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Abstract

This paper proposes a simple method to adjust for measurement errors in estimations of many popular
limited dependent variable models, e.g., the binary response model, the censored and the truncated regression
models. The procedure is based on a simple correction of the estimators for the corresponding “error-free”
models and is easy to be incorporated into the existing statistical computer packages. The extra computing
cost is minimal. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The binary response, the censored and the truncated regression models are examples of limited
dependent variable (LDV) models which are widely used in biology, epidemiology, medicine, eco-
nomics, engineering and many other :elds. In practical applications it is often the case where some
or all predictor variables are not or cannot be measured exactly, rather they are subject to measure-
ment errors (ME). It is well known that the statistical inference of model parameters are biased and
inconsistent in the presence of measurement errors if they are ignored (Fuller, 1987; Carroll et al.,
1995). The statistical theories and methods for the “measurement-error-free” LDV models have been
well developed, see, e.g., Amemiya (1985), Maddala (1985) and Greene (1993). The problem of
ME has been paid more and more attention in recent years. See, e.g., Fuller (1987) for statistical
theories and methods for linear ME models, and Carroll et al. (1995) for nonlinear models. For non-
linear models, most estimation procedures are based on corrections of certain estimating equations,
such as the likelihood or quasi-likelihood equations. Recently, more sophisticated semiparametric
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and simulation estimation methods have been developed for various nonlinear models (Sepanski and
Carroll, 1993; Wang and Hsiao, 1996).

Despite its importance and seriousness, the problem of ME has still been often ignored in practical
applications, especially in econometrics. This might be because of two reasons. The :rst reason is
that, many practitioners believe that, although the data are subject to ME, the magnitude of the ME
is so small that their eEects are negligible. The second reason is that in almost all statistical computer
packages only the procedures for the “error-free” models are available. The :rst reasoning is clearly
not justi:ed, because in many situations the magnitude of the ME cannot be exactly determined from
the out-of-sample sources. For the second point, it is helpful to develop procedures which takes the
ME into account and which are easy enough to be incorporated into existing computer programs.

The aim of this paper is to derive such simple procedures for a class of LDV models under
normal distributions. This class contains many popular models, such as the binary response, the
censored regression and the truncated regression models. The idea is, :rst, to reduce the model
into an “error-free” form; and then, to use the existing estimation procedures for the later to obtain
the estimates for the original model through the parameter transformation. The only extra job is to
calculate new asymptotic covariance matrix, which is also easy and straightforward.

Section 2 introduces the general LDV models with measurement errors and shows that this model
can be reduced to the traditional “error-free” form. Section 3 proposes a two-step procedure to
estimate the model. It is also shown that, using this approach it is possible to assess the ef-
fects of the ME and the consequence of misspeci:ed a priori information. Section 4 shows how
this estimation procedure is adapted to some popular LDV models. Conclusions are contained in
Section 5.

2. The model and its reduction

We start with the underlying linear relationship

�i = �1 + �′
2�i + ui; (1)

where �i ∈R, �i ∈Rk are the response and explanatory variables, �1, �2 the regression parameters
and ui the random error with E(ui) = 0 and Var(ui) = 	u. In the LDV framework it is assumed that
the dependent variable �i is not fully observed. Rather, we observe

yi = g(�i); (2)

where g(·) is a known real function. For example, a binary response model has g(�) = I(�¿ 0),
where I(·) is the indicator function, and a censored regression model has g(�) = �I (�¿ 0). In
addition, we assume that the explanatory variable �i is not exactly observed, rather we observe

xi = �i + vi; (3)

where xi ∈Rk and vi ∈Rk represents the additive measurement error (ME). In the ME literature it
is often assumed that xi is a surrogate for �i, i.e., the conditional distribution f(y | �; x) = f(y | �)
(Carroll et al., 1995). Furthermore, we assume that ui, vi and �i are independently and normally
distributed with means 0; 0; �� and variances 	u; �v; ��, respectively. If some components of � are
exactly observed, then the corresponding components of vi are constant zero and the corresponding
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rows and columns of �v are zeros. Thus, speci:cation (1)–(3) includes the usual “error-free” LDV
models.

As the ME bring much more uncertainty into the inference process, usually more a priori informa-
tion is needed to identify the model (Fuller, 1987; Hsiao, 1983). This identifying information may
take diEerent forms, depending on the feature of the problem and the data at hand. In many cases
the repeated sampling or validation data are available, which may be used to determine or estimate
covariance �v of the ME. This is equivalent to that the so-called reliability ratio �−1

x �� is known in
the sense that �−1

x �� = I − �−1
x �v and �x may be easily estimated from observed data. Throughout

this paper we suppose that the covariance �v is known or a consistent estimator of �v is available.
Now we show that models (1)–(3) may be reduced to an “error-free” form. Indeed, writing

�i = �v�−1
x �x + ���−1

x xi + �v�−1
x (xi − �x)− vi

and substituting this equation into (1) result in

�i = �1 + �′2xi + wi; (4)

where �1 = �1 + �′
2�v�−1

x �x, �2 = �−1
x ���2 and

wi = ui − �′
2vi + �′

2�v�−1
x (xi − �x): (5)

The new error wi has a normal distribution N(0; 	w) with 	w=	u+ �′2�v�−1
� �x�2 and is independent

of xi because E(wixi)=0. Eqs. (4) and (2) combined represent a usual LDV model for (yi; x′i). The
transformation between the parameters (�1; �2; 	w; �x; �x) in models (4) and (2) and the parameters
(�1; �2; 	u; ��; ��) in the original model (1)–(3) are given by

�1 = �1 − �′
x�

−1
� �v�2; (6)

�2 = �−1
� �x�2; (7)

	u = 	w − �′2�v�−1
� �x�2; (8)

�� = �x; (9)

�� = �x − �v: (10)

Clearly transformation (6)–(10) is one-to-one for the given �v. Consequently, any estimator for
model (4) and (2) implies a corresponding estimator for model (1)–(3) through (6)–(10).

3. Model estimation

3.1. A two-step estimator

Let (yi; x′i), i = 1; 2; : : : ; n be the independent and identically distributed observations and denote
the sample moments as �̂x =(1=n)

∑n
i=1 xi and �̂x =(1=n)

∑n
i=1 (xi − Jx)(xi − Jx)′. As assumed before,

the covariance �v is known or an estimate of �v is available. Without loss of generality we assume
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further that the estimate �̂� = �̂x −�v is nonsingular with probability one. Then estimates of model
(1)–(3) may be obtained by the following two steps:

Step 1: Use the given data to compute the sample moments �̂x, �̂x and the estimates �̂1, �̂2
and 	̂w for models (4) and (2).

Step 2: Use (6)–(10) to compute the estimates �̂1, �̂2, 	̂u, �̂� and �̂� for the ME model (1)–(3).
Note that in practical applications, the moment estimate �̂�= �̂x−�v may not always be positive-

de:nite, as in variance component problems. The problem, however, becomes less serious when the
sample size is large.

Now, we derive the asymptotic properties of the estimators obtained through this two-stage pro-
cedure. Since the asymptotic properties for estimators �̂� = �̂x and �̂� = �̂x − �v are easy to derive
from the sample moments, in the following we concentrate on the estimators of � = (�1; �′

2; 	u)′.
In particular, we denote the :rst-step estimators as  ̂ = (�̂1; �̂

′
2; 	̂w)′ and the second-step estimators

as �̂ = (�̂1; �̂
′
2; 	̂u)′. Let �( ) : � �→ � denote the transformation (6)–(10) and �̂ = �( ̂ ). Then the

consistency of �̂ follows immediately from the continuity of �( ). To show the asymptotic normality
of �̂, note that �( ) is continuously diEerentiable and hence we have the :rst-order Taylor expansion

�̂− �=
@�( ̃ )
@ ′ ( ̂ −  ); (11)

where  and � correspond to the true parameters of model (1)–(3) and  ̃ lies between  ̂ and  . The
derivative @�=@ ′ is obviously a continuous function of  and, therefore, converges in probability
to the matrix

A=




1 −�′
x�

−1
� �v 0

0 �−1
� �x 0

0 −2�′
2�v 1


 : (12)

The following results follow then by Slutsky Theorem (Amemiya, 1985).

Theorem 1. Suppose �v is known; �� ¿ 0;  ̂ P→  and
√
n( ̂ −  ) L→N(0; �). Then; as n → ∞;

(1) �̂ P→ �;
(2)

√
n(�̂− �) L→N(0; A�A′); where A is given in (12).

The eMciency of the second-step estimator depends on the eMciency of the :rst-step estimator.
If the maximum likelihood estimator is used in the :rst step, then as a function of a maximum
likelihood estimator, the second-step estimator is also eMcient.

3.2. The e6ects of ME

If one ignores the ME and estimates the model parameters with x in the place of �, then the
resulting estimators converge to  =(�1; �′2; 	w)′ instead of �=(�1; �′

2; 	u)′. From (6)–(10) it is easy
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to see that the asymptotic biases are given by

�1 − �1 = �′
x�

−1
x �v�2;

�2 − �2 =−�−1
x �v�2;

	w − 	u = �′
2���−1

x �v�2:

These equations show that the asymptotic biases can be signi:cant unless �−1
x �v�2 ≈ 0. In the

special case where �2 is scalar, this means that the asymptotic biases can be signi:cant, if the ME
variance �v is not very small relative to the variance of the observed covariates �x. Furthermore,
the slope parameter �2 tends to be underestimated by positive �2 and overestimated by negative �2,
whereas the opposite is true for �1 and 	u.

3.3. The e6ects of misspeci7ed �v

Using this two-step approach it is also possible to derive asymptotic biases of the estimators of
model (1)–(3) when the identifying information �v is misspeci:ed. For instance, if (�̂1; �̂

′
2; 	̂w)′ are

consistent estimators of models (4) and (2) and (�̃1; �̃
′
2; 	̃u)′ are obtained through (6)–(10) where,

instead of �v, a wrong �̃v is used. Then, the asymptotic biases are given by

plim �̃1 − �1 = �′
x(�x − �̃v)−1(�v − �̃v)�2;

plim �̃2 − �2 =−(�x − �̃v)−1(�v − �̃v)�2;

plim 	̃u − 	u = �′
2��(�x − �̃v)−1(�v − �̃v)�2:

From these equations we see that the estimation biases are of the same order as �v− �̃v and, hence,
can be signi:cant unless (�v − �̃v)�2 ≈ 0. Again, in the case where �2 is scalar, this means that
the asymptotic biases can be signi:cant, if the amount of misspeci:cation �v − �̃v is not very small
relative to �x−�̃v. Furthermore, the slope parameter �2 tends to be underestimated by underspeci:ed
�v and overestimated by overspeci:ed �v, whereas the converse is true for �1 and 	u.

4. Some special models

The general framework of Sections 2 and 3 covers many popular LDV models, e.g., the binary
response, the censored and the truncated regression models. In this section we show how to adapt
the two-step estimation procedure to these special models.

4.1. The censored regression model

A censored regression model has the form (1)–(3) with g(�i) = �iI (�i¿ 0), i.e., one observes
yi = �i when �i ¿ 0 and yi = 0 otherwise. This model was :rst applied to economic problem by
Tobin (1958) and therefore is known as the Tobit model in econometrics. It is well known that the
reduced models (4) and (2) is identi:ed in general and, hence, all parameters can be consistently
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estimated (Amemiya, 1985). Therefore, the two-step approach of Section 3 applies immediately to
the censored regression model.

4.2. The truncated regression model

The truncated linear regression model is applied to data sets where only positive outcomes of
the dependent variable is observed, i.e., one observes yi = �i when �i ¿ 0 and neither �i nor xi
are observed when �i6 0. Similar to the censored regression model, for the error-free truncated
regression model, the traditional moments estimator and more eMcient maximum likelihood estimator
for all parameters in models (4) and (2) are available (Greene, 1993). Thus, the two-step estimation
procedure of Section 3 applies immediately.

4.3. The binary response model

The binary response model is de:ned as (1)–(3) with g(�i) = I (�i¿ 0), i.e., one observes only
the signs of the dependent variable �i and not its values. In this case the observed dependent variable
yi takes only binary values 0 or 1. It is because of this very limited information, additional restriction
is needed for the model to be identi:ed. As for the Probit model, it is usually assumed that 	u =1,
which we do in this paper. Under this assumption the error variance in the reduced model becomes
	w = 1 + �′2�v�−1

� �x�2.
For reduced models (4) and (2), standard procedures yield consistent estimates of the ratios

 j = �j=
√
	w; j = 1; 2. Let  ̂ = ( ̂1;  ̂′2)′ be this :rst-step estimator. Then the second-step estimator

�̂ = (�̂1; �̂
′
2)

′ is computed through (6)–(10) as

�1 =
√
	w( 1 − �′

x�
−1
� �v 2);

�2 =
√
	w�−1

� �x 2;

where 	w = (1−  ′2�v�−1
� �x 2)−1. Correspondingly, Eq. (11) is modi:ed as

�̂ − � = B̂( ̂−  );

where  = �=
√
	w and B̂ converges in probability to

B=
√
	w

(
1 −�′

x�
−1
� �v

0 �−1
� �x

)
:

It follows that
√
n(�̂ − �) L→N(0; B�̃B′);

where �̃ is the asymptotic covariance matrix of  ̂.

Remark 1. For some special LDV models with measurement errors; direct estimation procedures
have been used in the literature. For the Probit model; Carroll et al. (1984) proposed maximum
likelihood estimator. For the censored regression model under a slightly diEerent set-up; Wang (1998)
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proposed moment and maximum likelihood estimators. A brief survey of estimation methods for the
censored regression models both with and without measurement errors can be found in Wang (1999).

In general, the two-step procedure of this paper should give the same results as the existing
maximum likelihood estimators, if the MLE are used in the :rst step. However, from the practical
applications point of view, either explicit formula for covariance of the existing estimators is not
available, or the estimation procedure involves sophisticated numerical computation and heavy com-
puter programing. In contrast, the two-step estimator of this paper is very easy to implement and to
be incorporated into the existing computer packages.

5. Conclusions

An easy to implement approach for correcting the eEects of measurement errors in certain limited
dependent variable models under normality is proposed. We have shown that such models may be
transformed into an “error-free” form. The parameters in the model can be expressed as simple
transformations of the reduced-form parameters, which may be estimated using usual procedures
available in many statistical computer packages. This procedure is easy to implement and the marginal
computation cost is minimal. The models covered by the framework include the binary response
model, the censored and truncated regression models, as well as the linear model.
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