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Abstract
Summary Interpretation of change in serial bone densitometry
using least significant change (LSC) may not lead to optimal
decision making. Using the principles of Bayesian statistics
and decision sciences, we developed the Optimal Decision
Criterion (ODC) which resulted in 11–12.5% higher rate of
correct classification compared with the LSC method.
Introduction The interpretation of change in serial bone
densitometry emphasizes using least significant change (LSC)
to distinguish between true changes and measurement error.
Methods Using the principles of Bayesian statistics and
decision sciences, we developed the optimal decision
criterion (ODC) based on maximizing a ‘utility’ function
that rewards the correct and penalizes the incorrect
classification of change. The relationship between LSC
and ODC is demonstrated using a clinical sample from the
Manitoba Bone Density Program.
Results Under certain conditions, it can be shown that using
LSC at the 95% confidence level implicitly equates the

benefit of 39 true positive diagnoses with the harm of one
false positive classification of BMD change. ODC resulted in
an 11% higher rate of correct classification for lumbar spine
BMD change and a 12.5% better performance for classifying
total hip BMD change compared with LSC with this method.
Conclusions ODC has the same clinical interpretation as
LSC but with two major advantages: it can incorporate
prior knowledge of the likely values of the true change and
it can be fine-tuned based on the relative value placed on
the correct and incorrect classifications. Bayesian statistics
and decision sciences could potentially increase the yield of
a BMD monitoring program.

Keywords Bone densitometry . Dual-energy X-ray
absorptiometry . Osteoporosis . Precision

Introduction

Bone density measurement has a primary clinical role in the
initial diagnostic and fracture risk assessment of osteopo-
rosis [1, 2] and is also widely used for serial monitoring of
patients with suspected or confirmed osteoporosis [3].
Serial measurement of bone mineral density (BMD) is
recommended for detecting bone loss in susceptible
individuals and for monitoring the efficacy of treatment
[3, 4]. Despite the fact that methods like dual energy X-ray
absortiometry (DXA) have very good precision compared
with many other biologic measurements, the rate of change
in BMD is slow. Therefore, the longitudinal skeletal
changes that occur over a short follow-up time (1–3 years)
are confounded by the measurement error of the technique
[5, 6].

The International Society of Clinical Densitometry
(ISCD) recommends that measurement error be estimated
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by an in vivo study at each densitometry center. Based on
the root mean square standard deviation (SD) of the
measurement error, a threshold value, called the least
significant change (LSC) should be calculated and used to
distinguish between real change and measurement noise [3,
4]. In statistical terms, LSC is the critical value to test the
frequentist null hypothesis that no change has occurred at a
given confidence level. Although the frequentist theory of
statistics is well developed and has deep roots in experi-
mental sciences, it is now widely acknowledged that
decisions based on frequentist hypothesis testing do not
result in the most efficient use of the available evidence [7].
For instance, consider a clinical trial in which the treatment
effect of the new drug has not reached statistical signifi-
cance. Under classical frequentist approach, the new
treatment has failed to show any superior effect and as
such it should not replace the standard treatment. Never-
theless, the new treatment might still be a better alternative
when the information from similar clinical trials (or expert
opinion) is considered and the treatment effect, costs, and
adverse events are analyzed in a cohesive framework.
Consequently, it has been advocated that medical research
should move from the idea of frequentist significance
testing to the interpretation of the findings in the context
of the experiment in order to maximize the health outcomes
per unit of resource used [8]. This can be achieved using
Bayesian analysis. A Bayesian approach to the interpreta-
tion of an observation would use all relevant information
available before the observation, which can be derived from
the literature, expert opinion, or from the records of
previous patients with similar characteristics, to construct
a priori knowledge. This knowledge is then updated
according to the current observation(s) to build a posteriori
knowledge. The combination of previous information and
current observation often results in more powerful inference
regarding the unobserved parameter of interest [7].

Although the majority of arguments criticizing the
classical frequentist theory in clinical research have
stemmed from inferences in clinical trials, we argue that
the same logic applies to BMD monitoring. Decisions
based on an inherently arbitrary confidence level (such as
the LSC) do not guarantee that maximum benefit is
achieved from BMD testing. The ISCD recommendation
on the choice of 95% as the confidence level (compared
with other options like 80%) was based on the argument
that it is ‘the most widely used in clinical densitometry’ and
because ‘it represents a higher standard, and it potentially
decreases the number of patients being considered for
diagnostic evaluation because of apparent loss of BMD
while on therapy’ [3]. Both arguments are subjective, and
the position does not consider the fact that setting a higher
confidence level increases the chance that a true change
would be missed. Of course, the main purpose of

monitoring is to detect those with unfavorable BMD change
(decrease); hence the sensitivity of a policy in detecting
BMD decline is of paramount importance, a fact that is not
reflected in current recommendation.

An inclusive search for the optimal interpretation of an
observed change entails quantification of the outcome of
BMD monitoring in terms of both costs (e.g., further tests,
medications, and fractures) and health effects (e.g., the
impact of fracture on survival and the quality of life of
patients). Unfortunately, there are major obstacles in the
valuation of such outcomes in BMD monitoring. For
example, it has been shown that the beneficial impact of
treatment on fracture risk is not necessarily mediated
through an increase in BMD [9]. Lack of clarity in the
benefits of serial BMD monitoring should not, however,
preclude a rigorous analysis based on the best information
available. Reasonable assumptions and expert opinion
could lead one closer to adopting an optimal policy.

In the present work we look at this problem from a broad
perspective: we quantify the performance of a BMD
monitoring program by defining a ‘utility function’ that
assigns a numerical score to correct and incorrect classifi-
cation, and then find the policy that maximizes the overall
utility. The utility function can be based on expert opinion,
or if the benefits and costs of serial monitoring are
quantified it can be updated to reflect realistic gains from
BMD monitoring. The analysis is inherently Bayesian, as
quantifying the probability of correct and incorrect classi-
fication requires that the true change in BMD be considered
as a random variable. The resulting decision threshold,
which we call the optimal decision criterion (ODC, units g/
cm2), has the same clinical interpretation as LSC: if the
magnitude of the observed change (defined as the second
minus the first BMD) is below this criterion, the subject is
deemed to have had an unfavorable change in BMD.

Methods

General context

Our proposed method for classification of BMD change is
based on the following assumptions:

1. Measurement error has a normal distribution with zero
mean, and its variance is independent of BMD change.

2. Given a ‘true’ change in a patient, we can classify this
change either as favorable or unfavorable.

3. The magnitude of the measurement error (SD) is
known with reasonable accuracy.

4. We are able to express our prior knowledge of the
likely change in the BMD of a patient as a normal
distribution.
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The current ISCD recommendation is based on assump-
tions 1 and 3; in the case of n1 baseline and n2 follow-up
measurements and σe the measurement error estimated from
the in vivo precision study, the ISCD-recommended LSC
would be [5, 10]:

LSC ¼ Z 0 1þ a
2

� �
se

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n1
þ 1

n2

r
ð1Þ

where Z′ is the inverse of the cumulative density function
of the standard normal distribution, and α is the desired
two-tailed confidence level (equivalently 1-α is called the
significance level). For the most common situation where
n1=n2=1 and α=95% this amounts to LSC=2.77 x σe.

We denote the true change in BMD as x, and the cutoff
that we would use, had we known the true change, to
distinguish the favorable change from unfavorable change
as Tx. Unfortunately measurement error does not let us
utilize Tx in our decision. Instead, we observe a BMD
change (denoted by y) which is confounded by measure-
ment error. We will make our decision based on Ty, a
threshold on the observed change. It might be suggested
that as the measurement error has zero mean, the thresholds
on the observed and true changes should be equal (Ty=Tx).
This is generally not the case, however, as the following
analyses suggest. Also, unlike frequentist analysis, there is
no null hypothesis defined as ‘no change in BMD’. In the
Bayesian context, zero change is not a special condition and
it can be unfavorable or favorable depending on Tx.

Specific context

The first step in finding the optimal criterion is to construct
a posterior distribution of the true change given the
observed change Y and our prior information on x. This is
the conditional distribution of x on Y. Using the principles
of Bayesian statistics [11], we have

xjY � N
s2
pmx þ s2
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sp ¼
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1
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σp is the SD of the measurement error in current experiment
and n1 and n2 are the number of baseline and follow-up
measurements for the present subject, respectively. In
practice often n1=n2=1; hence sp ¼

ffiffiffiffiffiffiffiffiffi
2:se

p
.

Eq. 2 is the distribution introduced by Nguyen et al. to
construct Bayesian credible interval around the point
estimate of change in BMD [11]. One can use the tail
probabilities of the normal distribution with the above
parameters to calculate the critical value of Y such that if

the observed Y is below this value, the probability that
BMD has truly decreased is above a certain confidence
level. The absolute value of the critical value on Y is always
smaller than the LSC. Therefore, a smaller observed change
in BMD in the ODC approach is needed to be considered
significant, indicating the additional power provided by
incorporating prior knowledge.

The next step in determining the optimal policy is to
calculate the probability of correct and incorrect decision
given an observed change. Defining an unfavorable true
change as the one that falls below the actual threshold
(x<Tx), and a positive detection (of BMD decline) as an
observed change below our defined threshold (y<Ty), four
conditions can arise:

True positive TPð Þ: x < Tx; y < Tyð Þ
False positive FPð Þ: x > Tx; y < Tyð Þ
True negative TNð Þ: x > Tx; y > Tyð Þ
False negative FNð Þ: x < Tx; y > Tyð Þ
In order to calculate an overall score for an approach in

categorization of an observed BMD change, we need to
assign a numerical score to each of the above conditions.
Obviously, TP and TN are favorable and receive higher
scores while FP and FN are unfavorable situations and are
given lower values. The utility function is then defined as
the weighted sum of scores across quadrants with weights
being the probability that the subject will fall into that
quadrant. Namely:

U ¼ PTP*STP þ PFP*SFP þ PTN*STN þ PFN*SFN ð4Þ

S and P correspond to the score of each quadrant and
probability that a subject would be in that quadrant,
respectively. Calculation of PTP, PFP, PTN, and PFN are
presented in Appendix 1. The optimal decision criterion is
the Ty that maximizes the above utility function. It is shown
in the Appendix 2 that ODC can be written as:

ODC ¼ Tx þ
s2
p

s2
x

Tx � mxð Þ � Z 0 K

K þ 1

� �
sp

sx

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
x þ s2

p

q
ð5Þ

K in the above formula is defined as STN�SFP
STP�SFN

and can be
interpreted as the number of true positive diagnoses needed
to compensate for the harm of one false positive classifi-
cation of change. For example, K=2 if we accept that the
harm caused by incorrectly identifying and treating a
favorable change as an untoward change is equal to the
benefit of correctly identifying two unfavorable changes.
Alternatively, the term K

Kþ1 in Eq. 5 can be interpreted as the
‘treatment threshold’ as it is known in clinical decision
making [12], and is the threshold on the probability of the
disease (unfavorable BMD change in this context) above
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which treatment is justified. Therefore, to find the optimal
threshold, it turns out that instead of four scores we only
need a single metric, K, with a straightforward clinical
interpretation, though it is still necessary that a score be
assigned to each quadrant so that the absolute utility for a
given policy can be calculated.

The above equation can also be solved for K to find the
implicit value of K for a policy based on an arbitrary
threshold Ty. For example, one can use LSC as Ty in the
above equation to find out the implicit value of K for a
BMD monitoring policy based on that LSC.

Relationship between ODC and LSC

Assuming that the treatment threshold is zero (Tx=0) and
we have no prior information about the true change
(sx ! þ1), Eq. 4 reduces to the LSC formula (Eq. 1)
with the only difference being that the confidence level is
now a function of K:

K ¼ 1þ a
1� a

ð6Þ

This connects the arbitrary confidence level of LSC to
the utility function and enables us to examine the benefit of
recommendations based on LSC at a certain confidence
level. For example, the value of K that corresponds to 95%
confidence level, the most widely used value for LSC is 39.
In other words, by using LSC with 95% confidence level,
and assuming no prior information on BMD change, one is
implicitly equating the harm of one false positive detection
of change with the benefit of true detection of change in 39
patients. The value of K for 80% confidence level is 9.

A very important situation is when K is set to 1, in which
case we are implicitly assuming that the benefit of one true
positive categorization is equal to the harm of one false
positive categorization. A policy based on such utility
function actually maximizes the proportion of correct
classification. The proportion of correct classification for
such a policy is estimable from the equations provided in
Appendix 1 by assigning a score of 1 for TP and TN and 0
for FP and FN. A sample HTML calculator for Bayesian
interpretation of BMD change using the ODC approach is
available from the authors on request.

Example using a clinical dataset

We evaluated the ODC approach to classification of
unfavorable BMD change (decrease) using data from the
Manitoba Bone Density Program [13]. The program
provides all bone density services to the population of
Province of Manitoba, Canada, and maintains an electronic
database of all clinical DXA examinations performed since
1990 [14]. The DXA scans in our densitometry clinics are

performed and analyzed in accordance with the manufac-
turer’s recommendations. A pencil-beam instrument (Lunar
DPX, GE Lunar, Madison, WI) was the primary instrument
used prior to 2000 and a fan-beam instrument (Lunar
Prodigy, GE Lunar, Madison, WI) was used after that date.
All densitometers underwent daily assessment of stability
using an anthropomorphic spine phantom and each showed
excellent long-term phantom stability (coefficient of varia-
tion [CV] <0.5%).

Prior information on the probability of true change was
elicited by analyzing data from all individuals who had
baseline and follow up BMD measurements on the same
instrument between 1994 and 2002 (mean interval between
scans 21±9 months). We excluded cases where scanning
was performed on different instruments and those that did
not report the lumbar spine and the total hip BMD. A total
of 1420 scan-pairs were available for the analysis and is
referred to as the ‘clinical monitoring population’. For
simplicity, analysis is performed for the overall patient
population and important factors affecting the prior knowl-
edge (e.g., interval between scans, gender, and treatment)
were ignored. Measurement error was estimated based on
198 lumbar spine scan-pairs and 193 total hip scan-pairs
obtained from an independent convenience sample of
female individuals referred for bone density testing (mean
interval between scans 6±5 days) and usually done by two
different technologists, referred to as the ‘reproducibility
population’. The clinical monitoring and reproducibility
populations have been previously described [15]. This
report was reviewed and approved by the facility’s Office
for Clinical Research.

Results

The SD of the measurement error estimated from the
monitoring sample was 0.0174 g/cm2 for the lumbar spine
and 0.0094 g/cm2 for the total hip, which gives a 95%
confidence level LSC of 0.0482 g/cm2 and 0.0260 g/cm2,
respectively. The distribution of BMD change in both
lumbar spine and hip conformed to the assumption of
normality (Fig. 1), with mean 0.0148 g/cm2 and SD
0.0482 g/cm2 for the lumbar spine and mean 0.0067 g/
cm2 and SD 0.0376 g/cm2 for the hip. However, it should
be kept in mind that the distribution of change in the
clinical monitoring database is also affected by measure-
ment error, and therefore to estimate the SD of the true
change the effect of measurement error should be removed
from the estimate. Since we assume the measurement error
and BMD change in clinical population are independent,
and according to the theorem that the variance of the sum of
independent variables is the sum of their variances [16],
such adjustments can be performed by simply subtracting
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twice (due to two measurements) the variance of measure-
ment error from the variance of change in the clinical
sample. The adjusted SDs for the spine and hip are
therefore 0.0414 g/cm2 and 0.0352 g/cm2, respectively.

Setting the parameters from our dataset in Eq. 5, with
K=1, the ODC would be -0.0052 g/cm2, and based on
equation in Appendix 1 with STP=STN=1 and SFP=SFN=0,
results in 84.1% correct classification. The classic 95%
confidence level LSC results in 73.1% correct classifica-
tions. Therefore, compared with LSC, ODC has 11% higher
rate of correct classification. The same analysis on the hip
site results in ODC of -0.0010 g/cm2, with 88.9% correct
classification, which represents12.5% better performance
compared with LSC.

The relationship between ODC, LSC, and different
values of K for the monitoring population is illustrated in
Fig. 2. The left and right panels show the relationships for
lumbar spine and hip, respectively. The intersection of the
curve and horizontal lines is the value of K that corresponds
to LSC at that level. For the lumbar spine, the 95% LSC and
ODC are equal when K=14.1, and 80% LSC and ODC are
equal when K=4.6. In other words, by using LSC at 95%

confidence level, one is accepting one false positive
classification of change for each 14.1 true positive
classification. Similarly for the hip, the 95% and 80%
LSC are equal to ODC at K=24.8 and 6.8, respectively.

Discussion

The conceptual framework for the interpretation of serial
BMD measurements presented here deviates from the LSC
approach as recommended by several groups, including the
ISCD, in two major ways: first, it is based on incorporating
the ‘prior’ knowledge of the true change, and second, the
cutoff point placed on the observed change is based on an
optimization algorithm. As suggested in our clinical
examples, both changes could help improve the yield of
BMD monitoring policies. Using the proportion of correct
classification of increase/decrease in BMD as the utility
function, we showed that ODC resulted in more than 10%
higher rate of correct classification for both lumbar spine
and total hip BMD change in our clinical monitoring
sample. In addition, the stronger theoretical foundations of
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ODC compared with LSC, and the ability of ODC to
incorporate clinicians’ prior knowledge as well as their
tradeoff between correct and incorrect diagnosis, can lead
to more insightful and confident decisions.

The ability to incorporate the prior knowledge on the
likely outcome of the experiment has been simultaneously
considered the strength and weakness of Bayesian statistics
[17]. On one hand, at many times we already know much
about the likelihood of the outcome we are going to
observe and considering such knowledge would enhance
our power in making inference based on the results of the
observation. On the other hand, the heuristic principles
implemented by the decision maker to generate subjective
probability (namely the availability, representativeness, and
anchoring mechanism) are known to be prone to several
biases [18]. However, there are at least three arguments in
favor of incorporating prior knowledge in the context of a
BMD monitoring program. The first and foremost is the
crucial difference between a BMD screening practice and a
large sample epidemiological experiment. Unlike formal
epidemiological studies where the large sample size often
attenuates the impact of prior belief, each BMD measure-
ment amounts to a very small study with very limited
power, and an efficient use of prior knowledge could
significantly increase the power of the decision maker.
Second, there is often enough data, either from past patients
with the similar characteristics or from the published
literature, which could be used to derive prior distribution
without losing the credibility of results as if they are based
on subjective and debatable priors. Finally, it should be
noted that the current frequentist approach is not assump-
tion-free. As shown in this work, it amounts to using a
uniform distribution that can take any value for the prior
knowledge of BMD change. While an informative prior
might be biased at some instances, a distribution that can
accommodate extreme and biologically implausible values
is definitely suboptimal.

Many clinical densitometry centers keep records of the
past measurements along with important characteristics of
patients. These data could be used to check the assumption
of normality and to estimate the mean and variance of the
prior distribution in different subgroups of patients (e.g.,
early and late postmenopausal women, patients on gluco-
corticoids, or patients on antiosteoporotic treatments) or in
the whole population if practicality is a concern. Such an
approach requires that future and past subjects belong to the
same population so that the parameters of the distribution
estimated from the past subjects are applicable to the
prospective cases. In the absence of any major change in
the clinical setting, this seems to be a reasonable assump-
tion. On the other hand, prior distributions could be based
on the results of epidemiologic findings or expert opinion.
For example, Nguyen et al. [11] have estimated the mean

and SD of change in the clinical population from a meta-
analysis of alendronate clinical trials [19], and an another
study [20] has rigorously evaluated the mean and SD of the
annual rate of change in BMD by gender and age groups
from the Dubbo Osteoporosis Epidemiology Study [21].
These data can be used as parameters of the prior
distribution for the method described in this work. This
has the added advantage of bringing homogeneity to the
reports from different centers. Care should be taken,
however, as various factors such as differences in patients’
characteristics could potentially invalidate such inferences.

The Bayesian approach in interpretation of BMD and
its change has previously been proposed by Nguyen et al.
[8], who proposed combining the distribution of change in
the population and measurement error to construct Bayesian
confidence intervals (credible intervals). However, the
calculated interval is still used to test the hypothesis
that no change has occurred, and the authors do not
proceed towards defining a cutoff on the observed change
based on the relative valuation of the correct and incorrect
classification.

One of the findings of our study was that under certain
conditions there is a direct relation between the significance
level in LSC and implicit assumption on the relative value
of true positive versus false positive classification. The two-
tailed 95% confidence level currently recommended results
in a policy that under the implicit assumption of no prior
information equates the benefit of correct detection of
change (K in our notations) in 39 patients with the harm of
misdetection of one truly negative change. When a more
rational prior distribution was selected based on our clinical
database, the current ISCD recommendation equated 14 and
25 true positives with one false positive classification for
the lumbar spine and the hip, respectively. Although it
seems that in most clinical scenarios the harm of false
positive detection outweighs the benefit of the true positive
detection, and therefore K is more than one, these ratios are
quite high and the decision maker might be willing to
accept higher false positive rates in return for greater
sensitivity to identify BMD change.

The aim of this work was to develop the methods and
theoretical framework for a Bayesian approach to classifi-
cation of BMD change, and any recommendation based on
these results should also consider practicality and ease of
use. Recognizing the difficulties of using different
approaches for different subgroups, the ISCD expert panel
recommended using LSC with fixed significance level for
all scenarios [3]. Here it is also possible that a guideline
based on a unique ODC be proposed that applies to most
clinical contexts. This, however, should not discourage a
competent clinician from using the full power of this
approach based on his or her own prior knowledge and
utility function.
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We are aware of shortcomings in our analysis. Although
the assumption of a normal distribution on the prior
knowledge of change does not seem to be restrictive for a
subjective assessment, the assumption of normality might
not hold if prior distribution is estimated from real data.
This was not the case, however, in our clinical data set.
Another limitation of this approach is that it assigns the
same score to all subjects falling in a specific quadrant. It
might be argued that for patients whose BMD decline is
much faster than average, correct identification of change
and prompt management is more critical and the penalty of
misclassification of these subjects should be higher than
those with modest decline in BMD. This can theoretically
be incorporated in a Bayesian approach. However, under
such assumptions, a closed form solution for ODC might
not exist, though numerical simulation could still be used
especially in a one-time analysis that would inform a
guideline. Another limitation is that it was assumed that
measurement error is accurately known, while in practice it
is usually estimated from an in vivo precision study with
limited power. The impact of uncertainty in the measure-
ment error was not analyzed in this study.

While different utility functions could be used for the
optimization procedure, the most rational choice seems to
be the one based on the net benefit approach [22]. In this
method, the score of the true and false classification of
changes is equal to their net benefit, which incorporates
both the costs and health outcomes in a unified framework
and thus is the most inclusive answer to the choice of the
best policy [22]. It enables estimating the monetary value of
using the optimal versus a non-optimal criterion and will
also make possible comparing the benefit of the monitoring
policy with other health interventions. As mentioned
earlier, however, such approach requires that the effect of
BMD monitoring practice on the important outcomes (e.g.,
fractures) be identified. In the absence of definitive
evidence, a reasonable alternative is for an expert panel to
make subjective judgments on the relative benefits/harms of
detecting true positive and false positive changes to derive
ODC for important subgroups of individuals undergoing
BMD monitoring. Various techniques, such as the Delphi
method [23], can be used to elicit the expert opinion in a
rigorous way.

In summary, frequentist hypothesis testing in serial BMD
monitoring using the LSC method has significant limita-
tions. A more rigorous interpretation based on the princi-
ples of Bayesian statistics and decision sciences has the
potential to significantly improve the outcome of BMD
monitoring practice.
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Appendix

Appendix 1. Calculation of the probability of TP, TN, FP,
and FN

Using the notations describes in the text and the general
assumptions of our approach (see Methods), we have

x � N μx;σxð Þ
yjx � N x;σp

� �
Based on the properties of the normal distribution [24],

and that e and x are assumed independent, the joint
distribution of the x and y is a bivariate normal:

x

y

2
4
3
5 � BVN

μx

μx
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5; σ2

x σ2
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σ2
x σ2

x þ σ2
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The first and second parameters are the mean and
covariance matrix of the bivariate normal distribution,
respectively. The probability that a subject falls into each
category can, therefore, be calculated using the cumulative
distribution function of the bivariate normal distribution
from the above equation. Defining the function Ф(a,b,ρ) as
the cumulative distribution function of the standard bivar-
iate normal distribution with at point (a, b) with correlation
function ρ, we will have:

PTP ¼ 6 x�Tx
σx

;
y�Tyffiffiffiffiffiffiffiffiffiffi
σ2xþσ2y

p ; σxffiffiffiffiffiffiffiffiffiffi
σ2xþσ2y

p
� �

PFP ¼ 6 x�Tx
σx

;
Ty�yffiffiffiffiffiffiffiffiffiffi
σ2xþσ2y

p ; σxffiffiffiffiffiffiffiffiffiffi
σ2xþσ2y

p
� �

PTN ¼ 6 Tx�x
σx

;
Ty�yffiffiffiffiffiffiffiffiffiffi
σ2xþσ2y

p ; σxffiffiffiffiffiffiffiffiffiffi
σ2xþσ2y

p
� �

PFN ¼ 6 Tx�x
σx

;
y�Tyffiffiffiffiffiffiffiffiffiffi
σ2xþσ2y

p ; σxffiffiffiffiffiffiffiffiffiffi
σ2xþσ2y

p
� �

Appendix 2. Derivation of ODC

One way to derive ODC is to solve the derivate of the
utility function in Eq. 4 for Tx. However, an easier way is
to consider the utility of a decision based on observing
change Y

U ¼ Y < Ty z:STP þ 1� zð ÞSFP change detectedð Þ
Y > Ty z:SFN þ 1� zð ÞSTN no change detectedð Þ

�
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while from Eq. 2:

z ¼ Z
Tx � s2

pmxþs2
xY

s2
xþs2

pffiffiffiffiffiffiffiffiffiffi
s2
ps

2
x

s2
xþs2

p

r
0
BB@

1
CCA

The goal is to find Ty that results in the selection of the
maximum of the two terms in U for all Y. This would be
achieved by matching Ty to a Y for which the utilities for
positive and negative classification are equal. For any Y
below this critical value, our policy would detect an
unfavorable change and the utility of our decision equals
the first term, which is also the maximum of the two for the
same Y given the fact it is a descending function of Y as
long as STP>SFP and STN>SFN. Setting the two terms equal
and solving for Y, we will have:

z:STP þ 1� zð ÞSFP ¼ z:SFN þ 1� zð ÞSTN ) z

¼ STN � SFP
STN � SFP þ STP � SFN

Solving for Y yields Eq. 6 for ODC.
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