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ABSTRACT 
The presence of black-box functions in engineering design, 

which are usually computation-intensive, demands efficient 
global optimization methods. This work proposes a new global 
optimization method for black-box functions.  The global 
optimization method is based on a novel mode-pursuing 
sampling (MPS) method which systematically generates more 
sample points in the neighborhood of the function mode while 
statistically covers the entire search space.  Quadratic 
regression is performed to detect the region containing the 
global optimum.  The sampling and detection process iterates 
until the global optimum is obtained.   Through intensive 
testing, this method is found to be effective, efficient, robust, 
and applicable to both continuous and discontinuous functions.  
It supports simultaneous computation and applies to both 
unconstrained and constrained optimization problems.  Because 
it does not call any existing global optimization tool, it can be 
used as a standalone global optimization method for 
inexpensive problems as well.  Limitation of the method is also 
identified and discussed. 
 
Keywords: Global Optimization, Metamodeling, Black-box 
function, Design of Experiments 

 
INTRODUCTION 

In today’s engineering design, as computer modeling 
capabilities increase dramatically, product behaviors are 
modeled and analyzed using the finite element analysis (FEA) 
and computational fluid dynamics (CFD) techniques.  These 
analyses and simulation processes are usually computationally 
expensive.  The design optimization based on these 

computation-intensive processes is challenging from several 
aspects.  

• First, the overall optimization time should be acceptable 
by the increasingly impatient manufacturing industry.  
The optimization time relates to two issues, i.e., the 
number of total expensive function evaluations, and the 
amount of simultaneous computation. The term 
simultaneous computation is carefully chosen to be 
distinctive from parallel computation. Simultaneous 
computation means the possibility of having multiple 
simultaneous computing processes, not necessarily 
involving interactions between these computing processes, 
which is the characteristic of parallel computation. 

• Second, for FEA or CFD, an explicit expression of 
optimization objective and constraint functions with 
respect to design variables is not available. Also gradients 
computed from these processes are usually unreliable or 
expensive [5]. To a design engineer, these processes are 
like a black-box, i.e., only the input and output can be 
obtained without a priori knowledge about the function. 

• Third, a global design optimum is always preferred over a 
local optimum, if the computation cost is acceptable. 

 
Numerous global optimization methods can be found in the 

literature.  A recent survey is given in the Ref. [8]. However, 
few of them is suitable for the above expensive black-box 
function problems.  Current global optimization methods can be 
possibly classified into two groups, deterministic and stochastic 
methods.  Deterministic methods require a priori knowledge of 
the objective function, e.g., its shape, expression, gradient, 
Lipshitz constant, and so on.  Thus they are not directly 
applicable to black-box functions.  Most stochastic methods, 
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such as simulated annealing, genetic algorithms, Tabu search, 
multistart (including clustering), and many others, require a 
large number of function evaluations even for a simple 2-D 
design problem, though they do not demand a priori knowledge 
of the objective function.  In addition, most of these methods 
are not developed to maximize the amount of simultaneous 
computation. Therefore, most of existing stochastic methods 
are not efficient in saving the total optimization time for 
expensive functions.  

  
In the emerging area of metamodeling-based optimization, 

methods have been developed to address the computation 
efficiency problem.  Those methods are based on the idea of 
sampling in the design space, building approximation models 
on these sampling points, and then performing optimization on 
the approximation function.  Researches focus on developing 
better sampling strategies, approximation models, or methods 
dealing with the sampling, modeling, and optimization as a 
whole.  Detailed surveys on researches in this direction can be 
found in the third author’s previous work [12; 14]. 
Metamodeling-based optimization methods entail many 
attractive ideas for optimizing expensive black-box function 
problems, such as the idea of sampling and approximation.  
However, in general these methods rely on the structure of the 
approximation model.  Furthermore, the choice of the best 
approximation model is problem dependent. So far, few 
methods have been developed for the global optimization.  One 
successful development is in Refs. [6; 10], where the authors 
apply Bayesian method to estimate a kriging model, and then 
gradually identifies points in the space to update the model and 
perform the optimization. Their method, however, pre-assumes 
a continuous objective function and a correlation structure 
among sample points.  The identification of a new point 
requires a complicated optimization process.  The construction 
of the kriging model usually requires a global optimization 
process.   
 

The third author of this paper and his colleagues have 
developed a number of global optimization strategies for the 
expensive black-box functions [12-14]. These methods focus 
on strategies to gradually reduce the search space.  In the 
reduced final region, an existing global optimization method is 
applied on the approximation model to locate the optimum.  In 
this work, a new global optimization method for expensive 
black-box functions is proposed, assuming the design space 
cannot be confidently reduced.  In contrast to the methods in 
Ref. [6; 10], this method does not assume any properties of the 
black-box function; it works for both continuous and 
discontinuous functions; and it does not call any existing global 
optimization process or tool in its optimization process. 
   

Before the global optimization strategy is discussed, a new 
mode-pursuing sampling method is to be introduced as it forms 
the core of the proposed global optimization method. 

MODE-PURSUING SAMPLING METHOD (MPS) 
In this section we introduce the so-called mode-pursuing 

sampling algorithm. It is an extension of the random-
discretization based sampling method of Fu and Wang [3], 
which is a general-purpose algorithm to draw a random sample 
from any given multivariate probability distribution. This 

algorithm requires only the knowledge of the probability 
density function, up to a normalizing constant. This sampling 
method has been successfully implemented in many high-
dimensional random sampling and numerical integration 
problems.  This section will first describe the proposed MPS 
algorithm, which will be elaborated and explained with a 
sampling example. Then the properties of the MPS method will 
be given and proved. 

 
Algorithm of the MPS Method 

Suppose we are given a d-dimensional probability density 
function g(x) with a compact support dgS ℜ⊂)( . Fu and 
Wang’s algorithm [3] consists of three steps. In the first step, 
the discretization step, a discrete space SN(g) is generated 
consisting of N uniformly distributed base points in S(g). 
Usually N is large and should be larger if the dimension of g(x), 
d, is higher. These uniform base points may be generated using 
either deterministic or stochastic procedures. Then in the 
second step, the contourization step, the base points of SN(g) are 
grouped into K contours {E1, E2, …, EK} with equal size 
according to the relative height of the function g(x). For 
example, the first contour E1 contains the [N/K] points having 
the highest function values among all base points, whereas the 
last contour EK contains the [N/K] points having the lowest 
function values. Also in this step, a discrete distribution {P1, P2, 
…, PK} over the K contours is constructed, which is 
proportional to the average functional heights of the contours. 
Finally, a sample is drawn from the set of all base points SN(g) 
according to the discrete distribution {P1, P2, …, PK} and the 
discrete uniform distribution within each contour. As has been 
shown in Fu and Wang [3], the sample drawn according to their 
algorithm is independent and has an asymptotic distribution 
g(x). The approximation gets better for larger values of N and 
K.   
 

In this work, we incorporate the Fu and Wang’s algorithm 
as a component of our new sampling method for optimization 
problems.  Following the convention of engineering 
optimization, we refer to the minimum as the function mode.   
 

Concretely, we wish to minimize a n-dimensional black-box 
function f(x) over a compact set nfS ℜ⊂)( . To simplify notation, 

let us assume that S(f) = [a, b]n, where ∞<<<∞− ba  are 
known, and f(x) is positive on S(f).  In general, if f(x) is 
negative for some x∈S(f), then we can always add a positive 
number to f(x), so that it becomes positive on S(f).  Note that to 
minimize f(x) is equivalent to maximize –f(x).  The proposed 
mode-pursuing sampling algorithm consists of the following 
four steps: 
 
Step 1. First, generate m initial points x(1), x(2), …, x(m)

  that are 
uniformly distributed in S(f) (m is usually small). 
Step 2. Use the m function values f(x(1)), f(x(2)),…, f(x(m)) to fit a 
linear spline function 

∑
=

−=
m

i

i
i xxxf

1

)( ||||)(ˆ α ,  (1) 

such that )()(ˆ )()( ii xfxf = , i = 1, 2,…, m.  

Step 3. Define )(ˆ)( 0 xfcxg −= , where c0 is any constant such 

that )(ˆ
0 xfc ≥ , for all x in S(f).  Since g(x) is nonnegative on 
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S(f), it can be viewed as a probability density function, up to a 
normalizing constant, with the modes located at x(i)’s where the 
function values are the lowest among {f(x(i))}.  Then apply the 
sampling algorithm of Fu and Wang [3] to draw a random 
sample x(m+1)

, x
(m+2), …, x(2m) from S(f) according to g(x). These 

sample points have the tendency to concentrate on the 
maximum of g(x), which corresponds to the minimum of )(ˆ xf . 
Step 4. Combine the sample points obtained in Step 3 with the 
initial points in Step 1 to form the set x(1), x(2), …, x(2m) and 
repeat Steps 2–3 until a certain stopping criterion is met.  
 
Remark. Note that in the Step 2 above, a linear spline function 
is used to fit the expensive points. It is based on the following 
reasons: 

1. The linear spline function, or the radial basis function 
(RBF), is the simplest function that passes all the 
expensive points.  

2. The linear spline function also prevents unnecessary 
“curvatures” added to the unknown surface as in the case 
of other models such as kriging.   

3. Moreover, it preserves the minimum among the expensive 

points, i.e., },,1),(min{)(ˆmin )( mixfxf i L==  because 
its linearity nature.  This feature ensures more expensive 
points are generated around the current minimum of f(x), 
rather than being biased because of the approximation 
model )(ˆ xf . 

This algorithm is to be further elaborated with a sampling 
example. 
 
A Sampling Example 

For ease of understanding, the mode-pursuing sampling 
method is illustrated with the well-known six-hump camel-back 
(SC) problem.  The expression of SC is given in Eq. 2. 
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The contour plot of the SC function is shown in Figure 1, 
where H’s represent the local optima, and H2 and H5 are two 
global optima at points (0.090, -0.713) and (-0.090, 0.713) with 
an equal function value fmin= –1.032. 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1 Contour plot of the SC function. 

 
First, assume we start with m = 6 initial random points x(1), 

x(2), …, x(6) 2]22[−∈ . Then )(ˆ xf  is computed by fitting Eq. 1 
to f(x(1)), f(x(2)), …, f(x(6)). Further, the function g(x) is obtained 
by using the maximum of {f(x(i)), i=1, …, m} as c0.  
 

Now we apply Fu and Wang’s algorithm to draw a sample 
as follows. First, N = 104 uniform base points are generated to 
form SN(g), the discretized version of the sample space 

2]22[ − . Note that the base points in SN(g) are cheap points, 
in contrast to the original m = 6 expensive points used to build 

)(ˆ xf . Further, without loss of generality, suppose the points 
in SN(g) are sorted by ascending order of the values of function 

)(ˆ xf . The sequence of the corresponding function values of 

)(ˆ xf  is plotted in Figure 2(a), whereas the function g(x) is 
plotted in Figure 2(b).  
 

According to Fu and Wang’s [3] method, the ordered 104 
base points are then grouped into K = 102 contours {E1, E2, …, 
E100}, with each having N/K = 100 points. For example, the first 
contour E1 contains the 100 points at which the values of 
function )(ˆ xf  are the lowest, whereas the last contour E100 

contains the 100 points at which the values of )(ˆ xf  are the 

highest. Let )(~ ig  be the average of )(ˆ xf  over Ei, i = 1, 2, …, 

100. The function )(~ ig , i = 1, 2, …, 100 is plotted in Figure 
2(c) and its cumulative distribution function G(i) is displayed in 
Figure 2(d).  
 

Finally, m = 6 contours are drawn with replacement using 
the inverse transformation of the distribution {G(i), i = 1, 2, …, 
100}. If the contour Ei occurs mi > 0 times in these six draws, 
then mi points are randomly drawn from Ei. All points so 
obtained form the new sample x(m+1)

, x
(m+2), …, x(2m).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 2 A screen shot of functions  f̂ , g, g~ , G and Ĝ  for the 

SC problem. 
 
As one can see from Figure 2(d), the contours from E80~E100 

(corresponding to high f̂  values) will have a lower 
probability to be picked for further sampling than other 
contours, since the G curve is relatively flat in this area.  
However, such a probability for each contour is always larger 
than zero.  On the other hand, it is generally desired to increase 
the probability of the first few contours as they correspond to 
low f̂  values.  In order to have a better control of the 
sampling, a speed control factor is introduced, which is to be 
discussed later in the Speed Control Factor subsection. Figure 
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2(e) shows )(iG
)

, which is obtained by applying the speed 
control factor to )(iG  in Figure 2(d).  From Figure 2(e), one 
can see that the first few contours have a high probability to be 
picked for the new sampling while the contours from E40 ~E100 
have a low probability.  This curve shows an aggressive 
sampling step as much more new sample points will have 
function value close to the current minimum of f(x) as 
compared to the sampling based on Figure 2(d). 
 

The whole procedure is repeated eight times, so that totally 
48 sample points are generated. Figure 3 shows these 48 sample 
points, where the circle dots indicate attractive design points 
having a function value less than –0.5.  Even with 48 sample 
points, many attractive points have already shown up around H2 
and H5.  It can be seen from the figure that points spread out in 
the design space with a high density around one of the function 
mode H2 (global minimum).  The mode-pursuing characteristic 
is demonstrated. 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 3 Sample points of SC generated by using the mode-pursuing 
sampling method, where “o” indicates its function value less than –0.5; 

and H2 and H5 are the locations of two global optima. 

 
Properties of the MPS Method 

From the construction, it is easy to see that this sampling 
procedure has the following two properties: first, every point in 
S(f) has a positive probability to be drawn, so that the 
probability of excluding the global optimum is zero. Secondly, 
as the iteration continuous, more and more sample points will 
concentrate on the modes of function g(x), which in turn pursue 
the modes of function f(x). Thus the algorithm automatically 
pursues the modes of f(x).  It can be proved that if neglecting 
the stopping criteria in Step 4, the method can identify the 
global optimum of f(x). 
 

Suppose the stopping rule in Step 4 is not applied, so that 
the sampling algorithm iterates to infinity. For any integer k > 
0, the minimum function value obtained after k-th iteration is 
clearly 

fk = min {f(x(i)), i = 1, 2, …, km}. 
The following theorem shows that, under fairly general 
conditions, the sequence fk converges to the global minimum, as 
k increases to infinity. 
 
Theorem 1.  Suppose the objective function f(x) is continuous 
in a neighborhood of the global minimum on the compact 
subset nfS ℜ⊂)( .  Then, as ∞→k , fk obtained by using the 

mode-pursing sampling method converges to the global 
minimum )(inf )(0 xff fSx∈= . 

 
Proof: Suppose the global minimum is attained at )(0 fSx ∈ , so 

that f(x0) = f0. By construction, the set of all sampled points is 
extended by m new points after each iteration. It follows that 
the sequence {fk} is decreasing.  Since f(x) is continuous in a 
neighborhood of the global minimum, for any ε > 0, there 
exists δ > 0, such that 0 < f(x) – f(x0) < ε , for all 

δ<− |||| 0xx . Because in each iteration the density g(x) is 

positive on S(f), there exists an integer K > 0, such that after K-
th iteration, a point satisfying δ<− |||| 01 xx  can be sampled, 

which implies that ε<−< )()(0 01 xfxf .  It follows that 0 < fk 

– f0 < ε  for all k > K. The proof is completed. 
 

In summary, because MPS does not pre-assume any 
properties of the objective function, it applies to general black-
box functions, which can be either continuous or discontinuous 
across the entire design space. If the objective function is 
continuous in a neighborhood of the global optimum, it can be 
proved that the MPS systematically converges to the global 
optimum. 

 

GLOBAL OPTIMIZATION STRATEGY 
From the above sections we know that the mode-pursuing 

sampling method has the property of statistically sampling 
more points near the minimum (mode) while still covering the 
entire design space.  For the purpose of optimization, one may 
iterate this sampling procedure until a maximum number of 
function evaluations has been reached.  Such an approach is a 
legitimate global optimization method.  However such a crude 
approach can be slow in convergence, when f(x) is relatively 
flat around the global optimum.  In such cases, more 
“intelligence” needs to be built in.  A natural method, as seen in 
some existing global optimization methods, is to use a 
threshold of sample density or similar measures to shrink the 
design space to a small area, in which a local optimization can 
be performed. No matter what measure is used, whether it is a 
sample density or a hyper-sphere with fixed diameter, it would 
be too difficult to decide the value of the measure, and be too 
rigid because the method is to be applied to all types of 
problems.  On the other hand, the idea of integrating a global 
technique with a local technique has been recognized as a 
plausible approach in designing a global optimization method 
[11].  In this work, we design a special approach to guide the 
optimization process to identify an attractive local area without 
using a rigid measure.  

 
Concept of the Strategy 

As the mode-pursuing sampling progresses, more sample 
points will be generated around the current minimum point, 
with chances to search for a better minimum.  If a better point 
is found, the mode shifts to the new point and more sample 
points will be generated about that point.  If the current 
minimum point is the global optimum, more and more points 
are generated in the small region that contains the optimum 
with a slim chance that this point can be exactly reached.   On 
the other hand, according to the Taylor’s theory, we know that 

H2 

H5 
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in a continuous small area around the minimum any function 
can be accurately approximated by a quadratic function.  Thus 
if we can perfectly fit the points around the current minimum to 
a quadratic model, it means that we have reached the “valley” 
that contains the global minimum.  Given such a perfect 
quadratic model, local optimization can be performed without 
expensive function evaluations to locate the global minimum.  
 

An n-D generic quadratic model is usually expressed by 
Eq.3. 

           ∑ ∑ ∑∑
= = < =

+++=
n

i

n

i ji

n

j
jiijiiiii xxxxy

1 1 1

2
0 ββββ                  (3) 

where 
ij and ,, βββ iii
  represent regression coefficients, 

)1(, nixi L=  are design variables, and y is the response.  It is to 

be noted that the model follows the standard formula used in 
the response surface method (RSM) [7]. 
 

The coefficient of determination, R2, is usually applied to 
evaluate the modeling accuracy. The R2 is defined as 
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where, 
iŷ  are the fitted function values; 

iy  are the function 

values at the sample points; y  is the mean of 
iy ; and 

10 2 ≤< R .  If the number of sample points used to fit Eq. 3 
is equal to the number of coefficients of Eq. 3, which is 
(n+1)(n+2)/2, then R2 is equal to 1.  In practice, the number of 
sample points is usually taken larger than the number of 
coefficients.  Only based on an equal number of sample points 
and a fixed regression model, the R2 value can be appropriately 
compared. In general, the closer the R2 value to 1, the better the 
modeling accuracy [7].   
 

Now the question is how to determine the “neighborhood” 
of the current minimum for model fitting.  As we know to fit 
the quadratic model in Eq. 3, at least (n+1)(n+2)/2 points are 
needed to obtain the estimates of the same number of 
coefficients.  But if the number of points used to fit the model 
is the minimum, the R2 value will equal to its maximum value 
1, making it hard to evaluate the fitting accuracy.  In order to 
avoid this situation and at the same time to keep the number of 
function evaluations low, we use (n+1)(n+2)/2+1 points to fit 
the quadratic model.  When there are enough number of points 
that are close to the minimum point, these points together will 
determine a sub-region, which is a hyper-box defined by the 
minimal lower bound and maximal upper bound of all points in 
each x direction.  At the beginning of the sampling procedure, 
the size of the sub-region will almost be the same as the 
original design space, because the total number of points 
generated by far is small and sparse.  If the objective function 
f(x) is quadratic, a perfect fit will be obtained and the global 
optimum can be quickly secured.  If the function f(x) is multi-
modal, a quadratic model fitting won’t be perfect.  Even though 
by chance it fits well, it won’t likely pass the model validation 
stage, which will be discussed later.  In this case, the mode-
pursuing sampling process will concentrate less on the current 
optimum but instead spread out more in the rest of the space by 
tuning a speed control factor r (to be discussed later).  As the 

optimization process iterates, more and more points are 
generated, small sub-regions can be obtained and the process 
gradually converges to the small region containing the global 
optimum. As one can see, in the proposed method, the size of 
the sub-region (though at the beginning it is almost the same as 
the original space) is adaptive to the complexity of the 
objective function. A rigid measure in identifying the local 
area, such as the sample density or a hyper-sphere with fixed 
diameter, is avoided. 

 
Quadratic Model Detection 

In this work, a quadratic function within a sub-region is 
detected by a two-stage approach.  At the first stage, 
(n+1)(n+2)/2+1 points are fitted to a quadratic model.  If the 
R2 is not close to 1, it means the model is highly polynomial.  
The difficulty comes if the R2 is close to 1.  In this situation, it 
is risky to say that the function is quadratic, because in many 
situations, especially in high dimensional problems, R2 is very 
close to 1 even though the function is not quadratic.  This is due 
to the fact that only one additional point besides the minimum 
(n+1)(n+2)/2 points is used in model fitting.  Therefore, a 
second stage testing is used.  At the second stage, a number of 
new expensive points [n/2] are randomly generated in the sub-
region, where [n/2] refers to the number (n/2) rounded to the 
closest integer.  Then these new points are combined with the 
previous (n+1)(n+2)/2+1 points, which are fitted again to a 
quadratic model.  If this fitting gives a Rnew

2 which is close to 1 
and the maximum absolute difference between all real function 
values and their corresponding predicted values is close to zero, 
then it is most likely that the function is quadratic.  That is to 
say, the criterion for the second stage is  

 

]2/[12/)2)(1(,,1,|)max(|

and|1|
)()(

2

nnnjiffDiff

R

d
ii

m
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++++==<−=
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Lε

ε  (5) 

 
where, fm is the obtained quadratic model and f is the real 
function; 

Rε  and dε  are small numbers for the two criteria, 

respectively. In practice, 
Rε  is often taken as 10-5.  It is difficult, 

however, to select dε  because it is problem dependent.  This 

work defines dε  as: 

      ],,1),min()[max( )()( jiffc ii
dd L=−=ε              (6) 

 
where, cd  is a coefficient in [0,1] to be specified by the user.  
Generally, the smaller the cd, the more accurate result one will 
get and the more function evaluations are needed. The default 
value of cd is 10-2.  
 
Algorithm of the Proposed Method 

The flowchart of the algorithm is shown in Figure 4.  
Detailed description of the algorithm is given below.  The 
speed control factor, r, is to be discussed in the next section. 
 
Description of the Algorithm 
Input: n, x, f(x) ß n: the number of design variables; x: desgin 

varaible vector; f(x): objective black-box function  
Output: x*, f(x*), nit, nfe ß x*: the obtained optimum; f(x*): the 

function value at x*; nit: the number of optimization 
iterations; nfe: the number of expensive function 
evaluations 
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BEGIN 
1) Randomly sample [(n+1)(n+2)/2+1-np] number of points 

ß np: an arbitrary number; usually set as np = n;  
2) Sample [np] points using the mode-pursuing sampling 

method; ßThus so far there are in total [(n+1)(n+2)/2+1] 
points, which is just enough to fit a quadratic model; 

3) Find [(n+1)(n+2)/2+1] points around the current mode, 
along with the sub-region defined by these points (the 
minimal lower bound and maximal upper bound of all 
points in each x direction); 

4) In the sub-region, obtain the approximate quadratic model 
and the R1

2 value by fitting the [(n+1)(n+2)/2+1] points; 
5) If 

RR ε<− |1| 2
1

, then generate [n/2] expensive points in 
the sub-region; obtain an updated quadratic model, the 
Rnew

2 value, and the Diff value by fitting all the points 
within the sub-region; add the new points to the point set 
ß [n/2]: the number (n/2) rounded to the closest integer; 
Else update the speed control factor r and go back to Step 
2); 

6) If 
dRNew DiffR εε <<− and|1| 2 , then perform local 

optimization on the approximation model to find xt
*.   

7) If xt
* is in the sub-region, then program stops with all the 

outputs; Else obtain its real function value and add this 
point (xt

*, f(xt
*)) and the points generated in Step 5) to the 

original set of expensive points, update the speed factor r 
and go back to Step 2). 

END 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 Flowchart of the proposed global optimization method. 

Speed Control Factor 
In Figure 4, the speed control factor, r, adjusts the 

“greediness” of the mode-pursuing sampling method.  
Referring to Figure 2, }...,,2,1),({ KiiG = denote the cumulative 

distribution function of the ranked }...,,2,1),(~{ Kiig = , which 
can be considered as the discrete distribution {P1, P2, …, PK} in 
the algorithm of Fu and Wang [3].  Note that ]1,0[)( ∈iG . 
Define Gmin = min (G(i)) and Gmax = max(G(i)). It is easy to see 
that Gmin is the sampling probability for the current mode and 

1max =G .  The difference },,2),1()({ KiiGiG L=−−  represents 

the probability of the sampling points being picked, whose 
function values are between )1(~ −ig  and )(~ ig . As one can 
see from Figure 2, if more “local” points closing to the current 
mode are desired, then the Gmin is to be raised. Otherwise, Gmin 
is to be lowered to allow more “exploratory” sample points.  A 
speed control factor, r, is desired to allow the user to find the 
balance between “local” points and “exploratory” points, or to 
tune the “greediness” of the mode-pursuing sampling process.  
In this work, the tuning is done through the 
transformation riGiG /1)()(ˆ = .  The next sampling is then based 

on )(ˆ iG curve instead on G(i) curve. If r=1, the original discrete 
distribution is used.  A higher r>1 increases the probability of 
sampling around the current mode with less chance of 
spreading out in the space.  Figure 5 is a screen shot of riG /1)(  
curves for the SC problem, where r increases as the curve 
becomes flatter.  During the optimization process, however, r 
does not increase monotonically; it updates dynamically 
according to the previous iteration. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5 A screen shot of riG /1)(  curves for the SC problem. 

 
How to adjust the value of the speed control factor?  

Generally, if a function is detected to be complex (non-
quadratic), then r is reduced to generate more “exploratory” 
points. Otherwise, r is increased to increase the “local” points.  
Theoretically, ],1[ ∞∈r . When 1=r , the original discrete 
distribution is used and the convergence speed doesn’t change.  
The convergence speed of the mode-pursuing sampling 
procedure is increased as r increases.   Let 75.0min =G  
represents a practically very aggressive sampling scheme, 
which is chosen as a reference point to determine rmax.  For a 
given sample set on g(i), we can obtain a Gmin. If we set 

75.0max/1
min =rG , we can have 75.log/log minmax Gr = .  Therefore, 

]75.0log/log,1[ minGr ∈ .  In this work, the R2 information is 

Mode-pursuing sampling of np points 

Find [(n+1)(n+2)/2+1] points 
around the current mode; obtain the 

sub-region 

RR ε<− |1| 2
1

 

Perform quadratic fitting in the sub-region 

Randomly generate [n/2] points; Refit 
the function in the sub-region; Add the 

points to the point set. 

dRNew DiffR εε <<− and|1| 2

 

Update the speed 
control factor r 

Perform local optimization 

Exit 

Initial random sampling [(n+1)(n+2)/2+1-np] 
points 

Yes 

No 

No 

The min in the sub-region? 

No 

Yes 

Yes 

Obtain its real 
function value and 

add it to the point set.

Increasing r (>1) 

r dynamically 
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used to guide the “greediness” of mode-pursuing sampling.  
Usually for most problems with only one extra sample point, 

]1,8(.2 ∈R . When 8.02 ≤R , r is set to 1 to allow more 
“exploratory” points.  When ]1,8(.2 ∈R , one quarter of ellipse is 
chosen to describe the r-R2 relationship as shown in Figure 6.  
The origin of the ellipse is (.8, 

maxr ) with the length of the 

short axis 0.2 and the long axis 1max −r .  The ellipse’s origin 

and long axis are automatically adjusted by the Gmin feature 
calculated from )(ˆ xf , which is obtained from the available 
expensive sample points.  Figure 6 shows the r-R2 curve of the 
last iteration when solving the SC problem.  Therefore, the 
speed control factor, r, is controlled by the R2 value from the 
previous iteration.  It adjusts the “greediness” of the sampling 
process to achieve a balance between local sampling and 
exploratory sampling.  It is to be noted that the speed control 
factor does not undermine the global sampling property of the 
mode-pursuing sampling strategy.  As one can see from Figure 
2(e) and Figure 5, with 1)(, /1 →∞→ riGr . All of the contours 
can still be possibly picked. 

 
 
 

 
 
 
 
 
 
 

 
 

 
 
 
 

Figure 6 The last r-R2 curve for the SC problem. 
 

Note that there is a risk associated with using the R2 value 
as a feedback for the sampling control.  Since the sampling 
controlled by the factor, r, tends to be more aggressive, the 
optimization may converge to a local optimum before enough 
exploratory points have been generated.  It would be ideal to 
have an indicator of whether the current mode is the global 
optimum or not.  Such an indicator will be theoretically better 
than the R2 value. However, without knowing the global 
optimum or properties of the expensive function a priori, it is 
difficult to develop such an indicator.  The R2 value thus only 
provides a necessary condition for a global optimum, yet not a 
sufficient condition.  A similar use of the R2 value is found in 
the Ref. [4].  Nevertheless, the proposed method works well for 
most of the test problems.  It also maintains the possibility of 
mode shifting because even with aggressive sampling, new 
exploratory sample points are still being generated. 

CONSTRAINED OPTIMIZATION PROBLEMS 
The algorithm of the proposed method in the previous 

section is developed for the unconstrained optimization 
problems.  For constrained optimization problems, we only deal 
with the problems with inexpensive constraints.  Specifically, 
consider the problem 

Minimize   )(xf     (7) 

Subject to       qkxg k L,1,0)( =≤   (8) 

where, )(xf  is the expensive objective function; )(xg k
 are the 

inexpensive equality or inequality constraints, including the 
variable bounds [1].  A few researches are seen in literature 
dealing with metamodeling for constrained optimization 
problems ([2; 9; 14]). 
 

The basic principles for the constrained problem expressed 
by Eqs. 7-8 are the same as those for the unconstrained 
problems.  The flowchart for constrained problems is the same 
as Figure 4.  However, the interpretation for some steps is 
different: 

1. For all sampling steps in Figure 4, “Initial random 
sampling [(n+1)(n+2)/2+1-np] points”, “Mode-pursuing 
sampling of np point”, and “Randomly generate [n/2] 
points,” all points that do not satisfy constraints are 
discarded first before the evaluation of the objective 
function.  This means that all samples generated from 
these steps should satisfy the constraints.   

2. For the step “Perform local optimization” in Figure 4, the 
objective function remains the same as for the 
unconstrained optimization. However, the constraints 

)(xg k
 are included in the optimization.  In this work, the 

MatlabTM Optimization Toolbox is used for the 
constrained local optimization. 

TEST OF THE APPROACH 
The proposed method has been tested with a number of 

well-known test problems.  Their expressions are described as 
follows: 

• A simple quadratic function (QF), n = 2. 
       ]33[,)1()1()( 2

2
2

1 −∈−++= iQF xxxxf ,                       (9) 

• Six-hump camel-back function (SC), n = 2, as described 
by Eq. 1. 

• Golden-Price function (GP), n = 2. 

)]273648123218()32(

30[*)]361431419()1(1[)(
2
2212

2
11

2
21

2
2212

2
11

2
21

xxxxxxxx

xxxxxxxxxfGP

+−++−−

+++−+−+++=

where, ]22[−∈ix .       (10) 

• Hartman function (HN), n = 6. 

nixpxcxf i
i

n

j
ijjijiHN ,,1],1,0[],)(exp[)(

4

1 1

2 L=∈−−−= ∑ ∑
= =

α  ( 11) 

         where 
 
 

 
 
 
 
 
 

I 6,,1, L=jijα                           ci 

1 
2 
3 
4 

10       3      17      3.5     1.7      8       1 
.05     10     17      0.1       8     14     1.2 
  3     3.5    1.7      10      17       8       3 
17       8      .05     10      0.1    14     3.2 

R

1

rmax 
r 



 8 Copyright © 2003 by ASME 

 
I 6,,1, L=jpij  

1 
2 
3 
4 

.1312     .1696     .5569     .0124     .8283     .5886 

.2329     .4135     .8307     .3736     .1004     .9991 

.2348     .1451     .3522     .2883     .3047     .6650 

.4047     .8828     .8732     .5743     .1091     .0381 
 

• A function of 16 variables (F16), n = 16. 

∑∑
= =

−∈++++=
16

1

16

1

22
16 ]01[),1)(1()(

i j
ijjiiijF xxxxxaxf  
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• Griewank function (GN), n = 2. 

∏∑
==

−∈+−=
n

i
ii

n

i
iGN xixxxf

11

2 ]100,100[,1)/cos(200/)(       (13) 

For each problem, 10 different runs are executed because 
random sampling is involved in the method.  The average 
number of function evaluations nfe, and number of iterations, 
nit, are used as an indication of the time and resource required 
by the method.  The median number is also given for reference.  
For the solution, the minimum and the maximum for the 10 
runs are recorded, along with the average.   
 

 
Table 1 Summary of test results on the proposed method. 

 
Minimum nfe nit Func. n Space Analy. 

Min. Range of Variation Median Avg. Median Avg. Median 
QF 2 xi∈ [-3  3] 0 [0, 0] 0 9.6 8 1.4 1 
SC 2 xi∈ [-2  2] -1.032 [-1.031, -1.014] -1.030 37.8 30.5 9 7 
GP 2 xi∈ [-2  2] 3.000 [3.000, 3.216] 3.005 138 134 32.9 34 
HN 6 xi∈ [0   1] -3.322 [-3.322, –3.148] -3.305 592.1 576 49.6 47 
F16 16 xi∈ [-1  0] 25.875 [25.880, 25.915] 25.885 254.8 250 3.8 3.5 
GN 2 xi∈ [-100  100] 0 [0.003, 1.367] 0.1469 371 43 123.8 12 

 
 

As one can see from the summary table, the proposed 
method successfully captures the global optimum for all test 
problems but GN.  The total number of function evaluations is 
modest.  Over the 10 runs for each case, the variation range 
for the minimum objective function value is very small.  The 
variations of the nfe and nit numbers are also small, as shown 
by the average and median of these numbers.   That indicates 
the proposed method is very robust, though being random in 
nature.  The only exception is GN.  Though for some of the 
runs the results are very good (obtained f=0.003 with 9 
function evaluations), the performance of the method for GN 
is not stable, as demonstrated by the large solution variation 
and differences between the average and median nfe and nit’s.   
It is found that GN has 500 local optima in the design space.  
The optimization process for GN tends to be trapped in one of 
the 500 local optima if following the procedure shown in 
Figure 4.  It is most likely because the mode-pursuing 
sampling process is terminated prematurely when there are not 
enough “exploratory” points to present the entire design space.  
To confirm the speculation and also to provide an example to 
Theorem 1, GN problem is solved by applying the model-
pursuing sampling method alone with a stopping criterion as 
|f-0|<1e-3, since we know the analytical minimum is zero. In 
another word, we will let the mode-pursuing sampling process 
continue until the analytical minimum is found.   The results 
are summarized in Table 2, where x* means the optimum 
point and f* is the obtained function minimum.  

 
Table 2 Optimization results on GN by applying the mode-pursuing 

sampling method alone. 
 

Run 
No. x* f* nfe nit 

1 (0.0000, -0.0070) 0 149 45 
2 (0.0005, 0.00047) 0 1742 756 
3 (0.0010, 0.0135) 0 1241 315 
4 (0.0017, -0.0044) 0 1475 714 
5 (0.0000, -0.0001) 0 390 173 
6 (-0.0020, 0.0004) 0 1846 627 
7 (0.0014, 0.0005) 0 2015 990 
8 (0.0057, 0.0045) 0 218 93 
9 (0.0058, -0.0070) 0 59 17 

10 (-0.0003, -0.0005) 0 1291 627 
 

As one can see from Table 2, the global optimum is 
obtained for all the runs.  The number of function evaluations, 
however, differs dramatically.  The test on GN checks the 
validity of Theorem 1, proving that the proposed mode-
pursuing sampling method is systematic.   The overall 
optimization strategy, which is based on the MPS method, 
may converge prematurely for problems having a large 
quantity of local optima such as GN.  
 

Overall, from both the accuracy and efficiency 
perspectives, the proposed optimization method demonstrates 
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good performance.  The solution is generally robust.  In 
addition, because samples can be evaluated independently and 
simultaneously, assuming computers are available, the total 
time needed by the optimization will be represented by the 
number of iterations, rather than the number of total function 
evaluations.  Thus the proposed method also supports 
simultaneous computation, which leads to potential significant 
time savings.  

DESIGN OF A PRESSURE VESSEL 
 
 
 
 
 
 
 
 
 

Figure 7 Pressure Vessel. 
 

The design of a pressure vessel was first documented in 
[15]. The cylindrical pressure vessel is shown in Figure 7. The 
shell is made in two halves of rolled steel plate that are joined 
by two longitudinal welds. Available rolling equipment limits 
the length of the shell to 20 ft. The end caps are hemispherical, 
forged, and welded to the shell. All welds are single-welded 
butt joints with a backing strip. The material is carbon steel 

ASME SA 203 grade B. The pressure vessel should store 750 
ft3 of compressed air at a pressure of 3,000 psi. There are four 
design variables—radius (R) and length (L) of the cylindrical 
shell, shell thickness (Ts), and spherical head thickness (Th)—
which have the following ranges of interest (unit: inch): 

375.10.1,15025 ≤≤≤≤ STR , 0.1625.0,24025 ≤≤≤≤ hTL . 

The design objective is to minimize total system cost 
which is a combination of welding, material, and forming 
costs. Meanwhile, the constraints include ASME boiler and 
pressure code for wall thickness Ts and Th, as well as the tank 
volume.  The optimization model is formulated as:  

]0.1,625.0[],240,25[],375.1,0.1[],150,25[

06296.1)3/4(

000954.0

00193.0g  Subject to

84.191661.37781.16224.0min

32
3

2

1

222

∈∈∈∈

≥−+=

≥−=

≥−=

+++=

hs

h

s

sshs

TLTR

ERLRg

RTg

RT

RTLTRTRLTF

ππ

  (14) 

We assume the objective function is an expensive black-
box function and thus the design optimization problem is of 
the form described by Eqs. 7-8. The optimum continuous 
solution is found as F = 7006.8, occurring at: R* = 51.814 in., 
Ts* = 1.0 in., L* = 84.579 in., and Th* = 0.625 in. 

 
For the design problem, 10 different runs are executed.  

The minimum and the maximum for the 10 runs are recorded 
along with the average.  The abbreviations in Table 3 have the 
same meaning as those in Table 1.   

 

Table 3 Summary of test results on the pressure vessel design problem. 
 

Minimum nfe nit 

n Space 
Analy. 
Min. 

Range of Variation 
Median Avg. Median Avg. Median 

4 [25  150] 

[25  240] 

[1.0   1.375] 

[.625 1.0] 

7006.8 [7006.8, 7007.9] 7006.8 44.7 46 6.7 7 

Because the obtained optima from the 10 runs are practically 
the same as the analytical optima, the differences between the 
analytical solution and the one found by the proposed method 
should be due to computational rounding errors.   As shown in 
Table 3, the number of function evaluations, nfe, and the 
number of iterations, nit, are small.  

DISCUSSIONS 
As shown in Table 1, the proposed method finds the 

optimum of the QF function with only an average of 9.6 
function evaluations.  It is in fact true that for any n-D quadratic 
function, the number of the function evaluations needed is 
between nfel and nfeu, defined as 

nfel = (n+1)(n+2)/2 + 1 + [n/2] 
nfeu = nfel + 1 + n + [n/2]          (15) 

nfel is required when the algorithm converges at the first 
iteration, where [(n+1)(n+2)/2 + 1] is the number of points for 
the first quadratic fitting; [n/2] is the number of points 
generated for model validation.  According to the algorithm, the 

real function value at the model minimum is to be obtained if 
the model minimum is outside of the sub-region. Then the 
second iteration starts with n new sample points based on the 
mode-pursuing sampling method, and [n/2] number of points 
for model validation.  Since the function is quadratic, the model 
minimum at the first iteration should be the real optimum. Thus 
the second iteration will converge with the maximum number 
of function evaluations nfeu = nfel + 1 + n + [n/2].  For n = 2, 
nfel = 8 and nfeu = 12, which were exactly observed for the QF 
function.   
 

Generally, it can be seen by construction that this algorithm 
requires O(n2) number of sample points.  The number of points 
can be reduced if the quadratic model in Eq. 3 is further 
simplified. 

CONCLUSIONS 
In this work, a novel mode-pursuing sampling (MPS) 

method was developed, which is proven to be able to 
systematically converge to the global optimum if the objective 

R 

Th 

R 

Ts 

L 
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function is continuous in a neighborhood of the optimum.  
Based on MPS, a global optimization method was developed 
for expensive black-box functions.  This optimization strategy 
applies local quadratic fitting to adaptively identify an 
attractive sub-region, in which local optimization can be 
performed.  The MPS is then adjusted by a speed control factor 
to balance the “local” search and global “exploration.” The 
developed optimization method is tested with both low (n=2) 
and high dimensionality (n=16) test problems. It is also applied 
to a real design optimization problem.  Overall, the proposed 
method is found to have following benefits: 

1. In general, it is an effective and efficient global 
optimization method for expensive black-box objective 
functions.  The objective function can be either 
continuous or discontinuous.  The MPS method is proven 
to converge to the global optimum if the objective is 
continuous in a neighborhood of the global optimum. 

2. The method supports simultaneous computation. The 
extent of simultaneous computation can be controlled by 
the parameter np.  

3. Though being random in nature, it is robust.  It also 
requires little parameter tuning. For a new problem, the 
only optimization parameter might need the user 
specification is the cd coefficient, which is also not 
mandatory. 

4. It works for both unconstrained and constrained problems 
with expensive objective functions and inexpensive 
constraints. 

5. Unlike other metamodeling-based global optimization 
methods such as in Refs. [12; 14], it does not call any 
existing global optimization tool.  Therefore, it can work 
as a standalone global optimization method even for 
inexpensive functions. 

 
Through the test, it is also found that for problems with a 

large quantity of local optima, the proposed optimization 
method may be trapped into a local optimum.   This is due to 
the lack of a rigorous indicator of the global optimum.  In such 
cases, the MPS may be applied alone as it guarantees to 
converge to the global optimum, as long as the function is 
continuous in a neighborhood of the global optimum.    
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