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SUMMARY

In this article we study the statistical distributions of major chemical compositions (HCO3, Ca; charges are
neglected for simplicity) and the total dissolved solid (TDS) concentration in the river water of the Changjiang
(Yangtze River) of China. We propose a Bayesian finite mixture model with an unknown number of components
for the multi-year averages of continuously monitored data over the period 1958–1990 at 191 stations in the
drainage basin. A discretization-based Monte Carlo sampling approach is used to estimate the posterior
distributions of the parameters in the model. Two sub-populations are identified for the levels of TDS, HCO3

and Ca, and observations from the 191 stations are classified into two groups using the posterior classification
probabilities. Copyright # 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The Changjiang (Yangtze River) is the third largest among the rivers in the world in terms of length

(6300 km) and the fourth largest in terms of water discharge (900 km3/year). The river originates from

the Qinghai–Tibet Plateau in western China and flows through the entire central region before it empties

into the Pacific Ocean on the east coast. Joined by a large number of tributaries, the Changjiang drainage

basin covers an area of 1.8� 106 km2 and is home to about 400 million people. The geological,

geographic and social–economic setting of the river basin is very complex (Chen et al., 2002).

Despite its global significance, the major element chemistry of the Changjiang were not well

studied until recently by Chen et al. (2002). Based on monthly monitored chemical data at 191 stations

in the drainage basin for the period 1958–1990, Chen et al. (2002) thoroughly studied the chemical

compositions of the river water throughout the basin, their long-term trend of change, and the

underlying natural and anthropogenic processes contributed to such changes.

In this article, we use a Bayesian finite model to further study the statistical distributions of major

chemical elements in the Changjiang basin, using the multi-year data sets reported in Chen et al.
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(2002). Figure 1 shows the Changjiang drainage basin and the 191 stations where major element

concentrations were monitored almost monthly for the period 1958–1990. In particular, we focus on

three major chemical composition variables: the total dissolved solid (TDS) concentration in

milligrams per liter (mg/l); the bicarbonate (HCO3; the charge is neglected for simplicity) concentra-

tion in mg/l, which constitutes on average 64% of TDS; and the calcium (Ca) concentration in mg/l,

which constitutes on average 16% of the TDS. Histograms of these three variables, as illustrated in

Figure 2 for TDS, show similar patterns of a mixture of several overlapping right-skewed distributions.

To clarify the mixture pattern and to symmetrize the components, we apply the logarithmic

transformation on the original data.

Figure 1. The Changjiang drainage basin and 191 sampling stations. The filled circles are stations along the main channel

and the open circles are stations on tributaries

Figure 2. Histogram of TDS
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Histograms of the log-transformed data are shown in Figures 3–5 (superimposed with predictive

densities described in Section 3). They clearly show that the underlying distribution of each data set is

compatible with a mixture of several symmetric distributions, indicating that a finite mixture model

may be appropriate to describe the data. The general form of a finite mixture distribution is

f ðxÞ ¼
Xk
j¼1

wj fjðxÞ

Figure 3. Histogram of log (TDS) and the predictive density with k ¼ 2

Figure 4. Histogram of log (HCO3) and the predictive density with k ¼ 2
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where fjðxÞ; j ¼ 1; 2; . . . ; k, are the component densities and wj; j ¼ 1; 2; . . . ; k, are the mixing weights

satisfying wj � 0 and
P

wj ¼ 1. Each weight wj represents the probability that an observation of X

comes from the sub-population fjðxÞ. In practice, mixtures of parametric distributions such as normal

densities are usually used. The classical maximum likelihood analysis of finite mixture models

requires the specification of the number of components k in the mixture distribution, which is usually

done heuristically. For the Changjiang data in Figures 3–5, it is difficult to tell from the histograms

alone how many components there are in each mixture. It is also difficult to specify the number of

components from other sources, because of the lack of theoretical support. Therefore it is realistic and

desirable to have a more flexible model in which the number of components is allowed to vary.

Consequently, we propose a Bayesian finite mixture model where the number of components is treated

as an unknown parameter and is estimated from data along with other model parameters.

2. THE BAYESIAN FINITE MIXTURE MODEL

In this Section, we specify a common statistical model for the three variables TDS, HCO3 and Ca,

because their histograms in Figures 3–5 show similar patterns except for possibly different numbers of

components. Therefore, we denote each of these variables generically as X. Since all components in

the histograms look more or less symmetric, we use a mixture of normal densities. Normal mixture

models are frequently used for both theoretical and practical reasons (e.g. Titterington et al., 1985;

Gelman et al., 1995; Leonard and Hsu, 1999). The probability density of a k-component normal

mixture for X is

f
�
x j lk; �2

k ;wk; k
�
¼
Xk
j¼1

wkjffiffiffiffiffiffiffiffiffiffi
2��2

k

p exp �ðx� �kjÞ2

2�2
k

" #
;�1 < x < 1 ð1Þ

Figure 5. Histogram of log (Ca) and the predictive density with k ¼ 2
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where lk ¼ ð�k1; �k2; . . . ; �kkÞ are the component means, �2
k is the common variance for all

components and wk ¼ ðwk1;wk2; . . . ;wkkÞ are the mixing weights satisfying wkj � 0 and
P

wkj ¼ 1.

The component mean �kj is the center of the jth sub-population. In finite mixture modeling, it is

common to assume that all normal components have the same variance for both theoretical and

practical convenience. As mentioned earlier, in our Bayesian model the number of components

is treated as a possible outcome of a random variable K. Thus, for different values of K, there

are different sets of parameters. For example, conditional on K ¼ 1, there are parameters �11; �
2
1

and w11 ¼ 1; conditional on K ¼ 2, there are parameters �21; �22; �
2
2 and w21;w22 ðw21 þ w22 ¼ 1);

and so on.

Suppose fxi; i ¼ 1; 2; . . . ; ng is an independent and identically distributed random sample of X.

Then the likelihood function is, for K ¼ k,

Yn
i¼1

f
�
xi j lk; �2

k ;wk; k
�
¼
Yn
i¼1

Xk
j¼1

wkjffiffiffiffiffiffiffiffiffiffi
2��2

k

p exp �ðxi � �kjÞ2

2�2
k

" #
ð2Þ

Now we specify the prior distributions for parameters lk; �
2
k ; wk and K. Since all other parameters

depend on the value of K, our model has a hierarchical structure. Firstly, we assume that, given K ¼ k;
lk; �

2
k and wk are conditionally independent, so that the full posterior distribution for K ¼ k is

proportional to

YN
i¼1

f
�
xi j lk; �2

k ;wk; k
�
p lk j kð Þp �2

k j k
� �

p wk j kð ÞpðkÞ ð3Þ

In practice, the component means �k1; �k2; . . . ; �kk are usually treated as being randomly drawn from a

common normal distribution Nð�0; �
2
0Þ (Leonard and Hsu, 1999; Gelman et al., 1995). Note that an

issue of identifiability arises here, because the likelihood function in (2) remains the same for all

permutations of the components. A usual remedy for this problem, as we assume in this article, is to

impose the order restriction �k1 < �k2 < � � � < �kk on the means. Thus, conditional on K ¼ k, the

prior distribution for the component means is

p lk j kð Þ ¼ k!
Yk
j¼1

1ffiffiffiffiffiffiffiffiffiffi
2��2

0

p exp �ð�kj � �0Þ2

2�2
0

" #
; �k1 < �k2 < � � � < �kk ð4Þ

A commonly used prior for �2
k is the inverse-gamma distribution (Ibrahim et al., 2002; Escobar and

West, 1995), though sometimes an inverse-�2 distribution is also used (Belisle et al., 2002; Gelman

et al., 1995). In this article, we use the inverse-gamma distribution for the component variance �2
k ,

whose density is

p �2
k j k

� �
¼ ��

�ð�Þ �2
k

� ����1
e��=�2

k ; �2
k > 0 ð5Þ
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For the weights wk, a natural choice of prior distribution is the Dirichlet distribution (Diebolt and

Robert, 1994; Stephens, 2000) with density

p wk j kð Þ ¼ �ðk�Þ
�ð�Þ

Yk�1

j¼1

w
��1
kj 1 �

Xk�1

j¼1

wkj

 !��1

; 0 �
Xk�1

j¼1

wkj � 1 ð6Þ

Finally, for the number of components K we assign the discrete uniform distribution over the set

f1; 2; . . . ; kmaxg, so that

pðkÞ ¼ 1=kmax; k ¼ 1; 2; . . . ; kmax ð7Þ

This is a non-informative prior which provides equal support for k between 1 and kmax.

Prior distributions (4)–(7) depend on the so-called hyper-parameters �0, �2
0; �; �; � and kmax. In

Bayesian hierarchical modeling, prior distributions for the hyper-parameters are specified. To simplify

analysis, in this article we use the following simple strategy to assign a degenerate (single point) prior

for all hyper-parameters.

Since �0 and �2
0 are the mean and the variance of �kj, one can extract information about them from

the data. Let Mx and Rx denote the midrange and the range of the data, respectively. Then, it is

reasonable to set �0 ¼ Mx and �2
0 ¼ R2

x . For the inverse-gamma prior, we choose � ¼ 2 and � ¼ 1 to

prevent the values of �2
k from getting too close to zero (Escobar and West, 1995). In the Dirichlet

distribution, we set �=1. This corresponds to an uniform distribution over the range of values of the

weights. Finally, we choose kmax ¼ 3, because one can see from the histograms in Figures 3–5 that the

underlying mixture distribution is unlikely to have more than three components. This configuration

results in a 13-dimensional posterior distribution.

The above strategy of assigning hyper-parameter values was used by Richardson and Green (1997)

and Stephens (2000). Note that the choice of values for hyper-parameters will have an influence on the

posterior distribution and subsequent inference from it. Such influence can be examined via sensitivity

analysis. Richardson and Green (1997) have carried out a sensitivity analysis for their Bayesian model

and they found that the posterior estimates are not very sensitive to the values of hyper-parameters

chosen according to this strategy.

3. COMPUTATIONAL ALGORITHM

While the Bayesian mixture model provides a flexible and practical description of data coming from a

population with a varying number of sub-populations, statistical inference based on this model

remains a challenging task because of its mathematical complexity. As in many Bayesian analysis, the

inference is usually based on a random sample generated from the posterior distribution. Whereas the

expectation–maximization (EM) algorithms are commonly used for the classical maximum likelihood

analysis, a general tool for Bayesian computation is the Markov chain Monte Carlo (MCMC) method

(Gilks et al., 1998). For a mixture model with an unknown number of components, a reversible jump

MCMC algorithm was proposed by Green (1995) and an alternative algorithm was developed by

Stephens (2000). In practice, however, the actual implementation of these procedures is quite involved

(e.g. Besag and Green, 1993; Brooks et al., 2003).
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In this article, we use a direct and simple algorithm developed by Fu and Wang (2002) to estimate

the model. This algorithm is non-iterative, easy to implement and overcomes some difficulties

associated with MCMC procedures. It allows one to quickly generate a large sample from a given

posterior density up to a multiplicative constant, which can be used to estimate the marginal posterior

densities of all parameters. In the following, we briefly introduce this algorithm. More details may be

found in Fu and Wang (2002).

Suppose we are given a d-dimensional posterior density pð�Þ up to a multiplicative constant, where

� is the vector of all unknown parameters in the model. Basically, the algorithm consists of the

following steps. The first step is called discretization. In this step, first an initial compact set

CðpÞ ¼ ½a; b�d ð�1 < a < b < 1Þ containing the significant region of pð�Þ is determined based

on its properties. If pð�Þ has a bounded support SðpÞ, then CðpÞ ¼ SðpÞ. Then a discrete set

SNðpÞ ¼ f�j 2 CðpÞ; j ¼ 1; 2; . . . ;Ng is generated using either a deterministic (such as low discre-

pancy sequence) or stochastic (such as independent and uniformly distributed random numbers)

sequence. The second step is called contourization, in which a discrete probability distribution

fPMðiÞ; i ¼ 1; 2; . . . ;Mg over a finite partition of SNðpÞ is constructed. This distribution approximates

the original density pð�Þ. The third step is re-sampling. In this step, a random sample is generated from

SNðf Þ according to the discrete distribution fPMðiÞg. This sample of � can be used to visualize the

marginal distributions of pð�Þ. The histograms from this sample will show whether the initial compact

set CðpÞ is appropriate. If CðpÞ is either too large or too small, then it is modified and the whole

procedure is repeated. The sample obtained in the final stage of this procedure can be regarded as an

i.i.d. random sample from pð�Þ.
As a by-product, this algorithm also finds the posterior modes of pð�Þ, which is practical in real

applications. Moreover, applying this algorithm to the likelihood function ‘ð�Þ defined on the

parameter space Sð‘Þ, the modes give the approximate maximum likelihood estimates.

Another object of interest in Bayesian inference is the predictive distribution, which specifies, given

the present sample, what values a future observation of X may take and what probabilities are

associated with them. Let Xn denote the present sample of size n. Then the predictive density of a

future observation X ¼ x is defined as

pðx jXnÞ ¼
ð
f ðx j �Þpð� jXnÞ d�

where f ðx j �Þ is the density of X and pð� jXnÞ is the posterior density of �. Once a random sample

�1; �2; . . . ; �N is generated from the posterior distribution pð� jXnÞ, then the predictive density can be

estimated as

p̂pðx jXnÞ ¼
1

N

XN
i¼1

f ðx j �iÞ

This formula is used to calculate the predictive densities for the Changjiang data in the next section.

4. ANALYSIS OF THE CHANGJIANG DATA

In this section we present the analytical results of the Changjiang data using the Bayesian mixture

model and the computational algorithm described in Sections 2 and 3. All numerical computations are
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carried out using the computer package MATLAB in a Unix environment. The MATLAB code is

available from the corresponding author upon request. The following numerical results are based on a

sample of size 3000 drawn from each joint posterior distribution.

4.1. Distribution of the TDS

Using the strategy of Section 2, for this data set the hyper-parameters in the prior distribution of the

component means are assigned the values �0 ¼ 5:0781 and �2
0 ¼ 5:4951. The marginal posterior

distribution (mpd) of K is shown in Table 1. It clearly favors two components, though there is clearly

some uncertainty about the number of components. The mpds for other parameters are shown in

Figures 6–8, whereas the numerical summaries of posterior means and standard deviations are given in

Tables 2 and 3.

Figure 6 shows the mpds of the sub-population means and weights for k ¼ 2. The distributions of

�21 and �22 are roughly symmetric. The center of �21 is near 4.4, and its values range from about 4.2 to

4.6. The center of �22 is near 5.4 with range from about 5.3 to 5.5. The mpds of the weights are slightly

skewed. w21 is centered around 0.2, ranging from about 0.1 to 0.3, whereas w22 is centered around 0.8

with range from about 0.7 to 0.9. The mpd of the population variance �2
2 is shown in Figure 8. It has a

shape of an inverse-gamma distribution and its values range from about 0.06 to 0.15 with mode around

0.1. The predictive density for a future observation of log (TDS) with k ¼ 2 is shown in Figure 3. It has

Table 1. Prior and posterior distributions of K, for log (TDS)

K 1 2 3

Prior 1/3 1/3 1/3
Posterior 0 0.6337 0.3663

Figure 6. Marginal posterior distributions of lk and wk (k ¼ 2), for log (TDS)
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Figure 7. Marginal posterior distributions of lk and wk (k ¼ 3), for log (TDS)

Figure 8. Marginal posterior distributions of �2
k (k ¼ 2; 3), for log (TDS)

Table 2. Posterior means and standard deviations of lk, wk and �2
k (k ¼ 2),

for log (TDS)

lk wk �2
k

Mean 4.3823 5.4006 0.2015 0.7985 0.0990
SD 0.0674 0.0275 0.0330 0.0323 0.0120
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two modes at around 4.4 and 5.4 and fits the overall shape of the histogram quite well, though it seems

to have a little lower peak. If prediction is a primary goal of a study, one might improve this by

choosing other component densities rather than normal, such as double-exponential densities.

The mpds of parameters for k ¼ 3 are similarly interpreted. It should be noted, however, that the

mpd of �32 in Figure 7 has two modes at about 4.6 and 5.4, which are the centers of �31 and �33,

respectively. This is a consequence of forcing a third component by the model which is poorly

supported by the data. Therefore it is another indication besides the mpd of K that the data support

two-component model.

For comparison, we also present in Table 4 the approximate maximum likelihood estimates

(AMLE) of lk, wk and �2
k for k ¼ 2 and 3, respectively. These estimates are computed automatically

by the algorithm of Fu and Wang (2002). They are similar to the posterior mean estimates of the

corresponding parameters, except the AMLE for the weights w3.

4.2. Distributions of HCO3 and Ca

Again using the strategy of Section 2, the hyper-parameters are computed as �0 ¼ 4:6381;
�2

0 ¼ 5:6468 for HCO3 and �0 ¼ 3:0673, �2
0 ¼ 9:2382 for Ca.

The marginal posterior distributions for both variables are similar to the corresponding distributions

for TDS. The numerical summaries of the distributions for HCO3 are given in Tables 5–8, whereas

those for Ca are given in Tables 9–12. Because the interpretations of these distributions are analogous

to that for the TDS, they are not repeated here.

Table 3. Posterior means and standard deviations of lk; wk and �2
k (k ¼ 3), for log (TDS)

lk wk �2
k

Mean 4.3457 5.1617 5.5178 0.1780 0.3754 0.4466 0.0969
SD 0.1215 0.3356 0.2154 0.0553 0.2715 0.2929 0.0130

Table 4. AMLE of �2
k ; lk and wk (k ¼ 2; 3), for log (TDS)

k ¼ 2 k ¼ 3

lk 4.3854 5.4022 4.3419 5.3463 5.7898
wk 0.2009 0.7991 0.1926 0.7192 0.0883
�2
k 0.0856 0.0736

Table 5. Prior and posterior distributions of K, for
log (HCO3)

k 1 2 3

Prior 1/3 1/3 1/3
Posterior 0 0.6263 0.3737
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Table 6. Posterior means and standard deviations of lk; wk and �2
k (k ¼ 2), for

log (HCO3)

lk wk �2
k

Mean 3.8773 4.9594 0.1976 0.8024 0.0828
SD 0.0578 0.0254 0.0307 0.0307 0.0097

Table 7. Posterior means and standard deviations of lk; wk and �2
k (k ¼ 3), for log (HCO3)

lk wk �2
k

Mean 3.8527 4.6545 5.0273 0.1740 0.3059 0.5201 0.0811
S.D. 0.0953 0.3870 0.1467 0.0568 0.2715 0.2778 0.0095

Table 8. AMLE of lk; wk and �2
k (k ¼ 2; 3), for log (HCO3)

k ¼ 2 k ¼ 3

�2
k 0.0715 0.0667

lk 3.8697 4.9693 3.8857 4.9456 5.1335
wk 0.2032 0.7968 0.2014 0.7360 0.0625

Table 9. Prior and posterior distributions of K, for log (Ca)

k 1 2 3

Prior 1/3 1/3 1/3
Posterior 0 0.6790 0.3210

Table 10. Posterior means and standard deviations of lk; wk and �2
k (k ¼ 2), for log (Ca)

lk wk �2
k

Mean 2.2104 3.5787 0.1923 0.8077 0.1116
SD 0.0661 0.0291 0.0308 0.0308 0.0127

Table 11. Posterior means and standard deviations of lk; wk and �2
k (k ¼ 3), for log (Ca)

lk wk �2
k

Mean 2.1477 3.0570 3.6862 0.1569 0.2864 0.5567 0.1079
SD 0.1438 0.5300 0.2442 0.0616 0.2754 0.2982 0.0142

MIXTURE MODEL ANALYSIS OF CHEMISTRY DATA OF CHANGJIANG 315

Copyright # 2005 John Wiley & Sons, Ltd. Environmetrics 2005; 16: 305–318



4.3. Classification of the Changjiang basin

From the computational results in last section, the posterior distribution of K favors two components

for all three variables. This means that most likely observations of each variable comes from a

population with two sub-populations. An interesting question is how these two sub-populations are

composed. In this section, we use the estimated posterior distribution to classify all observations of

each variable into two groups.

We first introduce the general notation of classification. Let f ðx j�kj; �
2
kÞ be the jth component

density in the mixture and �̂�kj, ŵwkj and �̂�2
k are the posterior mean estimates. For each 1 � j � k,

the classification probability of an observation X ¼ x belonging to jth sub-population can be defined

as

PjðxÞ ¼
ŵwkjf ðx j �̂�kj; �̂�

2
kÞPk

‘¼1 ŵwk‘f ðx j �̂�k‘; �̂�
2
kÞ

ð8Þ

Then we can classify each observation xi in the present sample to sub-population j with the highest

classification probability PjðxiÞ. For more discussion of classification, see, for example, Everitt et al.

(2001).

Since there are two sub-populations for the Changjiang data sets, classification of the sample point

xi according to (8) is equivalent to comparing P1ðxiÞ and P2ðxiÞ. In other words, the observation xi is

classified into sub-population 1, if P1ðxiÞ > P2ðxiÞ, and into sub-population 2 otherwise. The

classification results of three variables are shown in Figures 9–11.

Table 12. AMLE of lk; wk and �2
k (k ¼ 2; 3), for log (Ca)

k ¼ 2 k ¼ 3

�2
k 0.1006 0.0831

lk 2.2227 3.5804 2.0492 2.5783 3.5950
wk 0.1834 0.8166 0.1494 0.0840 0.7666

Figure 9. Classification of 191 observations of log (TDS). The filled circles represent sub-population 1 and the open circles

represent sub-population 2

316 L. XUE ET AL.

Copyright # 2005 John Wiley & Sons, Ltd. Environmetrics 2005; 16: 305–318



5. CONCLUSIONS

We have studied the statistical distributions of two major chemical elements (Ca and HCO3) and the

total dissolved solid concentration in the Changjiang, using a Bayesian finite mixture model and a

novel computational algorithm. The results obtained provide better understanding of the distributions

of chemical elements in the Changjing basin. Another major contribution is the identification of two

sub-populations for each variable studied, which shows how the geological locations are associated

with the distributions.

According to the classification results, most of the group 1 stations are located in the lower reaches

of the Changjiang river and the stations of group 2 are located in the upper and middle reaches of the

river area. The major chemical elements of the Changjiang are mainly controlled by chemical

weathering, atmospheric precipitation and other natural processes as well as human activities (Chen

et al., 2002). In the lower reaches of the river basin, annual average precipitation is higher than in the

middle and upper reaches of the river. Carbonate rocks, the weathering of which produces Ca and

HCO3 in the river water, are also less abundant in the lower reaches (Chen et al., 2002). We think that

these are the main causes as to why most of the stations in the lower reaches have a lower level of the

Figure 10. Classification of 191 observations of log (HCO3). The filled circles represent sub-population 1 and the open circles

represent sub-population 2

Figure 11. Classification of 191 observations of log (Ca). The filled circles represent sub-population 1 and the open circles

represent sub-population 2
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chemical elements studied. The analytical results are based on the log-transformed data. The estimated

sub-population means in the original scale can be easily calculated, and they are given in Table 13.

This work represents the first systematic study of the statistical distributions of chemical elements

in the Changjiang basin. The proposed model is flexible enough to account for the unknown number of

components in the mixture distribution. The algorithm used provides a simple and effective approach

to the computation of these types of models, which is usually a challenging task in Bayesian

computation.
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