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with an ordinal response and mismeasured predictor variables. We obtain likelihood-based and method of
moments estimators that are consistent and asymptotically normally distributed under general conditions.
These estimators are easy to compute, perform well and are robust against the normality assumption for the
measurement errors in our simulation studies. The proposed method is applied to both simulated and real
data. The Canadian Journal of Statistics 47: 653–667; 2019 © 2019 Statistical Society of Canada
Résumé: Les chercheurs en médecine, en santé et en sciences sociales sont régulièrement confrontés
à des variables ordinales comme des mesures auto-déclarées de santé ou de bonheur. Pour modéliser
une variable réponse ordinale, il est fréquent qu’une erreur de mesure affecte les covariables telles que
l’attitude, le revenu familial ou des variables rétrospectives. Ignorer de telles erreurs de mesure peut causer
un biais préjudiciable à l’estimation des paramètres. Les auteurs proposent une approche par variable
instrumentale pour l’estimation d’un modèle probit pour une réponse ordinale et des prédicteurs mal
mesurés. Ils obtiennent des estimateurs par le maximum de vraisemblance et la méthode des moments qui
sont convergents et asymptotiquement normaux sous des conditions générales. À l’aide de simulations, les
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1. INTRODUCTION

Ordinal dependent variables are common in the medical, health, social, and behavioural sciences
(Agresti, 2002, 2010). For instance, Tosteson, Stefanski & Schafer (1989) modeled ordinal
health outcomes as a function of pollution measures that are subject to error. Mohanty (2014)
investigated an ordinal happiness variable as a function of income and attitudes. Cranfield &
Magnusson (2003) used an ordered probit model to analyze the willingness of Canadian
consumers to pay higher premiums for pesticide-free products. Varin & Czado (2010) studied a
mixed probit model for ordinal longitudinal data and applied it to the analysis of determinants of
migraine severity in a group of Canadian patients. Baetschmann, Staub & Winkelmann (2015)
used an ordered logit model to study life satisfaction in Germany. Lu, Poon & Cheung (2015)
proposed a test for the multiple comparison of several treatments with a control in clinical trials
and applied the method to compare the efficacy of intravenous treatment with various doses of
fentanyl and lidocaine for reducing the pain on injection of propofol in surgical patients.

More real data examples and applications of the various categorical response models may
be found in Agresti (2002, 2010). McCullagh (1980) developed a maximum likelihood method
for parameter estimation in ordinal response models. More recently, an overview and survey of
methods for ordered categorical data analysis was provided by Liu & Agresti (2005). See also
Peyhardi, Trottier & Guedon (2015) for a discussion of methodology developments in categorical
response models.

In particular, Zhu et al. (2014) used a logistic model to predict the pathologic responses
of a group of breast cancer patients. where the predictors included certain tumour pathologic
variables as well as haemoglobin variables measured by ultrasound-guided near-infrared optical
tomography. In that study the original response variable took five ordinal values which were
dichotomized so that a logistic model could be used. Apparently the original responses contained
much more information and therefore using them would lead to more accurate predictions.
Moreover, some predictors such as haemoglobin variables can hardly be measured precisely.

In practice, many practical data analyses involve predictor variables, such as pollution, atti-
tudes and family income, that cannot be measured precisely and instead only proxy observations
are available to estimate model parameters. It is well known that statistical methods which ignore
such measurement error result in biased and inconsistent estimates, and therefore misleading
conclusions (Carroll et al., 2006). While the problem of measurement error in regression models
with continuous or binary response variables has been intensively studied, the same cannot be
said for models with ordinal response variables as well as measurement error in the covariates.
For example, see Huang & Wang (2001), Xu, Ma & Wang (2015) and Yi (2017), and the
references therein. Some authors, such as Li & Hsiao (2004), Abarin & Wang (2012) and Li &
Wang (2012), have studied this problem in the context of generalized linear models, while Chen,
Yi & Wu (2014) investigated this misclassification problem in a longitudinal data model with
both a categorical response and covariates.

In this article we consider a probit model with ordinal response and predictor variables that
are measured with error. In particular, we use an instrumental variable (IV) approach to derive
consistent and asymptotically normally distributed estimators for the unknown parameters. This
is achieved by using a linear projection of the unobserved true predictors onto the instrumental
variables to create an auxiliary probit model with observed predictors, so that we can use
the standard likelihood method. Within this framework we can also derive method of moments
estimators (MMEs) which are easier to compute numerically. Our simulation studies demonstrate
that the proposed estimators have satisfactory finite sample performances under standard model
assumptions as well as under some mis-specified models.

Methods that involve the use of IVs have been widely used in measurement error models.
One advantage of this approach is that these methods require weaker assumptions than most other
(consistent) estimators in measurement error models. In fact, the main requirement is that the
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IVs be correlated with the observed covariate but independent of the measurement and equation
error. For example, a popular method in the literature is to use replicate data to estimate the
measurement error variances. In this case one member of the replicated data qualifies as an IV.
More generally, if longitudinal or repeatedly measured data are available, then the measurements
at different time points can serve as IVs.

The IV method has been used in binary regression models by Stefanski & Buzas (1995)
and Buzas & Stefanski (1996a), and in generalized linear models by Buzas & Stefanski (1996b)
and Abarin & Wang (2012). In particular, Huang & Wang (2001) constructed corrected-score
estimators for binary logistic models, while Xu, Ma & Wang (2015) proposed a semiparametric
efficient method. Moreover, the IV method is also used in censored linear regression models
by Wang & Hsiao (2007) and in general nonlinear models by Wang & Hsiao (2011). Our
simulation studies show that our proposed estimators exhibit performance that is similar to that
of the estimator described Xu, Ma & Wang (2015) in a semiparametric model and also to that
of the maximum likelihood estimator of Buzas & Stefanski (1996a) in a probit model where all
the variables are assumed to follow normal distributions. However, in their work no estimate of
the covariance matrix of the parameter estimator was provided. In addition to its computational
simplicity, a further advantage of our proposed procedure is that it produces consistent estimators
for the measurement error variances, which are not available if the alternative methods mentioned
above are used.

In statistics, two commonly used methods in general nonlinear measurement error models
are regression calibration (Carroll & Stefanski, 1990) and simulation extrapolation (SIMEX)
(Cook & Stefanski, 1994). However, these methods give only approximately consistent estimators
and, therefore, are only applicable when the measurement errors are small. Furthermore, extra
simulation procedures such as use of the bootstrap are required to compute the variances of the
estimators.

The remainder of this article is organized as follows. In Section 2 we introduce the model
and its assumptions. In Section 3 we develop an IV estimator and establish its consistency
and asymptotic normality. We also propose an alternative estimator based on the method
of moments. In Section 4 we employ Monte Carlo simulations to study the finite sample
properties of our proposed estimators under various conditions. In Section 5, we apply our
methods to analyze a health survey data set. Finally, conclusions and discussion are presented
in Section 6. All mathematical proofs and derivations are provided in the accompanying
Appendix.

2. THE MODEL

Let the observed response variable Y =
∑J−1

𝑗=1 1
(
t𝑗 ≤ Y∗), where 1(⋅) is the indicator function

and −∞ < t1 < t2 < · · · < tJ−1 < ∞ are unknown thresholds and J ≥ 2. Thus Y is an ordinal
variable taking on values 𝑗 = 0, 1, 2,… , J − 1. Obviously Y is a binary random variable when
J = 2. The underlying latent response Y∗ is related to predictor variables X∗ and X via

Y∗ = 𝛼1 + 𝜶′
2X∗ + 𝜶′

3X + 𝜖, (1)

where X∗ and X are mismeasured and correctly measured predictors respectively, 𝜶 =
(𝛼1,𝜶

′
2,𝜶

′
3)

′ is the vector of unknown parameters, 𝜖 ∼ N(0, 𝜎2
𝜖
) and is uncorrelated with X∗

and X. Note that subtracting a constant from the latent variable Y∗ and t𝑗 , 𝑗 = 1, 2,… , J − 1
or dividing these quantities by a positive constant will give the same values of the observed
response Y . Therefore, for the purpose of model identifiability, the location and scale of Y∗

can be set to t1 = 0 and 𝜎2
𝜖
= 1. Another way of normalizing the location of Y∗ is to set the

intercept 𝛼1 equal to 0 and leave t1 unrestricted. However, the normalization is not a restriction
of generality and is similar to the standard logistic model where the standard logistic distribution
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is used, for example, Long (1997). See also Agresti (2002, pp. 277–279) for the latent variable
modeling of ordinal responses.

Furthermore, assume that we observe

W = X∗ + U, (2)

where the measurement error U ∼ N(0,𝚺uu) and is independent of X∗, X and 𝜖. Throughout the
article we will denote the mean by 𝝁 and the variance–covariance matrix by 𝚺 with subscripts
to indicate the random variables of interest. For instance, the mean of a random vector X is 𝝁x,
its variance-covariance matrix is 𝚺xx, and the covariance matrix between two random vectors X
and W is 𝚺xw.

Measurement error can induce a lack of model identifiability so that the unknown parameters
in the model cannot be uniquely determined by the sampling distribution of the data and therefore
cannot be estimated consistently. To ensure identifiability, usually extra data or information is
required in addition to the main sample, for example, validation data, replicate measurements,
or instrumental data. For examples see Carroll et al. (2006) and Wang & Hsiao (2011).

In this article we assume that an IV Z is available that is correlated with X∗ but independent
of U and 𝜖. Let 𝜷2 = 𝚺−1

zz 𝚺zx∗ , 𝜷1 = 𝝁x∗ − 𝜷′2𝝁z and write the linear projection of X∗ on Z as

X∗ = 𝜷1 + 𝜷′2Z + 𝜹, (3)

where the projection error 𝜹 satisfies E(𝜹) = 0 and Cov(𝜹,Z) = 0 by construction. We also
assume that dim(Z) ≥ dim(X∗) and the covariance matrices 𝚺zx∗ ,𝚺zz have full column rank. The
first assumption is necessary so that we have at least as many IVs as X∗ covariates that are
measured with error. This is a well-known requirement for IV estimation in order to be able
to find unique estimates of each coefficient. The full column rank assumption is necessary to
ensure that no IVs are redundant and that they are sufficiently correlated with X∗. The IVs can be
continuous or discrete variables. For further discussion of these IV assumptions see, for instance,
Bollen (2012) or Greene (2012). Our primary interest is to obtain consistent estimators of the
regression parameter 𝜶 in the probit model specified in Equation (1).

3. INSTRUMENTAL VARIABLE ESTIMATION

In this section we derive consistent estimators of unknown parameters in the model specified
in Equations (1)–(3) based on the i.i.d. random sample (Yi,Xi,Wi,Zi), i = 1, 2,… , n. We first
show that the parameter 𝜷 = (𝜷1, 𝜷

′
2) in the instrumental equation, that is, Equation (3), is

straightforward to estimate by combining Equations (2) and (3). Indeed, since Z is uncorrelated
with 𝜹 and U, by Equations (2) and (3) we have 𝜷2 = 𝚺−1

zz 𝚺zw and 𝜷1 = 𝝁w − 𝜷′2𝝁z. Therefore
𝜷 can be consistently estimated by the corresponding sample moments of Zi and Wi. In the
following we derive two consistent estimators for 𝜶 using a likelihood approach and the method
of moments.

3.1. A Likelihood-based Estimator
First, we substitute Equation (3) into Equation (1) to obtain

Y∗ = �̃�1 + �̃�′2Z + �̃�′3X + V , (4)

where �̃�1 = 𝛼1 + 𝜷′1𝜶2, �̃�2 = 𝜷2𝜶2, �̃�3 = 𝜶3, and V = 𝜶′
2𝜹 + 𝜖 has mean 0 and variance 𝜎2

v =
𝜶′

2𝚺𝛿𝛿𝜶2 + 1. After dividing both sides of Equation (4) by 𝜎v, it follows that the result becomes
a standard ordinal probit model and therefore 𝜸 = (𝛾1, 𝜸

′
2, 𝜸

′
3)

′ with 𝜸𝑗 = 𝜎−1
v �̃�𝑗 , 𝑗 = 1, 2, 3,
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can be consistently estimated by the method of maximum likelihood outlined in McCullagh
(1980).

To obtain the estimator for 𝜶, we rewrite its relation with 𝜸 as

𝜶 = 𝜎vL𝜸, (5)

where

L =
⎛⎜⎜⎝

1 −𝜷′1M 0
0 M 0
0 0 I

⎞⎟⎟⎠ , (6)

Here I is an identity matrix, M = (𝚺wz𝚺−1
zz 𝚺zw)−1𝚺wz and 𝚺zw = 𝚺zx∗ which has full rank by

assumption. We show in the Appendix that the standard deviation of V is

𝜎v =
(
𝜸′2𝚺zz𝜸2 + 2𝜸′2𝚺zx𝜸3 − 𝜸′2M′𝚺wx𝜸3 + 1 − 𝜂𝜌𝚺′

wyM𝜸2
)−1∕2

, (7)

where
𝜂 =

(
𝜸′2𝚺zz𝜸2 + 2𝜸′2𝚺zx𝜸3 + 𝜸′3𝚺xx𝜸3 + 1

)1∕2
, (8)

𝜌 =
{∑J−1

𝑗=1 𝜙
[
Φ−1(p𝑗)

]}−1, p𝑗 = P(Y ≤ 𝑗 − 1), 𝑗 = 1, 2,… , J − 1; 𝜙(⋅) and Φ(⋅) are the
standard normal density and distribution functions, respectively, and Φ−1(⋅) denotes the inverse
function of Φ(⋅).

From Equations (5)–(8) we can see that, besides 𝜸, 𝜶 also depends on other parameters
such as p1, p2,… , pJ−1 and 𝚺wy, which can be estimated by their corresponding sample
moments. However, the derivation of the asymptotic covariance matrix for the estimator for
𝜶 will be complicated if these moment estimators are correlated with the estimator of 𝜸. In
order to overcome this problem we propose to obtain these estimators using separate subsamples
Yi,Wi,Xi,Zi, i = 1, 2,… , n1 and Yi,Wi,Xi,Zi, i = n1 + 1, n1 + 2,… , n, where 1 < n1 < n is such
that n1 → ∞ as n → ∞ and n∕n1 tends to a positive constant.

Thus all the model parameters can be estimated as follows: First, estimate the first two
moments of X,W,Z using the sample moments of Xi,Wi,Zi, i = 1, 2,… , n. Second, evaluate esti-
mators p̂𝑗 =

∑n1
i=1 1(Yi ≤ 𝑗 − 1)∕n1, �̂�wy =

∑n1
i=1 WiYi∕n1, �̂�w =

∑n1
i=1 Wi∕n1, �̂�y =

∑n1
i=1 Yi∕n1

and �̂�wy = �̂�wy − �̂�w�̂�y using the data Yi,Wi, i = 1, 2,… , n1. Third, calculate the maximum
likelihood estimator �̂� using the data Yi,Xi,Zi, i = n1 + 1, n1 + 2,… , n. Finally, calculate the
estimates �̂�v via Equations (7) and (8) and �̂� using Equation (5).

Now we investigate the asymptotic properties of the likelihood-based IV estimator �̂� defined
in Equation (5). Following the standard regression literature we consider the conditional asymp-
totic distribution of �̂� given the observed predictors Xi,Wi,Zi, i = 1, 2,… , n, so that their
moments are treated as known for the sake of notational convenience. Let 𝝍 = (p1, p2,… ,

pJ−1,𝝁
′
wy, 𝜇y)′ and �̂� =

∑n1
i=1 Ti∕n1, where Ti =

(
1(Yi ≤ 0),… , 1(Yi ≤ J − 2),W′

iYi,Yi
)′. Then

by the central limit theorem
√

n1(�̂� − 𝝍)
d
→ N(0,𝚺𝜓 ) as n1 → ∞, where 𝚺𝜓 = plimn1→∞∑n1

i=1(Ti − T̄)(Ti − T̄)′∕n1. Furthermore, under general conditions the maximum likelihood esti-

mator of 𝜸 satisfies
√

n − n1(�̂� − 𝜸)
d
→ N(0,𝚺𝜸) as n − n1 → ∞, where 𝚺𝜸 can be estimated

in the usual likelihood set-up and is a part of the standard output of many statistical software
packages, including R.

The asymptotic distribution of �̂� can be obtained via the delta-method based on the first-order
Taylor expansion

�̂� − 𝜶 = 𝜕𝜶

𝜕𝝍 ′ (�̂� − 𝝍) + 𝜕𝜶

𝜕𝜸′
(�̂� − 𝜸). (9)
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However, derivation of the asymptotic covariance matrix of �̂� would be complicated if the
estimators �̂� and �̂� were correlated. This is the reason we use separate samples to estimate them.
Hence, we have the following asymptotic behaviour for our proposed estimator, the proof of
which is provided in the accompanying Appendix.

Theorem 1. Suppose 1 < n1 < n satisfies limn→∞ n∕n1 = c1 ∈ (1,∞) and let 𝚺𝜓 and 𝚺𝛾 be
the asymptotic covariance matrix of �̂� and �̂�, respectively. Then under the specified assumptions,
and conditional on Xi,Wi,Zi, i = 1, 2,… , n,

√
n (�̂� − 𝜶)

d
→ N

(
0, c1A𝚺𝝍A′ + c2B𝚺�̃�B′) as n → ∞,

where c2 = c1∕(c1 − 1),

A =
𝜌𝜎y∗𝜶𝜶

′
2

2
(
𝜌𝚺wyΦ−1(p1),… , 𝜌𝚺wyΦ−1(pJ−1), I,−𝝁w

)
, (10)

B = 𝜎vL −
𝜎v𝜶

2
(0, d1, d2), (11)

d1 = 2𝜶′
2𝚺wz + 2𝜶′

3𝚺xz − 𝜶′
3𝚺xwM − 𝜎y∗𝜌𝚺′

wyM

−𝜎−1
y∗ 𝜌𝚺

′
wy𝜶2(𝜶′

2𝚺wz + 𝜶′
3𝚺xz), (12)

d2 = 2𝜶′
2𝚺wz𝚺−1

zz 𝚺zx − 𝜶′
2𝚺wx

−𝜎−1
y∗ 𝜌𝚺

′
wy𝜶2(𝜶′

2𝚺wz𝚺−1
zz 𝚺zx + 𝜶′

3𝚺xx), (13)

and
𝜎2

y∗ = 𝜶
′
2𝚺wz𝚺−1

zz 𝚺zw𝜶2 + 2𝜶′
2𝚺wz𝚺−1

zz 𝚺zx𝜶3 + 𝜶′
3𝚺xx𝜶3 + 𝜎2

v . (14)

Note that we used the split samples to calculate �̂� and �̂� in order to obtain a simpler formula
for the asymptotic covariance matrix of �̂�. However, splitting the sample reduces the effective
sample size and results in a loss of efficiency in the estimator �̂�. In applications where the
sample size is relatively small, the entire sample can be used at all stages in order to obtain more
efficient estimates. In that case extra computation such as using the bootstrap has to be employed
in order to obtain the variances of the estimators.

3.2. A Method of Moments Estimator
The estimator discussed in the previous subsection requires calculation of the maximum
likelihood estimators in the reduced model identified in Equation (4). In this subsection we
propose a computationally simpler, moments-based estimator under the additional assumption
that the error-free predictor X and instrumental variable Z are normally distributed. For this
purpose we denote X̃ = (X∗′,X′)′, W̃ = (W′,X′)′, Z̃ = (Z′,X′)′, Ũ = (U′, 0)′ and �̃�2 = (𝜶′

2,𝜶
′
3)

′.
We show in the Appendix that under the model specified in Equations (1)–(3) we have the
following moment identities:

�̃�2 = 𝜌𝜎y∗M̃𝚺−1
z̃z̃ 𝚺z̃y, (15)

where M̃ = (𝚺w̃z̃𝚺−1
z̃z̃ 𝚺z̃w̃)−1𝚺w̃z̃,

𝛼1 = t1 − 𝜎y∗Φ−1(p1) − 𝝁′
w̃�̃�2, (16)
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where t1 = 0, p1 = P(Y ≤ t1) and

𝜎y∗ =
(

1 − 𝜌2𝚺′
w̃yM̃𝚺−1

z̃z̃ 𝚺z̃y

)−1∕2
. (17)

Therefore a MME for 𝜶 can be obtained by substituting the corresponding sample moments of
Yi, W̃i, Z̃i into the above equations. The asymptotic covariance matrix of this MME can also be
derived in a manner analogous to the corresponding covariance matrix for the likelihood-based
estimator that we discussed in Section 3.1.

3.3. An Estimator of Measurement Error Variances
Although our primary focus is consistent estimation of the regression coefficient 𝜶, sometimes
researchers are also interested in estimating other parameters such as the measurement error
variances. In this subsection we derive such variance estimators for the special case where the
components of measurement error U, say U1,U2,… ,Up, are uncorrelated. Specifically, let the
measurement error covariance matrix𝚺uu = diag(𝜎2

u1
, 𝜎2

u2
,… , 𝜎2

up
) and ei = (0,… , 0, 1, 0,… , 0)′

the elementary vector with ith entry 1 and all others 0. Then, as we show in the Appendix,

𝜎2
ui
=

e′i(𝚺ww𝜶2 + 𝚺wx𝜶3 − 𝜌𝜎y∗𝚺wy)
e′i𝜶2

, (18)

i = 1, 2,… , p, where 𝜎y∗ is given by

𝜎y∗ =
𝜌𝚺′

wy𝜶2

2
+
{(𝜌𝚺′

wy𝜶2

2
)2 + 𝜶′

2𝚺wx𝜶3 + 𝜶′
3𝚺xx𝜶3 + 1

}1∕2
. (19)

Therefore, a consistent estimator of 𝜎2
ui

can be obtained by substituting the consistent estimator
of 𝜶 and sample moments of Wi,Xi,Yi into Equations (18) and (19). Note that Equations (18)
and (19) do not require the normality assumption for X,Z and therefore they can be used with
either the likelihood-based estimator of 𝜶 or the MME (under the normality assumption).

4. A SIMULATION STUDY

In this section, we report results from a simulation study to investigate the finite sample properties
of our proposed estimators. We calculated the likelihood-based instrumental variable estimator
(IVE) and the MME. For comparison purposes, we also evaluated the naive maximum likelihood
estimator that ignored the measurement error (NAE). For each estimator, we evaluated its bias
(BIAS), its root mean squared error (RMSE) and the estimated 95% coverage probability (CP),
where the standard errors of the IVE were calculated using the asymptotic variance formula
specified in Theorem 1 . We considered three different sample sizes n = 200, 500, 1,000
with n1 = n∕2 so that c1 = c2 = 2. In each simulation run, we carried out 1,000 Monte Carlo
replications.

We used a model with two predictors, both of them mismeasured, so that the observed
predictors were Wi = X∗

i + Ui, i = 1, 2, where X∗
1 ∼ N(10, 5), X∗

2 ∼ N(9, 4), U1 ∼ N(0, 0.5),
U2 ∼ N(0, 1) and all these variables were independent. In addition, there were two instrumental
variables that we generated independently, defined as Zi = (X∗

i − 𝛽i1 − 𝛿i)∕𝛽i2, i = 1, 2, where
(𝛽11, 𝛽12) = (1, 0.8), (𝛽21, 𝛽22) = (−3, 1.2) and 𝛿1, 𝛿2 ∼ N(0, 1). Finally, the latent response Y∗

was generated using the true parameter values 𝜶′ = (−4.5, 0.3, 0.4) and the observed response Y
took J = 5 possible categorical values. The numerical results are summarized in Table 1.
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TABLE 1: Simulation results for three methods of estimation with normally distributed measurement error
and instrumental variables. The true values of the parameters estimated were 𝛼1 = −4.5, 𝛼2 = 0.3,

𝛼3 = 0.4, 𝜎2
u1

= 0.5 and 𝜎2
u2
= 1

Sample
Parameter estimated

size, n Method Item 𝛼1 𝛼2 𝛼3 𝜎2
u1

𝜎2
u2

200 IVE BIAS −0.1486 0.0107 0.0091 0.2111 −0.0030

RMSE 1.0318 0.0678 0.0841 0.8080 0.6943

CP 94.9% 94.6% 94.3% — —

MME BIAS −0.1153 0.0089 0.0060 0.0166 −0.0246

RMSE 0.7801 0.0512 0.0624 0.3198 0.3228

CP 94.8% 94.4% 94.7% — —

NAE BIAS 1.3188 −0.0430 −0.1018 — —

RMSE 1.4366 0.0578 0.1096 — —

CP 34.8% 79.1% 26.8% — —

500 IVE BIAS −0.0498 0.0043 0.0030 0.0908 −0.0521

RMSE 0.5785 0.0399 0.0484 0.5486 0.4910

CP 94.7% 95.3% 94.8% — —

MME BIAS −0.0613 0.0043 0.0041 0.0037 −0.0044

RMSE 0.4557 0.0309 0.0366 0.2171 0.1969

CP 94.9% 95% 95.5% — —

NAE BIAS 1.3538 −0.0455 −0.1026 — —

RMSE 1.3970 0.0513 0.1056 — —

CP 2.7% 50.9% 2.2% — —

1,000 IVE BIAS −0.0247 0.0016 0.0033 0.0320 −0.0206

RMSE 0.4055 0.0275 0.0336 0.4353 0.3438

CP 95.5% 93.8% 94.2% — —

MME BIAS −0.0178 0.0012 0.0024 −0.0096 −0.0077

RMSE 0.3327 0.0215 0.0264 0.1602 0.1352

CP 95.1% 95.7% 94.2% — —

NAE BIAS 1.3684 −0.0470 −0.1024 — —

RMSE 1.3884 0.0495 0.1038 — —

CP 0% 15.9% 0% — —

From Table 1 we can see that, overall, both IVE and MME exhibited satisfactorily small
BIAS and RMSE for all sample sizes, and these measures decreased rapidly as the sample size
increased. The only exception was that the bias values of �̂�1 when the sample size was 200
seemed a little larger than we expected. This probably occurred because splitting the sample
reduces the effective sample size. The naive estimator NAE exhibited significantly larger values
of BIAS and RMSE than the other two estimators, and both measures remained roughly constant
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TABLE 2: Simulation results for three methods of estimation; sensitivity to the assumption of normally
distributed measurement error and/or instrumental variables. The true values of the parameters estimated

were 𝛼1 = −4.5, 𝛼2 = 0.3, 𝛼3 = 0.4, 𝜎2
u1
= 1.7, and 𝜎2

u2
= 1.7

Sample
Parameter estimated

size, n Method Item 𝛼1 𝛼2 𝛼3 𝜎2
u1

𝜎2
u2

200 IVE BIAS −0.1064 0.0076 0.0100 −0.0820 −0.1330

RMSE 0.9849 0.0644 0.0824 1.1870 0.8865

CP 94.7% 94.2% 96.2% — —

MME BIAS −0.1019 0.0070 0.0088 −0.0724 −0.0672

RMSE 0.7742 0.0497 0.0650 0.5608 0.5538

CP 95.3% 94.7% 94.9% — —

NAE BIAS 2.2994 −0.0992 −0.1474 — —

RMSE 2.3579 0.1047 0.1528 — —

CP 1.1% 14.6% 4% — —

500 IVE BIAS −0.0530 0.0022 0.0064 −0.1040 −0.0511

RMSE 0.5670 0.0397 0.0491 0.8917 0.6252

CP 94.8% 94.9% 94.4% — —

MME BIAS −0.0562 0.0031 0.0051 −0.0469 −0.0395

RMSE 0.4613 0.0316 0.0380 0.3840 0.3000

CP 94.7% 94.6% 95.3% — —

NAE BIAS 2.3406 −0.1010 −0.1503 — —

RMSE 2.3638 0.1032 0.1523 — —

CP 0% 0.5% 0% — —

1,000 IVE BIAS −0.0026 0.0015 0.0002 −0.0636 −0.0730

RMSE 0.4041 0.0278 0.0340 0.6008 0.4285

CP 94.3% 95.1% 95.7% — —

MME BIAS −0.0046 0.0011 0.0011 −0.0457 −0.0430

RMSE 0.3326 0.0219 0.0271 0.2397 0.2019

CP 95.8% 95.7% 96.3% — —

NAE BIAS 2.3615 −0.1019 −0.1516 — —

RMSE 2.3725 0.1029 0.1525 — —

CP 0% 0% 0% — —

as the sample size increased. For the regression coefficients belonging to 𝜶, the IVE had larger
RMSE than the MME for any given sample size; again, this result is likely due to use of the
split samples. In other simulation studies, which we have not reported here, where the IVE
was estimated using the full sample, the IVE had smaller BIAS and RMSE than the MME
in all cases. Notice, also, that with respect to the estimated measurement error variances the
MME generally exhibited smaller BIAS and RMSE than the IVE. Finally, the estimated 95%
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TABLE 3: Analysis results using IVE for the health survey data collected from 200 residents of Tianjin.

Parameter Estimate 95% CI Parameter Estimate 95% CI

𝛼1 64.847 (62.823, 66.871) 𝛼5 −0.257 (−0.289,−0.225)

𝛼2 0.234 (0.077, 0.392) 𝛼6 −0.067 (−0.074,−0.060)

𝛼3 −1.158 (−1.219,−1.098) 𝛼7 0.350 (0.315, 0.385)

𝛼4 0.627 (0.583, 0.671) 𝛼8 −0.722 (−0.761,−0.683)

coverage probabilities of both IVE and MME were close to the nominal value, while those of the
naive estimator were markedly smaller and quickly decreased to zero as sample size increased.
Presumably this behaviour is because the naive estimator converged to a different value than the
true parameter value.

To examine the sensitivity of our proposed estimators with respect to the normality assumption
for measurement error Ui, and for the instruments Zi in the MME, we also considered various
scenarios where either Ui or Zi were generated from a nonnormal distribution. As an example,
in Table 2 we report our numerical results for the scenario U1,U2 ∼ t(5) independently and
𝛿1, 𝛿2 ∼ U(−1.5, 1.5) independently. The various numerical results exhibited overall patterns
that were similar to those found in Table 1. When only Zi was nonnormal, the MME generated
larger BIAS but approximately the same RMSE, while the IVE was unaffected, an observed
result that is in line with existing theory. When only Ui was nonnormal, both IVE and MME
produced slightly larger BIAS and RMSE. However, when both Ui and Zi were nonnormal, both
IVE and MME exhibited noticeably larger BIAS but only slightly increased RMSE. Therefore, in
terms of RMSE, both estimators showed a relatively high degree of robustness against departures
from the normal distribution in Ui or in Zi. The R source code that we used to compute the results
found in Tables 1 and 2 are included in the accompanying Supplementary Materials.

5. APPLICATION TO HEALTH SURVEY DATA

We also used our proposed IVE to analyze a dataset from the 2013 national public health survey
of China. The main purpose of the survey was to understand the health status and public health
care service in both the urban and rural populations. Our dataset consisted of the results from
200 questionnaires sampled from Tianjin. The response variable is the individual respondent’s
self-assessment of their health status on the five-point scale 0, 1, 2, 3, 4 representing responses
ranging from poor (0) to excellent (5). Following the literature we included seven predictor
variables in our model: X1, logarithmic family income; X2, age in years; X3, marital status (1
if married and 0 otherwise); X4, residence type (1 for rural residence and 0 otherwise); X5,
education completed (1 for no formal schooling, 2 for elementary school, 3 for middle school, 4
for high school, 5 for technical school, 6 for secondary vocational school, 7 for college and 8
for university); X6, current employment status (1 if employed and 0 otherwise); and X7, chronic
disease status (1 if present and 0 otherwise). We assumed that the family income variable, X1, was
measured with error and used the logarithm of family expenditures on culture and entertainment
(Z1), education (Z2) and health care (Z3), respectively, as instrumental variables.

The estimated effects of these various factors and the corresponding 95% confidence intervals
for the regression coefficients are reported in Table 3. As we expected, health status was positively
associated with family income, marital and employment status, and negatively associated with
age and chronic disease status. In addition, urban residents tended to feel healthier than rural
residents. Our data set and the R source code that we used to derive the estimates summarized in
Table 3 may be found in the associated Supplementary Materials.
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6. CONCLUSIONS

Although the problem of measurement error in binary response models has been extensively
studied in the literature, studies of the same problem in more general categorical response models
appear to be rare. We have proposed an approach involving the use of IVs that leads to consistent
estimators for an ordered probit model with covariate measurement error. One estimator is based
on the use of maximum likelihood, while an alternative approach, which is computationally
simpler, is based on the method of moments. Both estimators are consistent and asymptotically
normally distributed under general conditions. Our simulation studies show that these methods
are effective in correcting for the bias that is caused by measurement error. Moreover, the
proposed estimators performed well for a sample size of 200 or more, and they appear to be
robust against departures from the assumption of a normal distribution for the measurement
error. An application of these methods to the analysis of self-reported health survey data further
demonstrated the usefulness of our proposed methods. In order to obtain an explicit formula
for the asymptotic covariance matrix of the likelihood-based estimator, we used a split-sample
strategy which reduced the efficiency of the estimator. More efficient estimators can be computed
using the full sample, but extra efforts such as the use of the bootstrap would be required to
derive the variance of our IV estimator.

APPENDIX

The following is a summary of assumptions that are sufficient to prove Theorem 1.

A1. The random error 𝜖 ∼ N(0, 1) and is independent of X∗ and X.
A2. The measurement error U ∼ N(0,𝚺uu) and is independent of X∗, X and 𝜖.
A3. The instrumental variable Z is correlated with X∗ but independent of U and 𝜖.
A4. The matrices 𝚺zx∗ and 𝚺zz have full column rank.
A5. The observed data Yi,Xi,Wi,Zi, i = 1, 2,… , n are independent and identically distributed.

We begin by first establishing Equation (7). Since U is independent of X and 𝜖, by Equations
(1) and (2) it follows that

𝚺wy∗ = 𝚺x∗x∗𝜶2 + 𝚺x∗x𝜶3 (A.1)

and

𝜎2
y∗ = 𝜶

′
2𝚺x∗x∗𝜶2 + 2𝜶′

2𝚺x∗x𝜶3 + 𝜶′
3𝚺xx𝜶3 + 𝜎2

𝜖

= 𝜶′
2𝚺wy∗ + 𝜶′

2𝚺x∗x𝜶3 + 𝜶′
3𝚺xx𝜶3 + 1. (A.2)

Next, since Y∗ and W are jointly normal, by direct integration we obtain

𝚺wy∗ = 𝜎y∗𝜌𝚺wy, (A.3)

where 𝜌 =
{∑J−1

𝑗=1 𝜙[Φ
−1(p𝑗)]

}−1 and

p𝑗 = P(Y∗ < t𝑗) = P(Y ≤ 𝑗 − 1),

𝑗 = 1, 2,… , J − 1. See also Equation (12) in Olsson, Drasgow & Dorans (1982). Substituting
Equation (A.3) into Equation (A.2) and applying the transformation specified in Equation (5) of
the main article yields the result

𝜎2
y∗ = 𝜎y∗𝜎v𝜌𝚺′

wyM𝜸2 + 𝜎2
v𝜸

′
2M′𝚺wx𝜸3 + 𝜎2

v𝜸
′
3𝚺xx𝜸3 + 1. (A.4)
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On the other hand, from Equation (4) in the main article we have

𝜎2
y∗ = 𝜎2

v

(
𝜸′2𝚺zz𝜸2 + 2𝜸′2𝚺zx𝜸3 + 𝜸′3𝚺xx𝜸3 + 1

)
. (A.5)

Substituting Equation (A.5) into Equation (A.4) and solving the resulting expression for 𝜎2
v

proves the required result identified in Equation (7).

Proof of Theorem 1. We use the delta-method to derive the asymptotic covariance matrix
for the estimator of 𝜶, since it is easy to see from Equations (5)–(8) that 𝜶 is continuously
differentiable with respect to 𝝍 and 𝜸.

First, since 𝜶 = 𝜎vL𝜸 depends on 𝝍 only through 𝜎v, we have

𝜕𝜶

𝜕𝝍 ′ = L𝜸
𝜕𝜎v

𝜕𝝍 ′ . (A.6)

Furthermore, since

𝜕𝜌

𝜕p𝑗
=

Φ−1(p𝑗)(∑J−1
𝑗=1 𝜙[Φ−1(p𝑗)]

)2
= 𝜌2Φ−1(p𝑗),

we have
𝜕𝜎v

𝜕p𝑗
=

𝜎3
v

2
𝜂𝜸′2M′𝚺wy

𝜕𝜌

𝜕p𝑗
=

𝜎3
v

2
𝜂𝜌2Φ−1(p𝑗)𝜸′2M′𝚺wy. (A.7)

Similarly, since 𝚺wy = 𝝁wy − 𝝁w𝜇y, the partial derivatives of 𝜎v with respect to 𝝁′
wy and 𝜇y

are
𝜕𝜎v

𝜕𝝁′
wy

=
𝜎3

v

2
𝜂𝜌𝜸′2M′ (A.8)

and
𝜕𝜎v

𝜕𝝁y
= −

𝜎3
v

2
𝜂𝜌𝜸′2M′𝝁w, (A.9)

respectively. It follows from Equations (A.6)–(A.9) that the partial derivative of 𝜶 with respect
to 𝝍 ′, evaluated at the true parameter value, is

𝜕𝜶

𝜕𝝍 ′ =
𝜎3

v 𝜂𝜌

2
L𝜸

(
𝜌Φ−1(p1)𝜸′2M′𝚺wy,… , 𝜌Φ−1(pJ−1)𝜸′2M′𝚺wy, 𝜸

′
2M′,−𝜸′2M′𝝁w

)
=

𝜎y∗𝜌𝜶

2

(
𝜌Φ−1(p1)𝜶′

2𝚺wy,… , 𝜌Φ−1(pJ−1)𝜶′
2𝚺wy,𝜶

′
2,−𝜶

′
2𝝁w

)
= A.

Now, the partial derivative of 𝜶 with respect to 𝜸′ is

𝜕𝜶

𝜕𝜸′
= 𝜎vL + L𝜸

𝜕𝜎v

𝜕𝜸′
. (A.10)

Also, 𝜕𝜎v∕𝜕𝛾1 = 0,

𝜕𝜎v

𝜕𝜸′2
= −

𝜎3
v

2

{
2𝜸′2𝚺zz + 2𝜸′3𝚺xz − 𝜸′3𝚺xwM − 𝜂𝜌𝚺′

wyM − 𝜂−1𝜌𝚺′
wyM𝜸2(𝜸′2𝚺zz + 𝜸′3𝚺xz)

}
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and
𝜕𝜎v

𝜕𝜸′3
= −

𝜎3
v

2

{
2𝜸′2𝚺zx − 𝜸′2M′𝚺wx − 𝜂−1𝜌𝚺′

wyM𝜸2(𝜸′2𝚺zx + 𝜸′3𝚺xx)
}
.

Evaluated at the true values of the model parameters, the above partial derivatives are

𝜕𝜎v

𝜕𝜸′2
= −

𝜎2
v

2
d1 (A.11)

and
𝜕𝜎v

𝜕𝜸′3
= −

𝜎2
v

2
d2. (A.12)

It follows from Equations (A.10)–(A.12) that the partial derivative of 𝜶 with respect to 𝜸′,
evaluated at the true values of the parameters, is

𝜕𝜶

𝜕�̃�′
= 𝜎vL −

𝜎2
v

2
L𝜸

(
0, d1, d2

)
= B.

Finally, Equation (9) in the main article can be written as

√
n(�̂� − 𝜶) = A

√
n
n1

√
n1(�̂� − 𝝍) + B

√
n

n − n1

√
n − n1(�̂� − 𝜸) + op(1)

and the required result follows from the central limit theorem. ◼

Proof of the MME. The model specified in Equations (1) and (2) of the main article can be
written as

Y∗ = 𝛼1 + �̃�′2X̃ + 𝜖 (A.13)

and W̃ = X̃ + Ũ.
First, by Equation (4) of the main article we have 𝚺zy∗ = 𝚺zz𝜸2 and by Equation (5) it follows

that 𝜶2 = M𝜸2 = M𝚺−1
zz 𝚺zy∗ . Then similar to Equation (A.3) above, under normality we have

𝚺zy∗ = 𝜌𝜎y∗𝚺zy, which implies Equation (15) in the main article. Thus, substituting Equation (15)
into Equation (A.2) leads to the result

𝜎2
y∗ = 𝜌𝜎y∗𝚺′

wy𝜶2 + 1 = 𝜌2𝜎2
y∗𝚺

′
wyM𝚺−1

zz 𝚺zy + 1, (A.14)

which implies Equation (17) in the main article. Finally, because p1 = P(Y∗ < t1) = Φ( t1−𝜇y∗

𝜎y∗
),

we have 𝜇y∗ = t1 − 𝜎y∗Φ−1(p1). On the other hand, by Equations (1) and (2), 𝜇y∗ = 𝛼1 + 𝜶′
2𝝁x

and 𝝁x = 𝝁w, which establishes Equation (16), thereby proving the required result concerning
the MME. ◼

Proof of the estimator of the ME variance. First, by Equation (A.1) we have

𝚺wy∗ = 𝚺x∗x∗𝜶2 + 𝚺wx𝜶3 = 𝚺ww𝜶2 − 𝚺uu𝜶2 + 𝚺wx𝜶3
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and therefore by Equation (A.3)

𝚺uu𝜶2 = 𝚺ww𝜶2 + 𝚺wx𝜶3 − 𝚺wy∗

= 𝚺ww𝜶2 + 𝚺wx𝜶3 − 𝜌𝜎y∗𝚺wy.

Then Equation (18) follows simply by multiplying both sides of this equation by e′i . Then, using
Equations (A.2) and (A.3) it follows that

𝜎2
y∗ = 𝜎y∗𝜌𝚺′

wy𝜶2 + 𝜶′
2𝚺wx𝜶3 + 𝜶′

3𝚺xx𝜶3 + 1.

Solving this equation for 𝜎y∗ gives Equation (19), which proves the required result. ◼
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