES

Aigner, D.J., C. Hsiao, A. Kapteyn, & T. Wansbeek (1984) Latent variable models in econometrics. In
Z. Griliches & M.D. Intriligator (eds.), Handbook of Econometrics, vol. II, pp. 1321–1393. North-
Holland.

Amemiya, T. (1973) Regression analysis when the dependent variable is truncated normal. Economet-
rica 41, 997–1016.

Amemiya, T. (1974) Multivariate regression and simultaneous equation models when the dependent
variables are truncated normal. Econometrica 42, 999–1012.

Amemiya, T. (1979) The estimation of a simultaneous equation Tobit model. International Economic
Review 20, 169–181.

Carroll, R.J., D. Ruppert, L.A. Stefanski, & C. Crainiceanu (2006) Measurement Error in Nonlinear
Models: A Modern Perspective, 2nd ed. Chapman and Hall.

Fang, K.T. & Y.T. Zhang (1990) Generalized Multivariate Analysis. Springer-Verlag.
Fisher, F.M. (1966) The Identification Problem in Econometrics. McGraw-Hill.
Geraci, V.J. (1976) Identification of simultaneous equation models with measurement error. Journal

of Econometrics 4, 263–283.
Hsiao, C. (1976) Identification and estimation of simultaneous equation models with measurement

error. International Economic Review 17, 319–339.
Hsiao, C. (1977) Identification for a linear dynamic simultaneous error-shock model. International

Economic Review 18, 181–194.
Hsiao, C. (1979) Measurement error in a dynamic simultaneous equations model with stationary dis-

turbances. Econometrica 47, 475–494.
Hsiao, C. (1983) Identification. In Z. Griliches & M.D. Intriligator (eds.), Handbook of Econometrics,

vol. I, pp. 223–284. North-Holland.



CENSORED STRUCTURAL LATENT VARIABLES MODELS 703

Koopmans, T.C. & W. Hood (1953) The estimation of simultaneous linear economic relationships. In
W.C. Hood & T.C. Koopmans (eds.), Studies in Econometric Methods, pp. 112–199. Wiley.

Maddala, G.S. (1983) Limited-Dependent and Qualitative Variables Economics. Cambridge Univer-
sity Press.

Powell, J.L. (1984) Least absolute deviations estimation of the censored regression models. Journal
of Econometrics 25, 303–325.

Powell, J.L. (1986) Symmetrically trimmed least squares estimation of Tobit models. Econometrica
54, 1435–1460.

Wang, L. & C. Hsiao (2011) Method of moments estimation and identifiability of semiparametric non-
linear errors-in-variables models. Journal of Econometrics; doi:10.1016/j.jeconom.2011.05.004.


