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Abstract: A necessary and sufficient condition of local identifi- 
ability is derived by using the well-known Rank Theorem. 
Using this condition a suitable local parametrization is de- 
fined. The topological and geometrical properties of this 
parametrization are investigated. The results obtained gener- 
alize the corresponding results of Deistler and Wang (1989), 
which deal with essentially the systems with linear restrictions. 
The treatment covers also the systems without a priori restric- 
tions. 
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1. Introduction 

The problems of identifiability and parametri- 
zations of linear dynamic systems have been inten- 
sively studied in past twenty years and rather 
complete structure theory for systems without a 
priori restrictions in system parameters has been 
obtained. See e.g. [7], Chapter 2. It turns out that 
most usual parametrizations share many common 
topological and geometrical properties which are 
important for system identification. These proper- 
ties have been derived by different authors for 
different parametrizations. Recently Deistler and 
Wang [5] proposed a general framework to treat 
the problem and generalized these results to the 
ARMAX systems with general linear affine re- 
strictions. The treatment covers most parametriza- 
tions discussed before. 

However, there are some important cases, e.g. 
the case of overlapping parametrizations of the 
manifold of all transfer functions of a given order, 
in which the system parameters are subject to 

nonlinear restrictions due to the causality require- 
ment of the transfer functions. See e.g. [3;7, 
Chapter 2; 5]. Although for this case the trans- 
formed form of systems (the MFD's  (ti, b) of the 
transfer functions k ( z ) =  k(z-1)) are dealt with 
already in [5], a direct treatment of the original 
parameter space of systems is not yet available. 
Therefore nonlinear restrictions must be consid- 
ered, in order to develop a more general frame- 
work of parametrization. In the case of nonlinear 
restrictions usually only the local behaviors of the 
model are considered, because the global identifia- 
bility cannot be guaranteed in general. Deistler [1] 
derived a condition of local identifiability for an 
ARMAX model at a minimal system, whereas a 
similar condition without minimality assumption 
was given in [4]. A condition of local identifiabil- 
ity for the minimal state-space model was derived 
in [6]. 

In this paper we restrict ourselves to the 
ARMAX systems. First we derive a necessary and 
sufficient condition of local identifiability at an 
arbitary system, which is proved to be equivalent 
to the condition of [4]. Then by using this condi- 
tion a suitable local parametrization is defined. 
The topological properties of this parametrization, 
which are important for estimation and numerical 
calculation, are investigated. Our treatment in- 
cludes models with linear restrictions or without a 
priori restrictions. Thus the results obtained gener- 
alize the corresponding results previously obtained 
in the literature, e.g. in [5]. 

Consider the ARMAX system 

A ( z ) y ( t )  = B ( z ) u ( t )  (1.1) 

where y(t)  ~ R n are the outputs, u(t) = (e( t ) ' ,  
x( t ) ' ) '  are the inputs containing an unobserved 
white noise component e(t)  ~ R" and possibly 
an observed input x(t)  ~ R "-n (n <m); t 
( . . . .  - 1, 0, 1 . . . .  ) is the time index; z denotes 
the backward shift operator as well as a complex 
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variable and finally A(z),  B(z) are the matrix 
polynomials 

P P 

A(z) = E AjzJ, B(z) = E BjzJ 
j=0 j=0 

with Aj ~ R "×" and Bj ~ R" ×". Throughout this 
paper  n and m are fixed. However the distinction 
between the observed and unobserved inputs is 
not important in this paper  and hence they are 
treated as a whole. 

Given the statistical structure of the white noise 
input e(t), any system (1.1) is then described by 
the corresponding polynomial matrices (A(z) ,  
B(z)). In this paper  we consider only the systems 
satisfying 

det A (0) 4:0 (1.2) 

and 

B(0)  = (A(0) ,  0). (1.3) 

Then the corresponding transfer function of 
(A(z), B(z)), 

K(z) =A-'(z)B(z), 
is causal in the sense that K(z)  has a power series 
expansion in some neighborhood of zero and has 
the form 

K(z )  = (I , ,  O) + ~ Kjz J. (1.4) 
j=]  

Let M be the set of all (A(z), B(z)) (with fixed n, 
m but arbitrary p )  satisfying (1.2) and (1.3), let U 
be the set of all n × rn rational matrices which are 
causal and have the form (1.4) and define the 
mapping ~r : M ---, U by 

qT(A(z,), B ( z ) ) = A - I ( z ) B ( z ) .  

Then clearly or(M) = U. 
The identifiability considered in this paper  

means the (unique) determination of (A(z), B(z)) 
from its transfer function K ( z ) =  ~r(A(z), B(z)). 
Thus we assume generally that the transfer func- 
tion K(z) of the system (1.1) and the second 
moment  of e(t) are uniquely determined by the 
processes ( y, ) and ( x t ). 

If K(z) ~ U, then the set ~r-l(K(z)) c M is 
called the observational equivalence class of K(z)  
in M. A subset M 0 c M is said to be (globally) 
identifiable, if ~r restricted to M o is injective. The 

model M is said to be locally identfiable at 
(A(z), B(z)), if (A(z), B ( z ) )~  M and (A(z) ,  
B(z)) has a neighborhood in M (with respect to 
the Euclidean topology of the parameter  space), 
which is identifiable. If M 0 c M is identifiable, 
then there exists a bijective mapping ~k : ~r(M0) 
M o. ff is called a parametrization of ~r(M0). 

2. Local identifiability 

The order of each system (1.1) is defined as the 
maximum degree of the polynomials in (A(z) ,  
B(z)) and is denoted by 8(A(z),  B(z)). In the 
following we restrict ourselves to the systems of 
order less than or equal to p, for an arbitrarily 
given p. Let M v be the set of all (A(z),  B(z)) ~ M 
satisfying 8(A(z), B(z ) )<p.  Then any (A(z),  
B(z)) ~ Mp is uniquely described by the vector of 
its coefficients, 

a = vec(A 0 . . . . .  A?, B 1 . . . . .  Bp)ER N 

where N = n(n + rn)p + n 2 and vec(A 0 . . . . .  Bp) 
denotes the column vector consisting of the stacked 
rows of (A 0 . . . . .  Bp). We will identify each 
(A(z), B ( z ) )~  Mp with the corresponding a =  
vec(A 0 . . . . .  Ap, B 1 . . . . .  Be). Thus we will write 

M p =  ( a ~  RN 1(1.2)}. 

Now consider any given K ( z ) ~  It(Me). The 
observational equivalence class of K(z)  in M e is 
the set of all solutions (A(z), B(z)) of 

A ( z ) K ( z )  = B ( z )  (2.1) 

which satisfy (1.2) and 8(A(z),  B(z ) )<p .  In 
terms of coefficient matrices (2.1) is 

AoK o = Bo, 
AoK1 + AaKo = B1, 

(2.2) 

AoK p + ""  +ArK o = Bp, 

AoKp+ 9+ "" +A~,Kj=O, j = l ,  2 . . . . .  

It is shown in [2] that (2.2) has the same solution 
set with the system of the first 1 + p + np matrix 
equations of (2.2). Thus the observational equiv- 
alence class of K(z)  in Mp is just the set of all 
solutions a of 

( I .  ® O , , ) a  = 0 (2 .3)  
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which satisfy (1.2), where a = vec(A o . . . .  , By), 

K1 K 2  

Ko K1 

o Ko 
G~= : : 

0 0 

• "" K p  K p +  1 . . .  K p + n p  

. . .  K p _  1 K p  ' ' '  K p + n p _  1 

• . .  K p _  2 K p - I  . . .  K p + n p _  2 

".. : : 

. . .  K o K1 • . . K . v  

- Imv 0 

E R [n(l +p)+mp]×[(l +n)mp] 

and I .  ® G K denotes the Kronecker  product  

GK 
I~® GK= 

GK 

Clearly or - l (K( z ) )C~  M e is an open and dense 
subset of  R N - ' r  with r = rank(Gx) .  

N o w  assume that  the (essentially nonlinear) 
restrictions in the system parameters  be given by 

f (  a ) = 0 (2.4) 
where the mapping  f ~  ca (R  iv, R M) (i.e., f is 
cont inuously  differentiable in R N) and the kernel 
of  f ,  K e r ( f ) ,  is a CLmani fo ld  of  dimension N - 
M. It is also assumed that the restrictions (2.4) do 
no t  contradict  condit ion (1.2) in the sense that  
K e r ( f )  contains at least one element satisfying 
(1.2). Then the elements in K e r ( f )  satisfying (1.2) 
form an open  subset because the determinant  
det A 0 is a nonzero  polynomial  function of  its 
entries. 

In  the following we will write (A,  B)  and K 
for ( A ( z ) ,  B ( z ) )  and K ( z )  respectively, when this 
does not  cause confusion. Let M f = Mp ¢q K e r ( f ) ,  
and suppose K ~  ~r(M[). Consider  the mapp ing  
gx  : RN ~ RM+L with L = n ( n  + 1)rap defined by 

( ) g K ( a )  = ® a, )a " 

Clearly gK ~ C1( RN, RM+L) and 

agK of  
aa :=FK(a ). aa 

In® Gr  

Then the observational  equivalence class of  K in 
M~, o r - I ( K ) N M ~ ,  is just  the set of  all a ~  
K e r ( g r )  satisfying (1.2) and hence is open  and 
dense in K e r ( g r ) .  Apply ing  the (Global)  Rank  
Theorem [8, pp. 178] we obta in  the following 
result. 

Theorem 1. I f  ( A ,  B )  ~ M/p, K = or(A, B )  and 
the matr ix  F x (  a ) has constant rank in some neigh- 

borhood o f  a = vec(A o . . . . .  By), then the model  MIp 
is locally identifiable at  ( A ,  B )  i f  and only i f  

rank F K ( a  ) = N. (2.5) 

Remark  1. Condi t ion  (2.5) is equivalent to the 
condit ion (14) in [4], which is 

F (  I ,  ® .4) has full co lumn rank (2.6) 

where .4 is the [n(1 + p + np)] × [n + (n + m)(1 + 

Table 1 

/= 

p= 

A o • • • Av 0 - • - 

0 A o • • • Av - • - 
" . .  " . .  

0 . . . . . . . . . . . .  

F11 0 F12 0 ' ' "  

0 1.2v 0 0 • • • 

0 0 0 l,,,,,v . . .  

0 

0 . . .  0 

0 B 1 

o Bo 

Av 

A o 0 

F.1 0 
0 
0 

ln2p 

0 

- . -  Bp 

- ° -  Bp_  I 

° . °  

F,, 2 0 

0 0 

0 l~mv 

0 " ' "  0 

Bp . . .  0 

. . . . . .  no  
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n)p]  matrix given in Table 1 and ff is the other 
matrix given there, with F:  ~ R M×[n(p+I)], Fj2 E 
R g×lmpl the submatrices in 

~ f - - ( E l l  ' /712, Ynl, Fn2). ~a . . .7  

The equivalence between (2.5) and (2.6) may be 
shown analogously to Remark 2 in [5]. However, 
the advantage of presentation (2.5) is that the 
conditions of identifiability are imposed on the 
transfer functions rather than the system parame- 
ters and hence is more convenient in defining and 
handling the parametrizations, which will be seen 
in the next section. 

Remark 2. When the restrictions in (2.4) are linear, 
for instance, f ( a )  = Ra - r with R ~ R M×u and 
r ~ R M. Then as 

F r ( a ) =  I ,  ® O  K , 

condition (2.5) is exactly condition (ii) of Theorem 
1 in [5]. In this case the local identifiability is 
equivalent to global identifiability. Thus the re- 
suits derived in this paper generalize the corre- 
sponding ones in [5]. 

Now we consider an arbitrarily fixed a o ~ Mp f, 
such that the corresponding k o =  rr(a0) satisfies 
(2.5). Clearly there exists an (open) neighborhood 
of (k 0, a0) in R L ×  R N, over which the matrix 
F(k ,  a)  has constant rank N. By the (generalized) 
Implicit Function Theorem [8, pp. 199, Prob. 4.4d], 
there exists a neighborhood U 0 c R c of k o and a 
neighborhood O 0 c  K e r ( f )  of a o, such that for 
every k ~ U 0 the equation 

g ( k ,  a )  = 0 

has unique solution a -'= ~k(k) ~ O0 and the map- 
ping ~p ~ CI(Uo, O0). We assume that U0 and (90 
are the largest neighborhoods with these proper- 
ties. Note that not every k ~ U 0 corresponds to a 
causal transfer function. Let U/ be the set of all 
k ~ U 0 such that ~p(k) satisfy (1.2) and let Of= 
~p(U/). Then O / c  Mp / and ~p is a local parametri- 
zation of U/. We will call Us and O/ the local 
neighborhood of k 0 and a 0 respectively. The 
topological and geometrical properties of the local 
neighborhoods Uf, /9/ and of the local parametri- 
zation ~k : U/-~ O/ are demonstrated in the follow- 
ing theorem. We will denote by X the closure of a 
subset A of a topological space. 

3. Local parametrizations 

In this section we define a local parametriza- 
tion by using condition (2.5). First for any K ( z )  
~r(Mp), it is easily seen from (2.2) that, under (1.2), 
the coefficient matrices 

(Kp+,p+, ,  Kp+,p+2 . . . .  ) 

are uniquely determined by 

( K  l, K 2 . . . . .  Kp+,p)  and (A o . . . . .  Ap) .  

Thus K ( z )  may be identified, as we do, with 

k = v e c ( K , ,  K z . . . . .  K p + . p ) ~ r  L, 

where L = n (n + 1)rap. Consider the mapping de- 
fined by 

g : ( * '  ( 1 . ® a K ) a  " 

Cleary g ~  CI(R L x N N, R L÷M) and 

a_g_g = F,~(a). '= F ( k ,  a ) .  Oa 

Theorem 2. (1) ~p : U C o  (9/ is a diffeomorphism. 
(2) U] is open in Uy. 
(3) O/ i s  open in K er ( f ) ,  which is a CLmani foM 

of  dimension N - M. 
(4) ~r(~)/A Mp]) c Uf. 

Proof. (1) By the Implicit Function Theorem and 
the definition of O/, q~ ~ CI(uI, O/) and is bijec- 
tive. As ~p-1 = ~r when restricted to Of, it is clearly 
a C-mapping  on Of. 

(2) If k ~ Uf, then k has an (open) neighbor- 
hood O c  U o. As ~p is continuous, O may be 
chosen such that all elements in ~p(O) satisfy (1.2). 
Thus O c U/. As U 0 is open in R L, so is /.If. It 
follows that U] is open in U/. 

(3) It has been shown in (2) that U/ is open in 
R L. Since rr: I~p ] --, R L is continuous, ~r-i(U/) is 
open in I~p/. As both Me/ and O 0 are open in 
g e r ( f ) ,  so is (9/= ¢ [ - l ( v f )  ("1 O 0. 

(4) follows from the continuity of w. [] 

Next we consider the boundary points of Of 
call the mapping h = ( f  , f l  ) and Uy. We will . . . .  

CI(R N, R M÷M1) an extension of f ,  if h satisfies all 
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conditions which are similar to the conditions for 
f below (2.4). For the extension h of f ,  the set Oh 
and U h are similarly defined. 

Theorem 3. For every k ~ lr(Mp/), i f  rank FK(a )  
= r for  all a ~ Ker(gr) ,  then: 

(1) The observational equivalence class ~r - l (k )  
N M f is a Cl-manifold o f  dimension N - r. 

(2) There is a set 8 consisting of  finite number o f  
extensions o f f  and there exists an h ~ ~,  such that 
k ~ U h and U h c 7r(M/p). 

(3) every k ~ U o - U /  uniquely determines the 
corresponding (non-causal) transfer function K ( z ). 

Proof. (1) follows from the fact that ' n ' - l ( k )  t") Mp f 
is an open subset of Ker( f ) ,  which by the Rank 
Theorem is a Cl-manifold of dimension N - r. 

(2) The proof is analogous to that of Theorem 2 
(3) in [5]. In fact o ~ may be chosen, such that it 
contains only 'linear extensions' of f .  

(3) By definition k determines an unique a and 
hence an unique K ( z )  = A - l ( z ) B ( z ) .  Since a does 
not satisfy (1.2), K ( z )  is essentially non-causal. 
[] 
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