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Maximum likelihood approach is the most frequently employed approach for the
inference of linear mixed models. However, it relies on the normal distributional
assumption of the random effects and the within-subject errors, and it is lack
of robustness against outliers. This article proposes a semiparametric estimation
approach for linear mixed models. This approach is based on the first two
marginal moments of the response variable, and does not require any parametric
distributional assumptions of random effects or error terms. The consistency and
asymptotically normality of the estimator are derived under fairly general conditions.
In addition, we show that the proposed estimator has a bounded influence function
and a redescending property so it is robust to outliers. The methodology is illustrated
through an application to the famed Framingham cholesterol data. The finite sample
behavior and the robustness properties of the proposed estimator are evaluated
through extensive simulation studies.

Keywords Least squares method; Linear mixed models; Misspecification;
Outliers; Redescending M-estimator; Robustness.

1. Introduction

Linear mixed models (LMM; Laird and Wair, 1982) are a common framework
used to analyze repeatedly measured and clustered data which arise in many
areas, such as medical and biological sciences, epidemiology, agriculture, social,
and environmental sciences. For the estimation and inference of LMM, the most
frequently employed approach is the maximum likelihood (ML) approach. In
general, the computation of likelihood function is not simple and relies on Gaussian
assumption for both random effects and residual error terms. Since the random
effects are unobservable, it is not feasible to verify their distributional assumptions.
It is thus natural to be concerned whether these methods yield reliable results when
the Gaussian assumption is not appropriate. Several extensions of the LMM have
been proposed to relax the Gaussian assumption for the random effects (e.g., Lin
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Semiparametric Estimation in LMM 1983

and Lee, 2008; Verbeke and Lesaffre, 1997; Zhang and Davidian, 2001). However,
these works still assume the distribution of residual errors to be normal, and impose
certain parametric assumptions for random effects distribution, such as Student-t,
mixture-normal, or skew-normal. Further, it is well known that MLE is vulnerable
to data outliers (Pinheiro et al., 2004).

In this article, we propose the second-order least squares estimator (SLSE)
for LMM. This estimator is based on the first two marginal moments of the
response variables, which can be computed easily without any further distributional
assumptions on random effects or residual error terms. In this sense, the proposed
approach can be viewed as a semiparametric approach. The idea of the SLSE
was introduced by Wang (2007) for nonlinear mixed models, and Wang and
Leblanc (2008) for nonlinear regression models. However, as any other computation
intensive methods, SLSE has many computational issues that need to be addressed,
and its finite sample performance under misspecified models need to be investigated.
Further, the robustness of the SLSE against data outliers remains unknown.
The later is a natural and intuitive concern because the effect of outliers may
be exaggerated by taking the second absolute moments. In this article, we will
address these issues in the framework of LMM. In addition, we relax the high-
level regularity conditions in Wang (2007) that are only necessary for nonlinear
settings. We derive the asymptotic properties of the SLSE for LMM without these
condisiotns.

This article is organized as follows. Section 2 introduces the SLSE, and gives its
consistency, asymptotic normality, and redescending properties. Section 3 examines
the performance of the SLSE in comparison with the MLE when the distributional
assumptions of random effects and error terms are misspecified, and investigates
how SLSE behaves by implementing different specifications of the optimal weight
matrix. The robustness property of the SLSE against data contamination is also
studied via simulation in this section. A real data application is given in Sec. 4, and
a discussion is given in Sec. 5. Finally, proofs of the theorems are provided in the
Appendix.

2. Second-Order Least Squares Estimator

For a subject i �i = 1� � � � � m� being observed or measured repeatedly on ni

occasions, the linear mixed model (LMM) can be expressed as

yi = Xi� + Zibi + �i�

where yi is the ni × 1 vector of responses, � is a p× 1 vector of the fixed population
effects, and bi is a q × 1 vector of ith subject’s random effects and follows a certain
distribution with mean 0 and covariance D���. D��� is a q × q positive-definite
covariance matrix depending on a r × 1 vector of parameters �. Xi and Zi are
the ni × p and ni × q design matrices to link � and bi to yi, respectively. �i is the
ni × 1 vector of residual error terms following a certain distribution with mean 0
and covariance �2Ini . Also, all random vectors 	bi� �i� i = 1� � � � � m
 are assumed
mutually independent. For a subject i at a given occasion j, the LMM can be
written as

yij = x′ij� + z′ijbi + �ij� (2.1)
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1984 Li and Wang

where x′ij and z′ij are the jth rows of the design matrixes Xi and Zi, respectively. The
closed form of the first two marginal moments of the response in model (2.1) are

E�yij �Xi� Zi� = x′ij�� (2.2)

E�yijyik �Xi� Zi� = �x′ij���x
′
ik��+ z′ijD���zik + �jk�

2� (2.3)

where �jk = 1 if j = k and 0 otherwise. Note that the derivation of Eqs. (2) and (3)
dose not require any parametric assumption for the distribution of random effects
or error terms.

Let � = ��′� �′� �2�′ and the parameter space  = �×�× � ⊂ �p+r+1.
Following Wang (2007), the SLSE �̂m for � is defined as the measurable function
that minimizes

Qm��� =
m∑
i=1

�′
i���Wi�i���� (2.4)

where �i��� = �yij − �ij���� 1 ≤ j ≤ ni� yijyik − �ijk���� 1 ≤ j ≤ k ≤ ni�
′, �ij��� =

E�yij �Xi� Zi�, �ijk��� = E�yijyik �Xi� Zi� and Wi = W�Xi� Zi� is a non negative definite
matrix of dimension ni�ni + 3�/2.

2.1. Asymptotic Properties of the SLSE

To simplify the notation, we present our theoretical results for the case where
ni = n� i = 1� � � � � m without loss of generality. The following assumptions are used
for the proof of the consistency and asymptotic properties of �̂m.

Assumption 1. �yi� Xi� Zi� ni�� i = 1� � � � � m are independent and identically
distributed and satisfy E�Wi��y4ij + �xij�4 + �zij�4 + 1� < �, where � · � denotes the
Euclidean norm.

Assumption 2. The parameter space  ⊂ �p+r+1 is compact.

Assumption 3. E���i���− �i��0��
′Wi��i���− �i��0��� = 0 if and only if � = �0.

Assumption 4. The matrix B = E�
��′i��0�

��
Wi

��i��0�

�� ′ � is non singular.

These are common assumptions in the literature of linear models. In
particular, Assumptions 1 and 2 ensure that Qm��� uniformly converges to Q��� =
E�′

i���Wi�i���. Assumption 3 is a high-level identification condition to guarantee
that Q��� attains a unique minimum at the true parameter value �0 ∈  . A sufficient
condition for Assumption 3 is that the matrix

∑
X′

iXi is non singular with
∑

ni > p

and at least one matrix Z′
iZi is positive definite with

∑m
i=1�ni − q� > 0, provided all

random variables in the model are normally distributed (Demidenko, 2004). Finally,
Assumption 4 is necessary for the existence of the variance of �̂m.

Theorem 2.1. Under Assumptions 1–3, as m → �, �̂m

a�s�→ �0.
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Theorem 2.2. Under Assumptions 1–4, as m → �,
√
m��̂m − �0�

L→ N�0� B−1CB−1�,
where

B = E

[
��′

i��0�

��
Wi

��i��0�

�� ′

]
(2.5)

and

C = E

[
��′

i��0�

��
Wi�i��0��

′
i��0�Wi

��i��0�

�� ′

]
� (2.6)

Furthermore, with probability one,

B = lim
m→�

1
m

m∑
i=1

[
��′

i��̂m�

��
Wi

��i��̂m�

�� ′

]

and

C = lim
m→�

1
m

m∑
i=1

��′
i��̂m�

��
Wi�i��̂m��

′
i��̂m�Wi

��i��̂m�

�� ′ �

2.2. Computation of the SLSE

In general, there is no explicit solution for the SLSE. The iterative Newton-Raphson
algorithm could be used to compute SLSE, that is,

�̂ �t+1� = �̂ �t� −
[
�2Qm��̂

�t��

���� ′

]−1
�Qm��̂

�t��

��
�

where �̂ �t� denotes the estimate of � at the tth iteration,

�Qm��̂
�t��

��
= 2

m∑
i=1

��′
i��̂

�t��

��
Wi�i��̂

�t��� and (2.7)

�2Qm��̂
�t��

���� ′ = 2
m∑
i=1

[
��′

i��̂
�t��

��
Wi

��i��̂
�t��

�� ′ + ��′
i��̂

�t��Wi ⊗ I�
�vec���′

i��̂
�t��/���

�� ′

]
�

(2.8)

where ��′
i���/�� = −���ij���/��� 1 ≤ j ≤ ni� ��ijk���/��� 1 ≤ j ≤ k ≤ ni� and I is

the 2m�p+ r + 1� dimensional identity matrix. In the above equation, since the term
��′

i��̂
�t��Wi ⊗ I�

�vec���′i��̂t�/���

�� ′ has expectation zero, it can be ignored from the second
derivative. Therefore, we have the following modified Newton-Raphson algorithm:

�̂ �t+1� = �̂ �t� −
[

m∑
i=1

��′
i��̂

�t��

��
Wi

��i��̂
�t��

�� ′

]−1
m∑
i=1

��′
i��̂

�t��

��
Wi�i��̂

�t��� (2.9)

For initial values in (2.9), we can use either the ML estimates or method of moment
estimates. To avoid the complexity of finding the derivatives of QN���, we can also
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1986 Li and Wang

choose the Nelder-Mead simplex method (Nelder and Mead, 1965) to minimize the
quadratic inference function QN��� to obtain �̂.

Another question is how to specify the form of weight Wi to carry out
the SLSE. In theory, Wi only depends on Xi and Zi, and any form of Wi

satisfying the regularity conditions is valid for the SLS estimator. However, it
would be desirable to make inferences based on the more precise estimator, so
the optimal choice of Wi is the one which yields the minimum variance-covariance
matrix of �̂m. Abarin and Wang (2006) showed this optimal choice is Wi = U−1

i

where Ui = E��i��0��
′
i��0� �Xi� Zi�. In this case, the minimum asymptotic variance-

covariance matrix of �̂m is E�
��′i��0�

��
U−1

i
��i��0�

�� ′ �. In practice, the calculation of Ui

is not feasible since it involves unknown parameters which need to be estimated
first. One of the possible solution is using a two-stage procedure. First, minimize
Qm��� using a sub-optimal choice of Wi, such as an identity matrix, to obtain the
first stage estimator �̂m1. Second, estimate Ui using �̂m1 and then minimize Qm���
again with Wi = Û−1

i to obtain the second stage estimator �̂m2. In theory, �̂m2 is
asymptotically more efficient than �̂m1 because �̂m2 has the minimum asymptotic
variance-covariance matrix. In general, Ui can be estimated using any nonparametric
method, such as kernel or spline estimators. However, a simpler estimator of Ui

would be

Ûi =
1
m

m∑
i=1

�i��̂m1��
′
i��̂m1�� (2.10)

In many real data applications, the subjects are clustered so that the values of
Xi� Zi are equal for all subjects within one cluster. In such cases, each Ui can be
estimated similarly to (2.10) using all the subjects within the same cluster. Since
Ûi is of dimension ni�ni + 3�/2, numerical inversion of Ûi may be difficult when ni

is large. In this case, one may consider using diagonal or certain block diagonal
sub-matrix of Ui. In Sec. 3, we conduct extensive simulation studies to investigate
the sensitivity and efficiency of SLSE by using different specifications of the weight
matrix.

2.3. Robustness of the SLSE

Outliers are common in experimental research data for reasons such as transcription
error or technical equipment malfunction. If no action is implemented, such outliers
may distort an analysis completely and lead to inappropriate conclusions. In mixed
models, outliers may happen not only at the level of within-subject error but also at
the level of within-subject variations.

Here, we study the robustness property of SLSE by means of the influence
function (IF), which was introduced by Hampel et al. (1986). The essential concept
of IF is that one can use it to assess the asymptotical bias of the estimator caused
by a certain degree of data contamination. The estimator is robust if the IF is
bounded (Huber, 2004). In principle, the SLSE is an M-estimator (Huber, 2004)
and minimizing the quadratic distance function (2.4) with optimal weight matrix in
(2.10) is asymptotically equivalent to solving the equation

m∑
i=1

��′
i���

��
Wi�i��� = 0� (2.11)
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Semiparametric Estimation in LMM 1987

It follows from Hampel et al. (1986) that when m → �, the IF of the SLSE at point
v = �xl� zl�

′ is

IF�v� �̂m� F� = −B��̂m�
−1G�v� �̂m� F� (2.12)

where F is the underlying distribution and B is given in (2.5), and

G�v� �̂m� F� =
��′

l��̂m�

��
Wl�l��̂m�� (2.13)

If �̂m is computed using the estimated optimal weight (2.10), we can show that as
�v� → �

�IF�v� �̂m�� → 0� (2.14)

This implies that the �̂m is a redescending M-estimator (Huber, 2004) so it is able
to reject extreme outliers completely. Intuitively, it is expected that the outlier will
be automatically downweighted by the inverse of the optimal weight matrix. It does
not require to screen data for outliers and make a subjective decision to exclude
them from the analysis. This is practically meaningful because an outlier may be an
indication of a problem with the data generation process but more importantly it
may be a true unusual observation about reality.

3. Monte Carlo Simulation Studies

In this section, we carry out simulation studies: (1) to examine finite sample behavior
of the SLSE; (2) to evaluate and compare the robustness of SLSE with restricted
maximum likelihood (REML) estimator under misspecified random effects and
residual error distributions; (3) to investigate the sensitivity and efficiency of SLSE
by using different specifications of the weight; and (4) to demonstrate the robustness
of SLSE against outliers. We considered the following two linear mixed models
commonly used to study the growth curves (Demidenko, 2004; Jacqmin-Gadda et al.,
2006):

1. random intercept (RI) model: yij = �1 + �2xij + bi1 + �ij ;
2. random intercept and slope (RIS) model: yij = �1 + �2xij + bi1 + bi2xij + �ij .

The following configurations are used for simulation:

• m = 20� 50� 100� 200� 300� 400� 500; n = 4 or 8; and xij = j� j = 1� � � � � n;
• bi1� bi2, and �ij are all generated independently from one of the following
distribution: Gaussian, �2�3� and student’s t�4� distributions with mean 0 and
variance �11, �22, and �2 respectively;

• �1 = 8, �2 = 2, �11 = 1�96, �22 = 1 and �2 = 1.

All computations are done in R and the restricted maximum likelihood (REML)
estimates are obtained from lme package. The SLSEs are computed using three
different weight matrices:

1. identity weight (SLS1);
2. diagonal of the estimated optimal weight (2.10) (SLS2);
3. fully estimated optimal weight (2.10) (SLS3).
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1988 Li and Wang

To determine how well the methods perform, we present the estimation bias and
mean squared errors (MSE) of the estimators. For each model, 1,000 Monte Carlo
replications were carried out. For fair comparisons, the same dataset was used to
obtain both REML estimates and SLS estimates, at each replication. To eliminate
potential nonlinear numerical optimization problems on the selection of starting
points, the true parameter values were used as starting values for the minimization
and the optimal weight calculation for SLS method.

Table 1
Simulation results from RI model with Gaussian and non-Gaussian distributed

random effect and residual errors based on 1000 iterations

Normal t�4� �2�3�

n = 20 n = 100 n = 500 n = 20 n = 100 n = 500 n = 20 n = 100 n = 500

�1 = 8

REML Bias 0�0122 0�0000 0�0005 −0�0005 0�0020 0�0018 −0�0474 0�0012 0�0032
MSE 0�1577 0�0299 0�0065 0�1523 0�0297 0�0062 0�1498 0�0333 0�0061

SLS1 Bias −0�0241 −0�0131 −0�0101 −0�0485 −0�0151 −0�0079 −0�0963 −0�0139 −0�0075
MSE 0�1590 0�0295 0�0062 0�1571 0�0299 0�0059 0�1771 0�0388 0�0068

SLS2 Bias −0�0169 −0�0124 −0�0109 −0�0310 −0�0157 −0�0091 −0�0811 −0�0144 −0�0074
MSE 0�1530 0�0301 0�0065 0�1457 0�0301 0�0062 0�1555 0�0369 0�0068

SLS3 Bias −0�0206 −0�0016 −0�0002 −0�0011 −0�0027 0�0010 −0�1448 −0�0779 −0�0016
MSE 0�0789 0�0270 0�0066 0�0624 0�0255 0�0063 0�0872 0�0308 0�0043

�2 = 2

REML Bias −0�0026 0�0013 0�0001 0�0016 −0�0007 −0�0001 0�0064 −0�0003 −0�0004
MSE 0�0099 0�0010 0�0002 0�0091 0�0010 0�0002 0�0098 0�0010 0�0002

SLS1 Bias 0�0041 0�0039 0�0022 0�0102 0�0021 0�0018 0�0141 0�0025 0�0018
MSE 0�0097 0�0010 0�0002 0�0089 0�0010 0�0002 0�0103 0�0010 0�0002

SLS2 Bias 0�0048 0�0038 0�0028 0�0090 0�0026 0�0023 0�0125 0�0024 0�0020
MSE 0�0099 0�0010 0�0002 0�0086 0�0010 0�0002 0�0098 0�0010 0�0002

SLS3 Bias −0�0031 0�0014 0�0002 0�0011 −0�0008 −0�0001 0�0005 −0�0006 −0�0004
MSE 0�0049 0�0009 0�0002 0�0034 0�0007 0�0002 0�0028 0�0005 0�0001

�11 = 1�96

REML Bias −0�0062 0�0081 −0�0050 −0�1472 −0�0745 −0�0012 −0�1634 −0�0155 0�0086
MSE 0�5001 0�0966 0�0187 0�8474 0�3146 0�1045 0�7556 0�2537 0�0475

SLS1 Bias 0�2445 0�0293 0�0164 0�2836 0�0439 0�0198 0�3385 0�0401 0�0209
MSE 0�2241 0�0072 0�0019 0�2822 0�0204 0�0079 0�3352 0�0216 0�0052

SLS2 Bias 0�0617 0�0525 0�0135 −0�0145 0�0561 0�0258 −0�0199 0�0447 0�0154
MSE 0�1729 0�0268 0�0024 0�2336 0�0575 0�0143 0�2233 0�0604 0�0058

SLS3 Bias −0�2272 −0�1218 −0�0367 −0�3357 −0�3121 −0�1026 −0�2804 −0�2342 −0�0389
MSE 0�2037 0�0909 0�0186 0�2594 0�2325 0�0725 0�2168 0�2033 0�0233

�2 = 1

REML Bias 0�0058 −0�0006 −0�0014 −0�0419 −0�0029 −0�0013 −0�0158 −0�0038 −0�0011
MSE 0�0351 0�0049 0�0010 0�0935 0�0271 0�0066 0�0735 0�0130 0�0026

SLS1 Bias 0�0846 0�0089 0�0048 0�0759 0�0151 0�0064 0�0983 0�0119 0�0060
MSE 0�0324 0�0009 0�0002 0�0466 0�0046 0�0010 0�0507 0�0021 0�0005

SLS2 Bias −0�0125 0�0162 0�0040 −0�0472 0�0087 0�0083 −0�0657 −0�0026 0�0039
MSE 0�0337 0�0028 0�0002 0�0553 0�0057 0�0015 0�0433 0�0048 0�0004

SLS3 Bias −0�1845 −0�0983 −0�0254 −0�2611 −0�2186 −0�0981 −0�2516 −0�1884 −0�0575
MSE 0�0435 0�0137 0�0016 0�0789 0�0542 0�0125 0�0755 0�0437 0�0060
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Semiparametric Estimation in LMM 1989

Since the relative performances of the estimates are similar for RI and RIS
model with n = 4 or 8, in consideration of space and clarity, we only present the
simulation results for the RI model at n = 4 in this section. A selection of simulation
results for m = 20� 100� 500 are provided in Table 1. Overall simulation results in all
sample sizes are summarized in Figs. 1–4. These figures contain the percentage of
estimation bias and MSE.

Figures 1 and 2 depict the performance of SLS and REML methods for fixed
effects. They show all Monte Carlo mean estimates are close to the true parameter
values and no apparent biases are observed across all methods. This is not surprising
as a few simulations studies (e.g., Jacqmin-Gadda et al., 2006; Verbeke and Lesaffre,
1997) have shown that maximum likelihood inference on fixed effects is robust to
misspecified LMM. At relative small sample size �m = 20� 50� 100�, SLS2 and SLS3
have lower MSE than REML and SLS1. As sample size increases from 200 to
500, all 4 methods behave very closely. Figures 3 and 4 depict the performance of
estimators for �11 and �2. REML results in very small biases under all circumstances
even though the bias increases under misspecified models especially in small sample
sizes. In all cases, SLS estimates show similar or much smaller MSE than REML,
particulary when the model is misspecified. The MSE reduction in the misspecified
model can be as high as 70–80% in some instances. SLS3 suffers some downward
bias, although this bias decreases with the increase of sample size. As a result, SLS3
is usually dominated by SLS1 and SLS2 based on the criteria of MSE.

Figure 1. Bias and MSE of �1 from REML and SLS estimates based on a RI model
with Gaussian and non-Gaussian distributed random effect and residual errors. (color figure
available online.)
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1990 Li and Wang

Figure 2. Bias and MSE of �2 from REML and SLS estimates based on a RI model
with Gaussian and non-Gaussian distributed random effect and residual errors. (color figure
available online.)

In the second simulation study, we compare the estimates of REML with SLS
when outliers exist. We generated 100 subjects with 8 measurements per subject
and randomly contaminated one measurement using 100yij within some subjects.
The proportions of contaminated subjects were chosen as 0%, 5%, 10%, 15%, 20%,
25%, 30%, and 35%. Table 2 reports the Monte Carlo mean estimates and MSE in
simulation study one. For the sake of saving space, we only present the simulation
results based on the RI model with 0%, 5%, 15%, and 30%, since similar pattern of
results are observed. The influence of the outliers is clearly unbounded for REML
estimates because the estimation bias and MSE increase as the percentage of data
contamination increases. The magnitude of increase is especially dramatic for the
random effect and residual error variances. The same phenomenon is observed in
SLS1 estimates. This is not surprising because no downweight is applied in SLSE by
using identity weight matrix, and the marginal second moments enlarge the affect of
outliers. SLS2 is relatively more robust than SLS1 and REML with a smaller MSE,
especially for moderate percentages of outliers. In contrast, SLS3 is clearly bounded
and provides consistent mean and MSE estimates regardless of the percentage of
data contamination.

4. Application

The proposed estimator is applied to the longitudinal data on cholesterol levels
collected as part of the famed Framingham heart study. In the study, 2,634
participants’ cholesterol level was measured every 2 years over 10-year period. The
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Semiparametric Estimation in LMM 1991

Figure 3. Bias and MSE of �11 from REML and SLS estimates based on a RI model
with Gaussian and non-Gaussian distributed random effect and residual errors. (color figure
available online.)

objective is to study change in cholesterol over time and examine the association
with age at baseline and gender. This dataset is widely used in the linear mixed
model literature, partly because many studies conclude that the distribution of
subject-specific intercept is non Gaussian; see, e.g., Zhang and Davidian (2001) and
Lin and Lee (2008). For illustration, we select a sample of 133 participants (60 men
and 73 women) whose cholesterol measurements as well as covariates of interest
are completely observed at the duration of follow-up time. In general, the following
linear mixed effect model is well accepted to fit the data:

yij = �0 + �1 Sexi + �2 Agei + �3tij + b0i + b1itij + �ij� i = 1� � � � � 133� j = 1� � � � � 6�

where yij is the cholesterol level for the ith subject at the jth time point, and yij
was divided by 100 for numerical calculation stability; tij (in years) was taken as
(time – 5)/10 measured from the baseline; Sexi is a gender indicator (0 = female, 1 =
male); and Agei is age at baseline. �b0i� b1i�

′ is assumed to be normally distributed
with mean zero and covariance D = ��11� �12� �22�

′, and �ij is assumed to be normally
distributed with mean zero and variance �2.

Table 3 includes the estimates and the corresponding 95% confidence interval.
For fixed effects, SLS estimates are highly agree with ML, but with slightly
tighter confidence intervals. Regarding the random effects and the residual errors,
the estimates are quite different between these two methods. This finding is not
surprising because the estimates of variance components are usually more difficult
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Figure 4. Bias and MSE of �2 from REML and SLS estimates based on a RI model
with Gaussian and non-Gaussian distributed random effect and residual errors. (color figure
available online.)

to estimate and known to have fairly large variabilities. However, the confidence
intervals from SLSE are much smaller, which may due to the non-normality
distributed random effects. Thus, SLSE provides more precise estimates than ML
in this example.

5. Discussion

In statistical literature, the most popular estimation approach for linear mixed
effects models is the likelihood method; however, it relies on the normality
assumption of the variance components. This article proposes a semiparametric
estimation approach, which does not require any distributional assumptions on
variance components. The consistency and asymptotic properties of the proposed
estimator are derived under fairly mild regularity assumptions. The superiority of
the proposed estimator under non normal distributed variance components over
maximum likelihood estimator was demonstrated though simulation studies. In
addition, we investigated its finite sample properties with diffident choices of the
weighting matrices. Although in theory SLS3 should be most efficient, our Monte
Carlo simulation results reveal that it is severally biased and usually dominated by
SLS1 and SLS2 based on MSE criteria for the estimation of variance components.
Based on the extensive simulation studies, we suggest using the diagonal of the
optimal weight matrix (SLS2) in practice. This choice not only provides us with
the best trade-off between bias and efficiency, but also eases the computation
complexity. Furthermore, we demonstrate the robustness property of the proposed
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Semiparametric Estimation in LMM 1993

Table 2
Simulation results for different percentage contaminations of a single response in a

RI model at m = 100 and n = 8

RMEL SLS1 SLS2 SLS3

% Mean MSE Mean MSE Mean MSE Mean MSE

�1 = 8 0 8.0 0.0 8.0 0.0 8.0 0.0 7.9990 0.02
5 8.5 1.4 5.5 68 8.1 0.1 7.9897 0.02
15 9.8 7.8 5.5 377 9.4 3.9 7.9985 0.01
30 11.9 27.7 1.8 958 10.4 9.7 7.9945 0.02

�2 = 2 0 2.0 0.0 2.0 0.0 2.0 0.0 1.9992 0.00
5 2.1 0.1 2.6 4 2.0 0.0 1.9999 0.00
15 2.3 0.4 3.2 26 2.0 0.2 1.9997 0.00
30 2.6 1.2 4.2 66 2.4 0.5 1.9994 0.00

�11 = 1�96 0 1.97 0 1.97 0 2.0 0 1.8473 0.05
5 2.27 11 35 3396 2.0 0 1.8427 0.05
15 6.44 260 56 14374 3.4 9 1.8547 0.04
30 19 6165 125 64188 9.3 140 1.8770 0.04

�2 = 1 0 1 0.0028 1 0.0009 1.0 0.00 0.8984 0.01
5 253 552545 162 135993 1.0 0.01 0.9038 0.01
15 1087 3804815 460 849707 85 18598 0.9774 0.12
30 3061 17463520 1426 5416065 248 101369 1.0763 0.54

%: Percentage of Contaminations

Table 3
SLS and ML estimation of Framingham cholesterol data

SLS ML

Parameter Estimate
95% Confidence

interval Estimate
95% Confidence

interval

�0 1�5380 (1.3028, 1.7732) 1�5740 (1.2343, 1.9137)
�1 −0�0369 (−0.1178, 0.0440) −0�0338 (−0.1564, 0.0889)
�2 0�0193 (0.0138, 0.0248) 0�0186 (0.0107, 0.0265)
�3 0�2745 (0.2341, 0.3149) 0�2787 (0.2248, 0.3326)
�11 0�1033 (0.0731, 0.1335) 0�1259 (0.0934, 0.1584)
�12 0�0077 (0.0000, 0.0236) 0�0218 (0.0005, 0.0430)
�22 0�0418 (0.0208, 0.0628) 0�0390 (0.0136, 0.0644)
�2 0�0329 (0.0280, 0.0378) 0�0432 (0.0380, 0.0484)

estimator against outliers theoretically and by simulation studies. Although we
assume the data are independently and identically distributed in the article, it is
a straightforward extension to derive the asymptotic properties of the proposed
estimator for independent but not identically distributed data based on the central
limit theorem of Lindeberg-Feller, instead of Lindeberg-Lévy. Some future research
may be done to explore the robustness property of the proposed estimator by
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1994 Li and Wang

studying its breakdown points and compare it with some popular robust estimation
methods in the literature. Some future research can also be done to correct the finite
sample bias of SLS3 for the estimation of variance components.

Appendix: Proofs

Proof of Theorem 2.1. First, for any 1 ≤ i ≤ m, by Assumptions 1–2 and Cauchy-
Schwartz inequality, we have

E

[
�Wi�0 sup

�

∑
j

�yij − x′ij��
2

]
≤ 2

∑
j

E�Wi�y2ij + 2
∑
j

E�Wi��xij�2 sup
�

���2 < ��

and

E

[
�Wi� sup



∑
j

∑
k

�yijyik − �x′ij�x
′
ik� + z′ijDzik + �jk�

2��2

]
≤ 2

∑
j

∑
k

E�Wi�y2ijy2ik + 6
∑
j

∑
k

E�Wi��xij�2�xik�2 sup
�

���2

+ 6
∑
j

∑
k

E�Wi��zij�2�zik�2 sup
�

�D�2 + 6n sup
�

�4E�Wi� < ��

which imply E sup �
′
i���Wi�i��� ≤ E�Wi� sup ��′

i����2 < �. Then, it follows from
the uniform law of large numbers (ULLN; Jennrich, 1969, Theorem 2), that
1
m
Qm��� converges almost surely to Q��� = E�′

i���Wi�i��� uniformly for all � in
 . Furthermore, we have

Q��� = Q��0�+ 2E�′
i��0�Wi��i���− �i��0��+E��i���− �i��0��

′Wi��i���− �i��0��

= Q��0�+ E ���i���− �i��0��
′Wi��i���− �i��0���

because �i���− �i��0� does not depend on Yi and hence

E ��′
i��0�Wi��i���− �i��0��� = E �E��′

i��0� �Xi� Zi�Wi��i���− �i��0��� = 0�

Therefore, by Assumption 3, Q��� ≥ Q��0� and the equality holds if and only if
� = �0. Thus, all conditions of Lemma 3 in Amemiya (1973) are satisfied, so we
have �̂m

a�s�→ �0, as m → �.

Proof of Theorem 2.2. The first derivative �Qm���/�� exists and has the first-order
Taylor expansion in  . Since �Qm��̂m�/�� = 0 and �̂m

a�s� →�0, for sufficiently large
m we have

�Qm��̂m�

��
= �Qm��0�

��
+ �2Qm��̃m�

���� ′ ��̂m − �0� = 0� (5.1)

where ��̃m − �0� ≤ ��̂m − �0�. The first derivative of Qm��� in (5.1) is given in (2.7)
with

��ij���

��
= �xij� 0� 0�

′�
��ijk���

��
=
(
�xijx

′
ik + xikx

′
ij���

�+ vec�D�

��
vec�zijz

′
ik�� �jk

)′
�

D
ow

nl
oa

de
d 

by
 [

B
ei

jin
g 

Ji
ao

to
ng

 U
ni

ve
rs

ity
] 

at
 0

5:
57

 2
5 

A
pr

il 
20

13
 



Semiparametric Estimation in LMM 1995

Since ��′i���
��

Wi�i��� are i�i�d�, it follows the Central Limit Theorem, as m → �,

1√
m

�Qm��0�

��

L→ N�0� 4C�� (5.2)

where C is as in (2.6). The second derivative of Qm��� in (5.1) is given in (2.8) with

�2�ij���

���� ′ = 0�
�2�ijk���

���� ′ =
(
xijx

′
ik + xikx

′
ij 0

0 0

)
�

By Assumptions 1–2 and Cauchy-Schwartz inequality,

E sup


���
′
i���

��
Wi

��i���

�� ′ � ≤ E�Wi� sup


���
′
i���

��
�2

≤ ∑
j

E�Wi��xij�2 + 2
∑
j

∑
k

E�Wi��xij�2�xik�2 sup
�

���2

+∑
j

∑
k

E�Wi� sup
�

∥∥∥∥�vec�D�

��

∥∥∥∥2 �zij�2�zik�2 + nE�Wi�
< ��

and

E sup


∥∥∥∥��′
i���Wi ⊗ I�

�vec���′
i���/���

�� ′

∥∥∥∥
≤ √

2m�p+ r + 1�E�Wi� sup


��i���

∥∥∥∥�vec���′
i���/���

�� ′

∥∥∥∥
≤ √

2m�p+ r + 1�
(
E�Wi� sup



��i����2
)1/2

(
E�Wi� sup



∥∥∥∥�vec���′
i���/���

�� ′

∥∥∥∥2
)1/2

≤ √
2m�p+ r + 1�

(
E�Wi� sup



��i����2
)1/2

(
2
∑
j

∑
k

E�Wi��xij�2�xik�2
)1/2

< ��

It follows from the ULLN, that �1/m��2Qm���/����
′ a�s�→ �2Q���/���� ′

uniformly for all � in  , where �2Q���/���� ′ = 2E���
′
i���

��
Wi

��i���

�� ′ + ��′
i���Wi ⊗

I�
�vec���′i���/���

�� ′ �. Thus, it follows Lemma 4 of Amemiya (1973)

1
m

�2Qm��̃m�

���� ′
a�s�→ �2Q��0�

����
= 2B�

which is due to the fact that

E

[
��′

i��0�Wi ⊗ I�
�vec���′

i��0�/���

�� ′

]
= E

[
�E��′

i��0��Xi� Zi�Wi ⊗ I�
�vec���′

i��0�/���

�� ′

]
= 0�
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Since B is non singular, for sufficiently large m, we have

√
m��̂m − �0� = −

(
1
m

�2Qm��̃m�

���� ′

)−1
1√
m

�Qm��0�

��

Therefore, by, Assumption 4 and Slutsky’s theorem, we have
√
m��̂m − �0�

L→
N�0� B−1CB−1�.

Proof of Equation (2.14). The IF (2.12) is bounded if and only if G�v� �̂m� F� is
bounded. Write

Û = 1
m

m∑
i=1

�i�
′
i =

1
m
�Vl + �l�

′
l��

where Vl =
∑

i �=l �i�
′
i. Then by Sherman-Morrison-Woodbury formula, we have

Û−1 = m�Vl + �l�
′
l�

−1 = m

(
V−1
l − V−1

l �l�
′
lV

−1
l

1+ �′
lV

−1
l �l

)
if Vl is non singular, V−1

l and U−1 exist. Therefore,

U−1�l = m

(
V−1
l �l −

V−1
l �l�

′
lV

−1
l �l

1+ �′
lV

−1
l �l

)
= m

(
V−1
l �l

1+ �′
lV

−1
l �l

)
�

and accordingly,∥∥∥∥��′
l���

��
U−1

i �l

∥∥∥∥2 = m2

(
�′
lV

−1
l

��i���

��

��′i���
��

V−1
l �l

1+ �′
lV

−1
l �l

1

1+ �′
lV

−1
l �l

)
→ 0

as �v� → �.
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