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Abstract

Paper [1] first proposed the concept and a theoretical framework of random sets and pro-
vided experimental justification and background of practical applications. This paper studies
statistical theory and methods for random sets from the statistical decision theory point of view.
Some mathematical concepts such as the definition of random set are slightly different from that
in [1].

1 Introduction

The traditional statistical approach is to observe a certain sample point in a sample space through
statistical experiment, and then to use the information provided by this point to estimate or infer
certain characteristics of the population. In real applications and scientific experiments, however,
there are many statistical experiments in which the observations usually are not or cannot be points
of the sample space, rather they are more general subsets. Paper [1] and [2] provided many such
examples. From the statistical point of view we may regard such a subset as a realization of a certain
randomly varied set ξ. The variation of ξ is governed by many factors including psychological, social
and natural ones. We may regard the combined effect of all these factors on ξ as coming from a
certain influence field Ω. Arbitrary determination of any point ω in Ω means the determination of
ξ. In this sense ξ is a mapping from Ω to the power space P (U) of its image space U . Our interest
is the law of variation of this random set ξ on P (U).

2 Random set and its shadow function

Suppose we are given a probability space (Ω,F , P ) and an image space (U,B), where B is a σ-algebra
on U . A mapping ξ (·) : Ω 7→ B is called a random set on U , if for every u ∈ U , {ω | u ∈ ξ (ω)} ∈ F .
If ξ and η are two random sets on U and we define the mapping (ξ ∪ η) (ω) = ξ (ω)∪ η (ω), then it
is easy to see that ξ ∪ η is also a random set on U . Likewise, ξ ∩ η and ξ \ η are all random sets.
In particular, the entire space U and empty set Ø are random sets on U .

Let ξ be a random set on U . Then the function Fξ (u) = P (u ∈ ξ) , u ∈ U is called the shadow
function of ξ on U . From the definition it is easy to see that the random set ξ has the following
properties:

(1) ξ is a random set on U if and only if for every u ∈ U , χ (ξ, u) is a random variable on (Ω,F),
where

χ (ξ (ω) , u) =

{
1, if u ∈ ξ (ω)
0, if u /∈ ξ (ω) .
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(2) Eχ (ξ, u) = Fξ (u), u ∈ U , where E denotes the mathematical expectation.

(3) E [χ (ξ, u)− Fξ (u)]2 = Fξ (u) [1− Fξ (u)], u ∈ U .

(4) E [χ (ξ, u)− Fξ (u)]2 ≡ 0 if and only if ξ is a constant set almost everywhere. In this case
Fξ (u) = χ (ξ, u) a.e.P.

For the later development, we consider a class of stronger random sets. Let ξ be a random set
on U . If the graph of ξ, Gξ = {(u, ω) | u ∈ ξ (ω)} ∈ B × F , then ξ is called a regular random set.
If ξ and η are regular random sets, then it is easy to see that ξ ∪ η, ξ ∩ η and ξ \ η are all regular
random sets. In particular, U and Ø are regular random sets. For the regular random sets we have
the following results.

Theorem 2.1.

(1) If U is finite or countable, B = P (U) (i.e. the class of all subsets of U), then any random
set on U is regular.

(2) If U is the real line IR1 or a subset of IR1, B is the class of all Borel subsets of U , and the
random set ξ on U satisfies: for any ω ∈ Ω, ξ (ω) is a closed set consisting of a sequence of
non-single-point intervals, then ξ is regular.

(3) If (U,B) is as in (2) and the random set ξ satisfies: for any ω ∈ Ω, ξ (ω) is an open set and
the distance between its any two adjacent subintervals is greater than 0, then ξ is regular.

Proof: (1) Suppose U = {u1, u2, ...}. Then from

Gξ = {u ∈ ξ (ω)} =
∞⋃
n=1

({un} × {ω | un ∈ ξ (ω)})

it follows that Gξ ∈ B × F . The proof is analog when U is finite.
(2) First we construct a sequence of intervals on IR1: The class of all open intervals with

consecutive integers as two ends (k, k + 1) is denoted as I1 = {I1m,m = 1, 2, ...}. Then every
open interval in I1 is divided at the midpoint into two smaller open intervals and the class of all
such intervals is denoted as I2 = {I2m,m = 1, 2, ...}. Repeating the above procedure we obtain a
sequence of classes of sets on IR1, In = {Inm,m = 1, 2, ...} , n = 1, 2, ..., satisfying the conditions:
(i) every interval Inm in In has length 1

2n−1 ; (ii) In+1 is finer than In.
In the following we use r to denote a rational number. Let

A1 =
⋃
r∈IR1

[{r} × {ω | r ∈ ξ (ω)}] ,

A2 =

∞⋂
n=1

∞⋃
m=1

[Inm ×
⋃

r∈Inm

{ω | r ∈ ξ (ω)}].

Then A1, A2 ∈ B × F . Next we show that under the condition of (2) we have Gξ = A1 ∪ A2 and
hence Gξ ∈ B × F .

If (u, ω) ∈ Gξ, then u ∈ ξ (ω) and there is a (closed) component interval J of ξ (ω), such that
u ∈ J . If (u, ω) /∈ A1, then for any n, there exists an m, such that u ∈ Inm. Therefore Inm∩U 6= Ø.
It follows that there exists a rational number r ∈ Inm, such that r ∈ J ⊂ ξ (ω) , that is, (u, ω) ∈ A2.
Conversely, if (u, ω) ∈ A2, then for every n, there exists mn, such that u ∈ Inmn and there exists
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rational number rn ∈ Inmn , such that rn ∈ ξ (ω). Since as n → ∞, rn → u and ξ (ω) is closed, it
follows that u ∈ ξ (ω), that is, (u, ω) ∈ Gξ.

(3) The random set defined here is the compliment of that in (2) and, therefore, is also a regular
random set. The proof is complete.

In the following we are given a σ–finite measure m on (U,B).

Theorem 2.2. Suppose ξ is a regular random set on U and define

µ (B) = Em (B ∩ ξ) , B ∈ B. (2.1)

Then µ is a σ–finite measure on (U,B) and is absolutely continuous relative to m. Furthermore, the
Radon-Nikodym derivative of µ with respect to m is the shadow function of ξ, that is dµ/dm = Fξ (·).

Proof: Since ξ is regular, χ (ξ, u) is a B × F–measurable function and, therefore, the right-hand
side of (2.1) is well-defined and µ is a σ–finite measure. Further by Fubini Theorem we have, for
all B ∈ B,

µ (B) =

∫
B
Fξ (u) dm (2.2)

It follows that dµ
dm (u) = Fξ (u). The proof is complete.

In the above proof we obtain formula (2.2). If Fξ (u) is a continuous function of u (under some
given distance), then it follows from the Integral Mean Value Theorem (see [2], p.174 Exercise 2)
and the Mean Value Theorem for continuous functions, there exists u0 ∈ B, such that µ (B) =
Fξ (u0)m (B) . Thus we have the following result.

Theorem 2.3. Suppose U is a metric space, ξ is a regular random set on U and Fξ (u) is contin-
uous. Then for any B ∈ B, 0 < m (B) <∞, there exists u0 ∈ B, such that

Fξ (u0) =
µ (B)

m (B)
.

Next we discuss some properties of a sequence of independent random sets. Let ξ1, ξ2, ..., ξn
be random sets on U . If for any subsequence ξi1 , ξi2 , ..., ξik and any u11, u12, ..., u1m1 ; ... ; uk1,
uk2, ..., ukmk

∈ U , it holds

P ({u11, ..., u1m1} ⊂ ξi1 , ..., {uk1, ..., ukmk
} ⊂ ξik)

= P ({u11, ..., u1m1} ⊂ ξi1) · · ·P ({uk1, ..., ukmk
} ⊂ ξik) ,

then the random sets are said to be strongly independent. If the above equation holds for m1 =
m2 = ... = mk = 1, then the random sets are said to be (mutually) independent. A class of
random sets {ξt, t ∈ T} is said to be (strongly) independent, if any finite subclass of it is (strongly)
independent. For independent random sets we have the following result.

Theorem 2.4. Suppose ξ1, ξ2, ... is a sequence of independent random sets with identical shadow
function. Then for any u ∈ U , as n→∞, we have 1

n

∑n
i=1 χ (ξi, u)→ Fξ1(u), a.e.P.

Proof: Under the Theorem’s condition, χ (ξ1, u), χ (ξ2, u), ... is a sequence of independent and
identically distributed random variables. The result follows then from the Kolmogorov Law of
Large Numbers.

Theorem 2.5. Suppose ξ1, ξ2, ... is a sequence of strongly independent random sets with identical
shadow function. Then under any one of the following conditions, it holds: for any B ∈ B, as
n→∞,

1

n

n∑
i=1

m (ξi ∩B)→ Em (ξ1 ∩B) , a.e.P.
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(1) U is finite or countable, B = P (U) and m is the count measure.

(2) U = IR1 or a subset of IR1, B is the class of all Borel subsets of U and m is the Lebesgue
measure. In addition, ξ1, ξ2, ... are regular random sets and are such that for every ξi and
ω ∈ Ω, χ (ξi (ω) , u) is almost everywhere continuous on U .

Proof: By the generalized law of large numbers of Loéve [3], §33.4, we need only to show that
under any one condition m (ξ1 ∩B), m (ξ2 ∩B), ... is a sequence of independent and identically
distributed random variables.

In the case of (1), m (ξi ∩B) =
∑

uj∈B χ (ξi, uj), i = 1, 2, .... By the assumption of strong

independence, it is easily seen that any class of random vectors (χ (ξi1 , u11) , ..., χ (ξi1 , u1m1)), ...,
(χ (ξik , uk1) , ..., χ (ξik , ukmk

)) is independent. It follows that m (ξ1 ∩B), m (ξ2 ∩B), ... are inde-
pendent and identically distributed.

In the case of (2), since B is a Borel set, there exists a sequence of open sets On ⊂ B, such that
m (B −On)→ 0 (as n→∞). Let {Onj} be the sequence of component intervals of On. Then

m (ξi ∩B) = lim
n→∞

∫
On

χ (ξi, u) dm = lim
n→∞

∑
j

∫
Onj

χ (ξi, u) dm.

Since χ (ξi, u) is Riemann-integrable on every Onj , it follows that∫
Onj

χ (ξi, u) dm = lim
k→∞

∑
l

χ (ξi, ul) ∆kul.

Therefore m (ξ1 ∩B) ,m (ξ2 ∩B) , ... are independent and identically distributed. The proof is
complete.

3 Nonparametric estimation of shadow function

This section discusses several nonparametric estimation methods for shadow functions, derives the
best estimators under various optimal criteria and evaluates the performance of the commonly used
weighted mean estimators under these criteria.

Suppose that the probability space (Ω,F , P ) and image space (U,B) are given, where the
probability measure P is unknown or partially unknown. We consider the random set ξ and its
shadow function F (u). For the sake of notational convenience we will not explicitly distinguish
the random set ξ and its observed sample x = ξ (ω) and denote it as x. Further we assume that
F (u) 6≡ 0. A mapping δ : B × U 7→ [0, 1] is called an estimating function of F , if for every u ∈ U ,
δ (x, u) is a F-measurable function. In the following discussion we take the quadratic function to
be the loss function. Then the risk function of an estimator δ is

R (δ, u) = E [δ (x, u)− F (u)]2 =

∫
Ω

[δ (x, u)− F (u)]2 dP.

3.1 Best unbiased estimators

Suppose U ′ ⊂ U and δ is an estimator. If Eδ (x, u) = F (u), for every u ∈ U ′, then δ is said to be a
U ′-unbiased estimator for F . Further if δ is a U ′-unbiased estimator for F and for any U ′-unbiased
estimator g, it holdsR(δ, u) ≤ R(g, u) for all u ∈ U ′, then δ is said to be a U ′-best unbiased estimator
for F . In particular, when U ′ equals U1 = {u ∈ U | F (u) = 1} or U0 = {u ∈ U | F (u) = 0}, the U ′-
best unbiased estimator has practical importance. Let us consider the following example. Suppose
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x1, x2, ..., xn is an independent random sample with identical shadow function. Consider the class
of linear estimators

L =

{
n∑
i=1

ai (u)χ (xi, u) | ai (u) are real functions on U

}
.

For any estimator in L it is easy to calculate

E

[
n∑
i=1

ai (u)χ (xi, u)

]
= F (u)

n∑
i=1

ai (u) , (3.1)

E

[
n∑
i=1

ai (u)χ (xi, u)− F (u)

]2

= F (u) [1− F (u)]
n∑
i=1

ai (u)2 + F 2 (u)

[
1−

n∑
i=1

ai (u)

]2

. (3.2)

It follows that, 1) every estimator
∑n

i=1 ai (u)χ (xi, u) is a U0-best unbiased estimator; 2) every
estimator satisfying the condition

∑n
i=1 ai (u) = 1 when F (u) 6= 0 is a U1-best unbiased estimator;

3) if there exists u0 ∈ U , such that 0 < F (u0) < 1, then being unbiased implies
∑n

i=1 ai (u) = 1, for
all u ∈ {F (u) > 0}, and being the best implies a1 (u) = · · · = an (u) = 1

n , ∀u ∈ {0 < F (u) < 1}.
Therefore all estimators satisfying the above two conditions are U -best unbiased estimators in L.
One of them is the commonly used estimator 1

n

∑n
i=1 χ (xi, u).

3.2 Admissibility of the estimators

Let δ and g be two estimators. If for every u ∈ U , R (δ, u) ≤ R (g, u) and there exists u0 ∈ U such
that the inequality holds, then δ is said to be better than g. Let L be a class of estimators. Then
δ ∈ L is said to be admissible in L, if no estimator in L is better than δ. The class of estimators
M ⊂ L is called a complete class in L, if for any g ∈ L, there exists δ ∈ M, such that δ is better
than g. Obviously the class of all admissible estimators in L is contained in every complete class
in L.

In this subsection we consider the admissible estimators in the class

L1 =

{
n∑
i=1

aiχ (xi, u) | ai ∈ IR1

}
.

First we establish the following results.

Theorem 3.1. For any estimator g =
∑n

i=1 aiχ (xi, u) in L1, there exists an estimator δ =
c
∑n

i=1 χ (xi, u), such that for every u ∈ U , R (δ, u) ≤ R (g, u). Further if {u ∈ U | 0 < F (u) < 1} 6=
Ø, then the equality holds if only if a1 = a2 = · · · = an = c.

Proof: For the g =
∑n

i=1 aiχ (xi, u), take c = 1
n

∑n
i=1 ai. Then the results follow from (3.2) and

Cauchy-Schwarz inequality.
In the following we assume that {u ∈ U | 0 < F (u) < 1} 6= Ø. Then by Theorem 3.1 the class

L0 =

{
a

n∑
i=1

χ (xi, u) | a ∈ IR1

}
is a complete class in L1. Therefore we need only to consider the estimators in L0. For any estimator
a
∑n

i=1 χ (xi, u) ∈ L0, to simplify notation we denote its risk as R (a, u). Let b
∑n

i=1 χ (xi, u) be
another estimator in L0. Then by (3.2) we have

R (a, u)−R (b, u) = nF (u) [nF (u)− F (u) + 1] (a− b)
[
a+ b− 2F (u)

(n− 1)F (u) + 1

]
. (3.3)
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Denote F0 = infu∈U F (u), F1 = supu∈U F (u) and

α =
F0

(n− 1)F0 + 1
, β =

F1

(n− 1)F1 + 1
.

Then from (3.3) it is easy to see that: if a > β, then β
∑n

i=1 χ (xi, u) is better than a
∑n

i=1 χ (xi, u);
if a < α, then α

∑n
i=1 χ (xi, u) is better than a

∑n
i=1 χ (xi, u); if α ≤ b < a ≤ β, then there exist

u1, u2 ∈ U , such that R (a, u1) < R (b, u1) and R (a, u2) > R (b, u2). Thus we obtain the following
result.

Theorem 3.2. If {u ∈ U | 0 < F (u) < 1} 6= Ø, then the class of estimators

L0 =

{
a

n∑
i=1

χ (xi, u) | α ≤ a ≤ β

}

is a minimal complete class in L1, i.e. the class of all admissible estimators.

From the above theorem it is easily seen that under the theorem’s condition the class{
a
∑n

i=1 χ (xi, u) | 0 ≤ a ≤ 1
n

}
is a complete class in L1. In general F is unknown, and so are the

values of α and β. However, the above class provides a reference class of estimators. Furthermore,
from Theorem 3.2 we know that, when F1 < 1, the commonly used estimator 1

n

∑n
i=1 χ (xi, u)

is inadmissible. For example, take 0 < c < (1− F1) /F1, then 1
n+c

∑n
i=1 χ (xi, u) is better than

1
n

∑n
i=1 χ (xi, u).

3.3 Minimax estimators

Let L be a class of estimators of F . Then δ ∈ L is called a minimax estimator, if for any g ∈ L,
it holds supu∈U R (δ, u) ≤ supu∈U R (g, u). In this subsection we consider again the class L1. For
notational simplicity we assume without loss of generality that the range of F (u) is the interval
[0, 1]. By Theorem 3.2

L0 =

{
a

n∑
i=1

χ (xi, u) | 0 ≤ a ≤ 1

n

}
is a minimal complete class in L1. Therefore a minimax estimator in L1 (if exists) must be contained
in L0. For any estimator a

∑n
i=1 χ (xi, u), by (3.2) its risk function is

R (a, u) = F 2 (u) (na− 1)2 + F (u) [1− F (u)]na2.

Denote Q (a, F ) = F 2 (na− 1)2 + F (1− F )na2. Then maxu∈U R (a, u) = max0≤F≤1Q (a, F ) .
Therefore it is not difficult to calculate that maxu∈U R (a, u) has the unique minimizer on the
interval

[
0, 1

n

]
a0 =

3n−
√
n2 + 8n

2n (n− 1)
.

Thus we have the following result.

Theorem 3.3. Suppose the range of F is [0, 1]. Then in L1 there exists unique minimax estimator

a0

n∑
i=1

χ (xi, u) =
3n−

√
n2 + 8n

2n (n− 1)

n∑
i=1

χ (xi, u) .
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From the above result we see that the usually used best unbiased estimator 1
n

∑n
i=1 χ (xi, u)

is not minimax estimator. In fact, direct calculation shows that its maximum risk is even greater
than that of the estimator 1

n+1

∑n
i=1 χ (xi, u). However, in the class of unbiased estimators

{
∑n

i=1 aiχ (xi, u) |
∑n

i=1 ai = 1}, 1
n

∑n
i=1 χ (xi, u) is the unique minimax estimator, and also the

unique admissible estimator.

3.4 Consistency of the estimators

Let x1, x2, ... be a sequence of random sets and δ (x1, ..., xn;u) a sequence of estimators. If for
every u ∈ U , as n → ∞, δ (x1, ..., xn;u) → F (u) , a.e.P , then δ (x1, ..., xn;u) is called a consistent
estimator for F (u). If x1, x2, ... is a sequence of independent random sets with identical shadow
function, then from Theorem 2.4 we know that 1

n

∑n
i=1 χ (xi, u) is a consistent estimator for F (u).

Furthermore, if F (u) is continuous on U , then motivated by Theorem 2.3 of §2 we can construct
the following estimation procedure:

First partition the image space U as U =
⋃∞
i=1 Ui, where Ui ⊂ U are mutually disjoint and

0 < m (Ui) < ∞, i = 1, 2, .... Define the step function F̂ (u) = Em (ξ ∩ Ui) /m (Ui), when u ∈ Ui.
Then along with partitions Ui, i = 1, 2, ... becoming finer, F̂ (u) gets closer to F (u). Now if x1, x2, ...
is a sequence of strongly independent and regular random sets with identical shadow function, and
satisfies the condition of Theorem 2.5, then by Theorem 2.5, it holds

1

n

n∑
j=1

m (xj ∩ Ui)
a.e.−→ Em (x1 ∩ Ui) .

Let

δ (x1, ..., xn;u) =
1

n

n∑
j=1

m (xj ∩ Ui)
m (Ui)

, u ∈ Ui.

Then δ (x1, ..., xn;u)
a.e.−→ F̂ (u) , ∀u ∈ U.

Acknowledgement: The author is grateful to Professor Wang Peizhuang for his advice and
helpful discussions during the preparation of this paper.

References

[1] Wang Peizhuang and Liu Xihui. Random-Set Statistics. Journal of Engineering Mathematics,
1 (1984).

[2] Zhang Nanlun. The Classification and Probability Characteristics of Random Phenomena, I,
II, III. Journal of the Institute of Construction Material Wuhan, 1981, No. 1, 2, 3.

[3] Yan Shijian, Wang Junxiang and Liu Xiufang. Foundation of Probability Theory. Scientific
Press, 1982.
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