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Summary This paper deals with censored or truncated regression models where the

explanatory variables are measured with additive errors. We propose a two-stage estimation

procedure that combines the instrumental variable method and the minimum distance

estimation. This approach produces consistent and asymptotically normally distributed

estimators for model parameters. When the predictor and instrumental variables are normally

distributed, we also propose a maximum likelihood based estimator and a two-stage moment

estimator. Simulation studies show that all proposed estimators perform satisfactorily for

relatively small samples and relatively high degree of censoring. In addition, the maximum

likelihood based estimators are fairly robust against non-normal and /or heteroskedastic random

errors in our simulations. The method can be generalized to panel data models.
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1. INTRODUCTION

Censored or truncated regression models are widely used in econometrics as well as in biomedical,
health and many other scientific fields. They are special cases of more general limited dependent
variable models. Econometric applications of Tobit models include Heckman and MaCurdy (1986)
and Killingsworth and Heckman (1986), among others (see also Amemiya 1984, 1985a and
Maddala 1985). Another important issue that arises in econometrics and many other applied
fields is the problem of errors-in-variables (Hsiao 1983, 1989; Fuller 1987; Carroll et al. 1995;
Gustafson 2004). The combined problem of censored data and measurement errors arises also in
more recent bioinformatics (Dood et al. 2004).

The censored regression or other limited dependent variable models with measurement
errors have been considered by several authors. Hsiao (1991) studied a class of binary choice
models where the explanatory variables are measured with errors. Weiss (1993) investigated the
least absolute deviation estimators of a censored linear errors-in-variables model when certain
instrumental variables are available. Wang (1998, 2002) derived consistent moment estimators
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and maximum likelihood estimators for a class of limited dependent variable models under the
assumption of known reliability ratio which is equivalent to known measurement error variance.
While this assumption is satisfied in many cases in natural sciences where validation or repeated
measurement data are available, many data sets in economics and social sciences do not appear
to possess this knowledge. An alternative approach to dealing with measurement error problems
in regression models is to use instrumental variables (e.g. Amemiya 1985b, 1990; Weiss 1993;
Wang and Hsiao 1995). When the response variables are censored or truncated, their conditional
expectations are no longer linear in the predictor variables or parameters. Hence, the censored or
truncated regression models are non-linear models. Recently, Schennach (2004) studied a general
non-linear errors-in-variables model and showed that the model can be identified and consistently
estimated using instrumental variables. However, in its general form the proposed estimation
method, while based on Fourier transforms and generalized function theory, is quite technical and
computationally intensive.

In this paper, we exploit the specific nature of non-linearity due to censoring and propose
estimators which are easy to implement and possess fairly good finite sample properties. The
results demonstrate that the existence of instrumental variables can provide consistent estimators
of the censored or truncated linear models with additive measurement errors. Our procedure
consists of two stages. The first stage involves substituting the instrumental variable in lieu
of the variables measured with errors and obtain consistent estimators for the transformed
model. The second stage retrieves the parameters of interest by the minimum distance method.
The numerical computation is easy and straightforward. When the predictor and instrumental
variables are normally distributed, we also propose a maximum likelihood and a two-step
moment estimator. While the maximum likelihood estimator is inconsistent when normality
assumption is violated, the two-stage minimum distance estimation method remains consistent and
asymptotically normally distributed. Simulation studies demonstrate that all proposed estimators
perform satisfactorily even for relatively small samples and relatively high degree of censoring in
the observations of the response variable. In addition, the maximum likelihood based estimator
is fairly robust against some non-normal but symmetric random error distributions.

This paper is organized as follows. Section 2 introduces the censored linear regression model
with errors in variables and instrumental variables. Section 3 describes the two-stage procedure
for consistent estimation of model parameters. A maximum likelihood and a method of moment-
based estimator are proposed in Sections 4 and 5, respectively. The finite sample behaviour of
the proposed estimators is investigated through simulation studies in Section 6. Conclusions and
discussion are given in Section 7.

2. THE MODEL

Consider a linear latent relationship

η = α1 + α′
2ξ + ε, (1)

where η ∈ IR and ξ ∈ IRk are latent response and predictor variables, respectively, α1 and α2 are
unknown parameters and ε is a random error. The observed predictor variable is

x = ξ + δ, (2)
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where δ is the random measurement error. We assume that ξ , δ and ε are mutually uncorrelated
and have means μξ , 0, 0 and covariances �ξ , �δ , σ 2

ε , respectively, where �ξ has full rank but �δ

can be singular to allow some components of ξ be measured without error. In addition, suppose
that an instrumental variable (IV) z ∈ IR	 is available which is correlated with ξ but uncorrelated
with δ and ε. Then, it follows from (2) that � zξ = E(z − μz)(ξ − μξ )′ = � zx and μξ = μx.
Throughout the paper we assume that the 	 × k matrix � zx has full column rank k. It will be clear
later that this assumption ensures the identifiability and consistent estimation of α1 and α2 in the
model. This assumption implies 	 ≥ k and is easy to check once the data are available.

If there were no censoring, then η = y is fully observed and (1) and (2) give a conventional
linear errors-in-variables model (e.g. Aigner et al. 1984)

y = α1 + α′
2x + ε − α′

2δ.

It is well known that the ordinary least-squares estimators for α1 and α2 based on (x, y) will be
inconsistent, because x is correlated with the error term ε − α′

2δ. Instead, the usual IV estimation
procedure based on x, y and z will yield consistent estimators.

However, in the censored model the observed response variable is

y = η1(η > 0), (3)

where 1(·) denotes the indicator function. Substituting x for ξ into (3) yields

y = α1 + α′
2x + ε∗, (4)

where ε∗ = ε − α′
2δ − η1(η ≤ 0). Applying IV approach to (4) directly will not lead to consistent

estimators of α1 and α2, because z is correlated with ε∗ through η.
In this paper, our goal is to find consistent estimators for parameters α1, α2 and σ 2

ε in
model (1)–(3). The observed data are (xi, zi, yi), i = 1, 2, . . . , n, which are supposed to be
independent but not necessarily identically distributed. Though we treat the censored model
explicitly, it is easy to see that our method applies also to truncated model as well as other limited
dependent variable models.

3. TWO-STAGE ESTIMATION

Although applying IV method directly will not yield consistent estimators of α1 and α2 if η is
censored, there exists an indirect method that can yield consistent estimators. First, since � zξ �=
0, let β 2 = �−1

z � zξ , β 1 = μξ − β ′
2μz and τ = ξ − β 1 − β ′

2z. Then we have

ξ = β1 + β ′
2z + τ, (5)

where τ is uncorrelated with δ, ε and satisfies E(zτ ′) = 0 by construction. Further, because z is
uncorrelated with τ and δ, substituting (5) into (2) results in a standard linear regression equation

x = β1 + β ′
2z + τ + δ. (6)

It follows that β 1 and β 2 can be consistently estimated using the least-squares method and the
sample moments of (xi, zi), as β̂2 = �̂−1

z �̂zx and β̂1 = x̄ − β̂ ′
2 z̄. On the other hand, substituting

(5) into (1) we obtain

η = γ1 + γ ′
2z + u, (7)
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where

γ1 = α1 + α′
2β1, (8)

γ2 = β2α2 (9)

and u = ε + α′
2τ is uncorrelated with z. Hence, (7) together with (3) forms an error-free Tobit

model and consequently γ 1 and γ 2 can be consistently estimated using the data (zi, yi). More
specifically, if ε and τ are normally distributed, then u is also normal and consistent and efficient
estimators of γ 1 and γ 2 can be obtained by the maximum likelihood method (e.g. Amemiya 1973;
Wang 1998). In this case, all uncorrelatedness among various variables assumed before becomes
independence. On the other hand, if the distribution of u is not normal but symmetric about zero,
then consistent and asymptotically normally distributed estimators of these parameters can still
be obtained by applying the symmetrically trimmed least-squares estimator of Powell (1986a).
More generally, under conditional median or quantile restrictions for the distribution of u, the
least absolute deviations (LAD) estimator of Powell (1984) or the regression quantiles estimator
of Powell (1986b) give consistent estimators for γ 1 and γ 2 (see also Khan and Powell (2001)
for other semiparametric methods). Note that the later two procedures do not require u to be
uncorrelated with z and apply to heteroskedastic data (zi, yi) as well.

Now, let γ = (γ 1, γ ′
2)′, α = (α1, α′

2)′ and

B =
(

1 β ′
1

0 β2

)
.

Then (8) and (9) can be written jointly as

γ = Bα. (10)

Note that (10) contains 	 + 1 equations. Given γ and B, a necessary and sufficient condition
for the unique solution of α is rank(B) = k + 1 (e.g. Hsiao 1983), which holds if and
only if

rank(β2) = k. (11)

Since β 2 = �−1
z � zx, (11) is equivalent to rank (� zx) = k. Therefore, if consistent estimators of γ

and B exist, we can obtain consistent estimator of α by solving (10) provided the rank condition
for identification holds. To simplify notation, denote

X =

⎛
⎜⎜⎜⎜⎝

1 x ′
1

1 x ′
2

...
...

1 x ′
n

⎞
⎟⎟⎟⎟⎠ , Z =

⎛
⎜⎜⎜⎜⎝

1 z′
1

1 z′
2

...
...

1 z′
n

⎞
⎟⎟⎟⎟⎠ , U =

⎛
⎜⎜⎜⎜⎝

0 τ ′
1 + δ′

1

0 τ ′
2 + δ′

2

...
...

0 τ ′
n + δ′

n

⎞
⎟⎟⎟⎟⎠ .

Then (6) can be written as X = ZB + U and, therefore, the LSE for B is given by

B̂ = (Z ′ Z )−1 Z ′ X =
(

1 β̂ ′
1

0 β̂2

)
. (12)
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Given the consistent estimators γ̂ and B̂, consistent estimator for α can be obtained by minimizing
(γ̂ − B̂α)′ An(γ̂ − B̂α), where An is a non-negative definite weighting matrix which may depend
on the data. The minimum distance estimator (MDE) is given by

α̂ = (B̂ ′ An B̂)−1 B̂ ′ An γ̂ . (13)

Further, if
√

n(γ̂ − γ )
L−→ N (0, �γ̂ ), then the delta-method implies

√
n (α̂ − α)

L−→ N (0, (B ′ AB)−1 B ′ A�γ̂ AB(B ′ AB)−1),

where A = plim(An/n). The lower bound of the above asymptotic covariance matrix is
(B ′�−1

γ̂ B)−1, which is attained by taking A = �−1
γ̂ . The corresponding efficient MDE is obtained

by using the weight An = �̂−1
γ̂ which is a consistent estimator for �−1

γ̂ . However, there are some
other interesting and practical choices of An. For example, the identity weight An = I results in
α̂ = (B̂ ′ B̂)−1 B̂ ′γ̂ . Another choice is An = (Z′Z)2 which leads to α̂ = (X ′ Z Z ′ X )−1 X ′ Z Z ′ Z γ̂ . A
particularly interesting choice is An = Z′Z, which gives

α̂ = (X ′ Z (Z ′ Z )−1 Z ′ X )−1 X ′ Z γ̂ = (X̂ ′ X̂ )−1 X̂ ′ Z γ̂ , (14)

where X̂ = Z B̂. The above α̂ has the same form as the two-stage least-squares (2SLS) estimator
in simultaneous equations models. The only difference is that γ̂ is not the least-squares estimator
because of censoring. In this sense, the second-stage MDE can be regarded as a generalization of
2SLS estimator.

In the rest of this section, we derive the consistent estimator for σ 2
ε under the additional

assumption that �xη can be consistently estimated. First, from (1) and (2) we have �xη =
�xξα2 = �ξα2 and hence

σ 2
η = α′

2�ξα2 + σ 2
ε

= �′
xηα2 + σ 2

ε . (15)

On the other hand, from (7) we have

σ 2
η = γ ′

2�zγ2 + σ 2
u . (16)

It follows then from (15) and (16) that

σ 2
ε = σ 2

u + γ ′
2�zγ2 − �′

xηα2. (17)

Therefore, σ 2
ε can be consistently estimated as long as �xη does. One sufficient condition for

consistent estimation of �xη is that the joint distribution of x and η satisfies

E(x |η) = μx + �xη(η − μη)/σ 2
η . (18)

For instance, if x and η are jointly normally distributed, then (18) holds and it further implies

�xη = E(xy|y > 0) − μx E(y|y > 0)

which can be consistently estimated using the uncensored sample points of (xi, yi). More generally,
(18) remains true if x and η have an elliptically contoured distribution. In this case, (18) implies

�xη = σ 2
η [E(x |y > 0) − μx ]

E(y|y > 0) − μη
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which can be consistently estimated because μη = γ 1 + γ ′
2μz and σ 2

η = γ ′
2� zγ 2 + σ 2

u. It is
well known that the family of elliptically contoured distributions contains many commonly seen
distributions such as uniform, normal, Cauchy, Student’s t, double exponential and many other
distributions (see, e.g. Fang and Zhang 1990; or Gupta and Varga 1993).

Finally, using the delta method it is straightforward to derive the asymptotic variance for the
estimator σ̂ 2

ε through the variances and covariance of γ̂ and σ̂ 2
u . In the next two sections, two

special instances of the two-stage estimation procedure of this section are investigated in more
details.

4. MAXIMUM LIKELIHOOD BASED ESTIMATORS

In the previous section, we have derived the two-stage MDE for α without assuming the normal
distribution for (xi, zi, η i). If these variables are indeed normally distributed, then more efficient
estimators can be obtained based on the maximum likelihood method. In this and the next section,
we give some details for two estimation procedures, under the assumption that (xi, zi, η i) are
normally distributed.

Let γ̂ denote the maximum likelihood estimator (MLE) for Tobit model (7) and (3), and let α̂

be the second-stage MDE (13) with An = �̂−1
γ̂ . Consistent estimate �̂−1

γ̂ can be obtained using
the second derivative of the log-likelihood with respect to the parameters (Wang 1998). In the
following, we find the exact expression for �−1

γ̂ . Wang (1998) derived the asymptotic covariance

matrix of the MLE for model (1) and (2) under the condition that �−1
ξ �δ is known. The result

can be applied to model (7) (without measurement error) by simply setting the measurement
error covariance �δ to zero in the covariance formula of Wang (1998). To simplify notation,
denote z̃ = (1, z′)′, λ = φ(γ ′ z̃/σu)/�(−γ ′ z̃/σu) and � = �(μη/σ η), where φ(·) and �(·) are,
respectively, the standard normal density and distribution function. Then using the matrix partition
and after some tedious matrix manipulation, we have

�−1
γ̂ = �

σ 2
u

[
C − (Cγ − D)(Cγ − D)′

γ ′(Cγ − 2D) + E(y2 | y > 0) + σ 2
u

]
, (19)

where C = E(z̃ z̃′ | y > 0) + (1/� − 1)E[λ(λ − γ ′ z̃)z̃ z̃′ | y = 0] and D = E(yz̃′ | y > 0). From
(7), it is easy to see that μη = γ 1 + γ ′

2 μz and σ 2
η = γ ′

2 � zγ 2 + σ 2
u.

5. TWO-STEP MOMENT ESTIMATORS

The MLE-based estimation of last section requires numerical maximization of a multi-dimensional
likelihood function. Wang (1998) also proposes a two-step moment estimation procedure, which
is computationally less intensive and easier to implement. In this section, we combine this moment
estimator with the minimum distance estimation into a two-step procedure.

In the first step, the conditional means μy = E(y), μ+
y = E(y | y > 0) and μ+

zy = E(zy | y > 0)
are first estimated using all yi’s and the positive yi’s, respectively. Then, by the moment equa-
tions (3) of Wang (1998), the other first-step parameters are consistently estimated through

ση = μyμ
+
y

μy�−1 + μ+
y φ(�−1)

,
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μη = σ η�
−1 and � zη = μ+

zy − μzμ
+
y , where �−1 = �−1(μy/μ+

y ). Then γ and σ 2
u are estimated

by the “least squares estimates” γ 2 = �−1
z � zη, γ 1 = μη − γ ′

2μz and σ 2
u = σ 2

η − �′
zη�

−1
z � zη.

In the second step, the MDE for α is calculated using (13) and σ 2
ε is estimated using (15)

which implies σ 2
ε = σ 2

η − α′
2�xη, where �xη = μ+

xy − μxμ
+
y . Because now �̂γ̂ = σ̂ 2

u (Z ′ Z )−1 and
a multiplicative scalar in An does not affect the corresponding MDE, the efficient MDE can be
calculated using An = Z′Z, which coincides with the generalized 2SLS estimator.

Analogue to the maximum likelihood based estimator, the asymptotic normality for this two-
step estimator can be derived by using theorem 1 of Wang (1998) and the delta method. However,
because the notations are quite complicated we omit the details here.

6. SIMULATION STUDIES

In this section, we carry out some simulation studies to investigate the finite sample behaviour of
the two-stage estimators proposed in the previous sections and to compare their performances.
For simplicity, we consider models with k = 1 predictor and 	 = 2 instrumental variables. In
particular, we consider the following three models:

Normal model: η i = α1 + α′
2ξ i + ε i, where ε i ∼ N(0, σ 2

ε).

Non-normal model: η i = α1 + α′
2ξ i + ε i, where εi ∼ √

8t(4) and t(4) is the Student’s t
distribution with 4 degree of freedom.
Heteroskedastic model: η i = α1 + α2ξ i + ε i, where εi | ξi ∼ (1 + 0.05 |ξi |)t(4).

The true parameter values are α1 = −4, α2 = 0.6 in all the three and σ 2
ε = 16 in the first two

models. Other variables and parameters are as follows: zi ∼ N2[(5, 0)′, diag(25, 25)]; ξ i = β 1 +
β ′

2zi + τ i, where β 1 = 5, β 2 = (2, −1)′ and τ i ∼ N(0, 25); and xi = ξ i + δ i, where δ i ∼ N(0, 16).
All variables are generated independently and the observed responses are yi = max{η i, 0}. In

all the three models, the average amount of censoring in η i is 27%. In the heteroskedastic model,
V(ε i) varies between 2 and 26 approximately. The following estimators are calculated, where the
optimal weighting matrices An = �̂−1

γ̂ are used in the MDE step:
MLE: the maximum likelihood based estimator under normality;
TME: the two-step moment estimator under normality;
LAD: the MDE based on the censored least absolute deviations estimator;
NML: the naive maximum likelihood estimator ignoring the measurement errors.
Both MLE and NML have been computed using Newton–Raphson procedure (Wang 1998)

which converged after four or five iterations with a convergence criterion of 10−8. For the last two
models, the LAD of Powell (1984,1986b) is calculated using the R implementation of Fitzenberger
(1996) which is included in the R package quantreg by Koenker (2006). All models are simulated
for each of the sample sizes n = 50, 70, 100, 150, 300, 500 and in each case R = 1000 Monte
Carlo replications are carried out. The mean estimates, their Monte Carlo simulation standard
errors and the root mean squared errors for all estimators are computed. The computation is done
using the statistical computing language R on an IBM Workstation with a 2.2 MHz CPU and
4 GB RAM. For each given sample size, a simulation with 1000 runs is done within several
seconds.
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6.1. Normal model

The simulation results for the normal model are shown in Table 1. These results show that,
even with an average censoring of 27% in η i, both the MLE-based estimators and the TME
perform quite satisfactorily except for the TME of σ 2

ε for small sample sizes. This confirms the
general perception that variance parameters are usually more difficult to estimate than regression
parameters, especially when the sample sizes are relatively small. Overall, the MLE have smaller
simulation standard errors as well as root mean squared errors than the TME, because they are
statistically more efficient. However, the TME are computationally simpler and cheaper than the
MLE. As expected, the NML are clearly biased and inconsistent for all the three parameters. It is
worthwhile to note that we have also calculated the MLE and TME using the weight An = Z′Z.
They perform very similar to their counterparts using the optimal weight An = �̂−1

γ̂ except for
having a slightly higher root mean squared errors.

6.2. Non-normal model

The simulation results of the LAD-based estimators for the non-normal model are given in
Table 2. For comparison, we also included the MLE based estimator of Section 4, and the naive
MLE ignoring measurement errors. The later two estimators are developed under the normality
assumption. While the performance of the LAD-based estimators is satisfactory as expected, that
of the MLE based estimators is a little surprisingly good, especially for the regression parameters.
Overall, they have even smaller root mean squared errors than the LAD. This seems to indicate
that the MLE-based estimators are not very sensitive to the deviation of the error distribution from
normality if it remains symmetric. Again, the naive MLE are clearly biased and inconsistent for
all parameters.

6.3. Heteroskedastic model

The simulation results for the heteroskedastic model are shown in Table 3. Again, we included the
MLE and the NML for comparisons. Because in this model the random error ε i is heteroskedastic,
only parameters (α1, α2) are estimated. As has been mentioned earlier, although for the most part
of the paper ξ i and ε i are assumed to be uncorrelated, this assumption is not necessary for
the LAD or more general regression quantile based estimators (Powell 1984,1986b). The
simulation results show that the LAD-based estimates are very good for all sample sizes. The
MLE-based estimates are clearly biased in this model, but they have smaller root mean squared
errors than the LAD based estimators except for sample size n = 500. This is in line with the
previous simulation finding that the MLE based estimator shows certain degree of robustness
against symmetric deviation from normality in the error terms. Finally, the performance of the
naive MLE ignoring measurement errors is similar to that in previous simulations.

7. CONCLUSIONS AND DISCUSSION

Regression analysis with censored or truncated data and errors-in-variables are two important
issues in many applied fields including econometrics. We have studied a combined model
for censored outcome data with additive measurement errors in predictor variables. We
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Table 1. Simulated mean estimates, simulation standard errors (in parentheses) and the root mean squared

errors for normal model.

n = 50 n = 70 n = 100 n = 150 n = 300 n = 500

α1 = −4

MLE −3.9816 −4.0368 −3.9957 −3.9945 −3.9791 −3.9887

(0.0487) (0.0404) (0.0356) (0.0270) (0.0195) (0.0152)

1.5384 1.2778 1.1261 0.5835 0.6165 0.4816

TME −3.9880 −4.0287 −3.9584 −4.0008 −4.0047 −3.9887

(0.0554) (0.0472) (0.0403) (0.0318) (0.0226) (0.0177)

1.7514 1.4919 1.2759 1.0056 0.7154 0.5597

NML −3.1596 −3.2176 −3.1452 −3.1450 −3.1484 −3.1275

(0.0433) (0.0370) (0.0316) (0.0240) (0.0177) (0.0137)

1.6069 1.4067 1.3144 1.1401 1.0191 0.9743

α2 = 0.6

MLE 0.6002 0.6011 0.5989 0.6000 0.5981 0.5994

(0.0025) (0.0021) (0.0017) (0.0014) (0.0010) (0.0008)

0.0784 0.0650 0.0544 0.0430 0.0306 0.0244

TME 0.5960 0.5970 0.5948 0.5989 0.5986 0.5990

(0.0028) (0.0024) (0.0020) (0.0016) (0.0011) (0.0009)

0.0897 0.0749 0.0627 0.0514 0.0357 0.0279

NML 0.5438 0.5453 0.5419 0.5432 0.5421 0.5418

(0.0021) (0.0018) (0.0014) (0.0011) (0.0008) (0.0007)

0.0870 0.0785 0.0735 0.0673 0.0634 0.0618

σ 2
ε = 16

MLE 16.3518 16.0422 16.1673 15.9695 15.9553 15.9637

(0.2060) (0.1657) (0.1393) (0.1105) (0.0781) (0.0594)

6.5190 5.2363 4.4051 3.4928 2.4687 1.8791

TME 17.3321 17.2531 16.9631 16.3493 16.2727 16.0905

(0.3824) (0.3198) (0.2685) (0.2135) (0.1513) (0.1158)

12.1596 10.1864 8.5418 6.7569 4.7902 3.6617

NML 20.6708 20.5661 20.7125 20.8772 21.0296 21.0897

(0.1582) (0.1389) (0.1161) (0.0919) (0.0679) (0.0509)

6.8426 6.3336 5.9723 5.6761 5.4689 5.3382
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Table 2. Simulated mean estimates, simulation standard errors (in parentheses) and the root mean squared

errors for non-normal model.

n = 50 n = 70 n = 100 n = 150 n = 300 n = 500

α1 = −4

LAD −3.9143 −4.0107 −4.0451 −3.9290 −3.9964 −3.9996

(0.0628) (0.0543) (0.0488) (0.0391) (0.0273) (0.0219)

1.9883 1.7167 1.5425 1.2370 0.8614 0.6927

MLE −3.9892 −4.0734 −4.1203 −4.0497 −4.1200 −4.0854

(0.0469) (0.0399) (0.0330) (0.0263) (0.0205) (0.0150)

1.4818 1.2622 1.0514 0.8329 0.6586 0.4805

NML −3.1710 −3.2524 −3.2421 −3.2017 −3.2498 −3.2228

(0.0430) (0.0358) (0.0306) (0.0241) (0.0185) (0.0137)

1.5919 1.3571 1.2282 1.1031 0.9503 0.8902

α2 = 0.6

LAD 0.5935 0.6006 0.6022 0.5964 0.6002 0.5998

(0.0030) (0.0026) (0.0023) (0.0019) (0.0013) (0.0010)

0.0960 0.0831 0.0738 0.0596 0.0410 0.0329

MLE 0.6001 0.6052 0.6073 0.6031 0.6069 0.6047

(0.0024) (0.0020) (0.0017) (0.0013) (0.0010) (0.0008)

0.0749 0.0648 0.0532 0.0424 0.0328 0.0245

NML 0.5437 0.5485 0.5485 0.5458 0.5484 0.5470

(0.0021) (0.0017) (0.0015) (0.0012) (0.0009) (0.0007)

0.0864 0.0756 0.0691 0.0654 0.0586 0.0570

σ 2
ε = 16

LAD 19.1620 18.3492 17.9263 16.7925 16.6038 16.0455

(0.4184) (0.3124) (0.3795) (0.2060) (0.1813) (0.1075)

13.5962 10.1500 12.1474 6.5598 5.7614 3.3973

MLE 15.9278 15.6933 15.2337 15.3918 15.6280 15.2705

(0.4450) (0.2400) (0.2076) (0.1774) (0.1565) (0.0957)

14.0644 7.5917 6.6056 5.6393 4.9590 3.1130

NML 19.6550 19.7973 19.7681 19.9394 20.4617 20.0625

(0.3675) (0.1986) (0.1757) (0.1459) (0.1371) (0.0814)

12.1776 7.3361 6.7107 6.0660 6.2186 4.8085
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Table 3. Simulated mean estimates, simulation standard errors (in parentheses) and the root mean squared

errors for heteroskedastic model.

n = 50 n = 70 n = 100 n = 150 n = 300 n = 500

α1 = −4

LAD −4.0389 −4.0770 −3.9991 −4.0075 −4.0707 −4.0756

(0.0536) (0.0460) (0.0403) (0.0315) (0.0249) (0.0183)

1.6942 1.4548 1.2732 0.9942 0.7889 0.5836

MLE −4.4858 −4.5274 −4.4438 −4.4886 −4.5031 −4.4814

(0.0408) (0.0357) (0.0294) (0.0239) (0.0181) (0.0127)

1.3769 1.2465 1.0301 0.9008 0.7613 0.6269

NML −3.5959 −3.6644 −3.6021 −3.6310 −3.6303 −3.6135

(0.0368) (0.0316) (0.0266) (0.0210) (0.0161) (0.0113)

1.2307 1.0531 0.9306 0.7596 0.6301 0.5263

α2 = 0.6

LAD 0.5956 0.5977 0.5935 0.5945 0.5970 0.5971

(0.0027) (0.0024) (0.0021) (0.0016) (0.0013) (0.0009)

0.0870 0.0746 0.0738 0.0505 0.0402 0.0290

MLE 0.6212 0.6225 0.6184 0.6205 0.6207 0.6198

(0.0022) (0.0020) (0.0016) (0.0013) (0.0010) (0.0007)

0.0727 0.0658 0.0545 0.0464 0.0370 0.0295

NML 0.5605 0.5638 0.5606 0.5623 0.5619 0.5609

(0.0019) (0.0016) (0.0014) (0.0011) (0.0008) (0.0006)

0.0720 0.0632 0.0598 0.0518 0.0463 0.0434

proposed a two-stage procedure based on the availability of the instrumental variables which
produces consistent and asymptotically normally distributed estimators. We also examined a
maximum likelihood based estimator and a two-step moment estimator under the joint normality
assumption. The numerical computation of the proposed estimators is straightforward using
widely available statistical or econometric computer packages. Simulation studies show that
they behave satisfactorily for small samples and relatively high degree of censoring. In all
simulations, the two-stage MDE using the weighting matrix An = Z′Z perform very similarly to
the efficient MDE using optimal weight, except that they have slightly higher root mean squared
errors. Another interesting finding is that the normal maximum likelihood based estimators
appear to be fairly robust against certain non-normal but symmetric random error distributions.
How general this robustness property is remains to be examined through more extensive
simulation studies in the future. The proposed method can be extended to other limited dependent
variable models. As pointed out by a referee, equation (5) may be generalized to a non-linear
function of the instruments z. Such a non-linear function can still be consistently estimated with
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non-linear regression method and hence the results of this paper continue to hold. Moreover,
z may contain as its elements some non-linear transformations of exactly measured predictor
variables.
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