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Abstract: Mixed effects models and Berkson measurement error models are widely used. They share fea-
tures which the author uses to develop a unified estimation framework. He deals with models in which the
random effects (or measurement errors) have a general parametric distribution, whereas the random regres-
sion coefficients (or unobserved predictor variables) and error terms have nonparametric distributions. He
proposes a second-order least squares estimator and a simulation-based estimator based on the first two mo-
ments of the conditional response variable given the observed covariates. He shows that both estimators are
consistent and asymptotically normally distributed under fairly general conditions. The author also reports
Monte Carlo simulation studies showing that the proposed estimators perform satisfactorily for relatively
small sample sizes. Compared to the likelihood approach, the proposed methods are computationally feasi-
ble and do not rely on the normality assumption for random effects or other variables in the model.

Une stratégie d’estimation commune pour les modèles non linéaires
à effets mixtes et les modèles d’erreur de mesure de Berkson
Résuḿe : Les mod̀elesà effets mixtes et les modèles d’erreur de mesure de Berkson sont très usit́es. Ils par-
tagent certaines caractéristiques que l’auteur metà profit pouŕelaborer une stratégie d’estimation commune.
Il consid̀ere des mod̀eles dans lesquels la loi des effets aléatoires (ou des erreurs de mesure) est paramé-
trique tandis que celles des coefficients de régression aléatoires (ou de variables exogènes non observées)
et des termes d’erreur ne le sont pas. Il propose une estimation des moindres carŕes au second ordre et
une approche par simulation fondées sur les deux premiers moments conditionnels de la variable endogène,
sachant les variables exogènes observ́ees. Les deux estimateurs s’avèrent convergents et asymptotiquement
gaussiens sous des conditions assez géńerales. L’auteur fait aussiétat d’́etudes de Monte-Carlo attestant du
bon comportement des deux estimations dans deséchantillons relativement petits. Les méthodes proposées
ne posent aucune difficulté particulìere au plan nuḿerique et au contraire de l’approche par vraisemblance,
ne supposent ni la normalité des effets aléatoires, ni celle des autres variables du modèle.

1. INTRODUCTION

Mixed effects models and measurement error models are two classes of widely used statistical
models in many scientific fields, e.g., in agriculture, biological and biomedical sciences, econo-
metrics, environmental science, epidemiology and psychology. In econometrics they are usually
called, respectively, panel data models and errors-in-variables models. Historically, these two
classes of models have completely different origins and interpretations. Consequently, their sta-
tistical inference procedures have been studied separately in the literature.

Generally speaking, mixed effects models are used to analyze longitudinal or repeated mea-
surement data arising from, e.g., clinical trials or pharmacokinetic and pharmacodynamic studies
(Davidian & Giltinan 1995; Vonesh & Chinchilli 1997; Lindsey 1999), whereas panel data mod-
els are used to analyze longitudinal data arising in economics and business (Chamberlain 1984;
Arellano & Honoŕe 2001; Hsiao 2003). In these models, the fixed and random effects are in-
terpreted as common and individual specific parameters respectively and are treated as fixed or
random unknown parameters. On the other hand, researchers are often interested in relations
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between a response variable and several predictor variables, some of which are unobservable or
measured with substantial errors. For example, an epidemiologist studies lung cancer incidence
of the residents in a city in relation to their exposures to certain pollutants in the air. While the
amount of the pollutants are measured at certain monitoringstations in the city, the actual indi-
vidual exposures vary around the observed values. This is a typical situation of Berkson-type
measurement errors (Fuller 1987; Gustafson 2004).

In this paper, we show that the mixed effects models and Berkson measurement error mod-
els share a common statistical structure and can therefore be treated in a unified framework.
Specifically, consider the general model

yit = g(xit, ξi, θ) + εit, t = 1, . . . , Ti, i = 1, . . . , N, (1)

whereyit ∈ IR is the response variable,xit ∈ IRk is the predictor variable,ξi ∈ IRℓ andθ ∈ IRp

are unknown parameters, andεit is the random error. Further, suppose

ξi = Ziϕ+ δi, (2)

whereZi ∈ IRℓ×q is a matrix of design variables,ϕ ∈ IRq is the vector of fixed effects and
δi ∈ IRℓ is the vector of random effects, which is independent ofZi andXi = (xi1, . . . , xiTi

).
In addition,δi, i = 1, . . . , N are assumed to be independent and identically distributed with
densityfδ(u, ψ), whereψ ∈ IRr is an unknown parameter. Finally, the random errorsεit,
t = 1, . . . , Ti are conditionally independent givenXi, Zi, independent acrossi = 1, . . . , N , and
satisfyE (εit |Xi, Zi, δi) = 0 andE (ε2it |Xi, Zi, δi) = σ2

ε . In general,g is nonlinear in either
or both of the predictor variables and unknown parameters. Since there is no assumption about
the functional form of the distributions ofXi, Zi andεit, (1) and (2) represent a semiparametric
model. In this model, onlyyit, Xi, Zi are observable. Model (1) and (2) become a measure-
ment error model ifξi represents the unobserved predictor variable. In particular, if q = 1 and
ϕ = 1, then (2) is the so-called Berkson measurement error model (Berkson 1950; Fuller 1987;
Gustafson 2004). In its general form, (2) represents the regression calibration model (Carroll,
Ruppert & Stefanski 1995). Therefore, (1) and (2) incorporate both mixed effects and Berkson
measurement error models.

The nonlinear mixed effects models have been intensively studied in recent years. The
mainstream of the research focuses on the (normal) likelihood approach (e.g., Lindstrom &
Bates 1990; Davidian & Gallant 1993; Ke & Wang 2001; Vonesh, Wang, Nie & Majumdar 2002;
Wu 2002; Daimon & Goto 2003; Lai & Shih 2003a), though a nonparametric method has also
been considered recently (Lai & Shih 2003b). In econometrics, the research concentrates on
the likelihood approach and the generalized method of moments for dynamic panel data models
(Wooldridge 1999; Arellano & Honoré 2001; Hsiao, Peseran & Tahmiscioglu 2002). The main
challenge with the likelihood approach is that the numerical computation of the maximum like-
lihood estimators is usually difficult or intractable, especially in the case of multivariate random
effects. Consequently, most existing approximate likelihood methods rely on the normality as-
sumption for random effects and other variables in the model, which is not always realistic in
applications. See, e.g., Hartford & Davidian (2000).

Despite their practical importance, nonlinear models withBerkson measurement errors have
been less intensively studied in the literature. Two commonly used methods for estimation are re-
gression calibration and simulation extrapolation (SIMEX) (Carroll, Ruppert & Stefanski 1995).
These methods, however, yield only approximately consistent estimators and are therefore ap-
plicable to small measurement error situations. Another stream of research is consistent esti-
mation without the assumption of normality, for example, Wang (2004) proposed a minimum
distance estimator and a simulation-based estimator basedon the first two conditional moments
of the response variable given the observed predictor variables. The goal of the present paper is to
extend the methods of Wang (2004) to models (1) and (2), whichincorporate the nonlinear mixed
effects and general regression calibration models for Berkson measurement errors. Specifically,
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we propose a second-order least squares estimator for parametersγ = (θ⊤, ϕ⊤, ψ⊤, σ2)⊤ based
on the first two conditional moments ofyit given the observed covariates(Xi, Zi). This estima-
tor can be easily computed if the closed forms of the two conditional moments are available. For
the more general case where the closed forms are difficult or impossible to obtain, we propose a
simulation-based estimator. We show that both estimators are consistent and asymptotically nor-
mally distributed under fairly general regularity conditions. Moreover, Monte Carlo simulation
studies of the finite sample performance of the proposed estimators and a real data application
are also presented.

The paper is organized as follows. Section 2 gives some examples to motivate our estimation
methods. Section 3 introduces the second-order least squares estimator and gives its consistency
and asymptotic normality. Section 4 presents the simulation-based estimator and its asymptotic
properties. Monte Carlo simulation studies and a real data application are presented in Section 5.
The regularity conditions are given in Section 6, and conclusions and discussion of possible
extensions of the proposed methods are given in Section 7. Finally, proofs of the theorems are
provided in the Appendix.

2. EXAMPLES AND MOTIVATION

In this section we motivate our approach using two simple examples. It is well known that the
linear measurement error model under normal distributionsis nonidentifiable. Interestingly, non-
linear models with Berkson measurement errors are generally identifiable (Rudemo, Ruppert &
Streibig 1989). Moreover, the models can usually be identified using the first two conditional
moments of the response variable given the observed predictor variables (Wang 2003, 2004).
In this section, we demonstrate that this remains true for nonlinear mixed effects models. To
simplify the notation, we consider the cases where the random effectsδi have zero mean and
the unknown parameters in their distributions consist of variances and covariances only, so that
ψ = (ψi, 1 ≤ i ≤ ℓ, ψij , 1 ≤ i < j ≤ ℓ)⊤. Moreover, we denote the conditional expectation
givenXi, Zi asEi( · ) = E ( · |Xi, Zi).

Example 1. First consider an exponential modelyit = ξ1i exp(−ξ2ixit)+εit andξi = ϕ+δi (so
thatZi = I2 is a two-dimensional identity matrix). For this model, we assume thatδi is normally
distributed with zero mean and variances and covarianceψ = (ψ1, ψ2, ψ12)

⊤. Then the first two
moments ofyit are

Ei(yit) = Ei(ϕ1 + δ1i) exp{−xit(ϕ2 + δ2i)} + Ei(εit)

= (ϕ1 − ψ12xit) exp(−ϕ2xit + ψ2x
2
it/2), (3)

and

Ei(yityis) = Ei(ϕ1 + δ1i)
2 exp{−(ϕ2 + δ2i)(xit + xis)} + Ei(εitεis)

=
[
ψ1 + {ϕ1 − ψ12(xit + xis)}2

]

× exp{−ϕ2(xit + xis) + ψ2(xit + xis)
2/2} + σits, (4)

whereσits = σ2
ε if t = s, and zero otherwise. Since (3) is a usual nonlinear regression equation,

it is clear thatϕ1, ϕ2, ψ2 andψ12 can be consistently estimated by the least squares method.
Similarly, ψ1 can be consistently estimated by applying the least squaresmethod to (4) with
t 6= s, andσ2

ε can be estimated by (4) witht = s. Therefore the model is identifiable using the
first two moments ofyit givenXi, Zi.

Example 2. Now consider the growth model studied by Lindstrom & Bates (1990), and many
other researchers,

yit =
ξi

1 + θ1 exp(θ2xit)
+ εit, (5)
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whereξi = ϕ+ δi. For this model the first two conditional moments ofyit are

Ei(yit) =
ϕ

1 + θ1 exp(θ2xit)
, (6)

Ei(yityis) =
ϕ2 + ψ1

{1 + θ1 exp(θ2xit)}{1 + θ1 exp(θ2xis)}
+ σits, (7)

whereσits is defined as in the previous example. Again,θ1, θ2 andϕ can be consistently esti-
mated by (6) and the nonlinear least squares method, whileψ1 andσ2

ε can be consistently esti-
mated by (7). Hence this model is identifiable using the first two moments ofyit. In Section 5,
this model will be applied to the well-known orange tree data(Draper & Smith 1998).

From the above examples it is easy to see that in many situations parameters in nonlinear
mixed effects models can be identified and consistently estimated using the first two conditional
moments ofyit givenXi, Zi. Although the closed forms of the conditional moments can be
obtained in both examples, it is easy to see that the identifiability holds more generally. In
fact, identifiability can always be achieved by imposing appropriate restrictions on unknown
parameters, as has usually been done in practice. Unfortunately, given its theoretical and practical
importance, general solutions to identifiability of nonlinear mixed effects models do not exist. In
practice, it is usually done in an heuristic way.

3. SECOND-ORDER LEAST SQUARES ESTIMATOR

Motivated by the examples in the previous section, we consider a minimum distance estima-
tor for models(1) and(2) based on the first two moments of the response variable. Letγ =
(θ⊤, ϕ⊤, ψ⊤, σ2)⊤ denote the vector of model parameters andΓ = Θ×Φ×Ψ×Σ ⊂ IRp+q+r+1

the corresponding parameter space which is assumed to be compact. Then under the model as-
sumptions given in Section 1, the first two conditional moments ofyit given the observed covari-
atesXi, Zi are

µit(γ) = Eγ(yit |Xi, Zi)

=

∫
g(xit, u, θ)fδ(u− Ziϕ;ψ) du, (8)

νits(γ) = Eγ(yityis |Xi, Zi)

=

∫
g(xit, u, θ)g(xis, u, θ)fδ(u− Ziϕ;ψ) du+ σits, (9)

whereσits = σ2
ε if t = s, and zero ift 6= s. Throughout this paper all integrals are taken to be

over the space IRℓ. Then the second-order least squares estimator (SLS) forγ is defined as

γ̂N = argmin
γ∈Γ

QN (γ) = argmin
γ∈Γ

N∑

i=1

ρ⊤i (γ)Wiρi(γ), (10)

whereρi(γ) =
(
yit − µit(γ), 1 ≤ t ≤ Ti, yityis − νits(γ), 1 ≤ t ≤ s ≤ Ti

)⊤
andWi =

W (Xi, Zi) is a nonnegative definite matrix which may depend onXi, Zi.
Now we investigate the asymptotic properties ofγ̂N . To simplify the notation, we present

our theoretical results for the case whereTi = T , i = 1, . . . , N . The extension of the results to
more general cases will be discussed in Section 7. The regularity conditions for the consistency
and asymptotic normality of̂γN are given in Section 6. In particular, Assumption A3 and the
dominated convergence theorem imply that the partial derivatives

∂ρ⊤i (γ)

∂γ
= −

(
∂µit(γ)

∂γ
, 1 ≤ t ≤ T,

∂νits(γ)

∂γ
, 1 ≤ t ≤ s ≤ T

)
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exist and are as given after A4 of Section 6. Throughout the paper the true parameter value of
models(1) and(2) is denoted byγ0 ∈ Γ.

THEOREM 1. AsN → ∞, the second-order least squares estimator SLSγ̂N has the following
properties:

1. UnderA1–A2, γ̂N
a.s.−→ γ0.

2. UnderA1–A4,
√
N (γ̂N − γ0)

L−→ N(0, B−1CB−1), where

C = E

{
∂ρ⊤i (γ0)

∂γ
Wiρi(γ0)ρ

⊤
i (γ0)Wi

∂ρi(γ0)

∂γ⊤

}
(11)

and

B = E

{
∂ρ⊤i (γ0)

∂γ
Wi

∂ρi(γ0)

∂γ⊤

}
. (12)

Furthermore, with probability one,

B = lim
N→∞

1

N

N∑

i=1

{
∂ρ⊤i (γ̂N )

∂γ
Wi

∂ρi(γ̂N )

∂γ⊤

}
(13)

and

4C = lim
N→∞

1

N

∂QN (γ̂N )

∂γ

∂QN (γ̂N )

∂γ⊤
, (14)

where
∂QN (γ)

∂γ
= 2

N∑

i=1

∂ρ⊤i (γ)

∂γ
Wiρi(γ).

3. The above results hold ifA3 is replaced byA3′.

In the rest of this section, we briefly discuss the choice of the weighting matrixWi in the
computation of̂γN . First, theoretically a natural question is how to chooseWi to obtain the most
efficient estimator. To answer this question, we rewriteC as

C = E

{
∂ρ⊤i (γ0)

∂γ
WiViWi

∂ρi(γ0)

∂γ⊤

}
,

where
Vi = E

{
ρi(γ0)ρ

⊤
i (γ0) |Xi, Zi

}
.

Then by the matrix form of the Cauchy–Schwartz inequality wehave

B−1CB−1 ≥ E

{
∂ρ⊤i (γ0)

∂γ
V −1

i

∂ρi(γ0)

∂γ⊤

}−1

(15)

(in that the difference between the left- and right-hand sides is nonnegative definite), and the
lower bound is attained withWi = V −1

i in B andC (Hansen 1982; Abarin & Wang 2006). In
practice, however, the use ofVi is infeasible because it depends on the unknown parameters to
be estimated. A possible solution is similar to the two-stage procedure used in generalized least
squares estimation (e.g., Amemiya 1974; Gallant 1987, ch. 5). First, minimizeQN (γ) using the
identity weightWi = I to obtain the first-stage estimatorγ̃N . Second, estimateVi by

V̂i =
1

N

N∑

i=1

ρi(γ̃N )ρ⊤i (γ̃N ),
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and then minimizeQN (γ) again withWi = V̂ −1

i to obtain the second-stage estimatorγ̂N .
Since the asymptotic covariance matrix ofγ̂N will be the same as the right-hand side of (15),
it is asymptotically more efficient than the first-stage estimatorγ̃N . However, becauseWi is of
dimensionT (T + 3)/2, it is only practical to use the optimal weight whenT is not very large.
For largeT , either the identity matrix or certain block diagonal matrices can be used.

4. SIMULATION-BASED ESTIMATOR

The SLSγ̂N of the previous section can be computed using the usual numerical optimization
procedures if closed forms ofµit(γ) andνits(γ) are available. Sometimes, however, explicit
forms of the integrals in (8) and (9) may be difficult or impossible to obtain. In practice, the
numerical optimization of an objective function involvingmultiple integrals can be troublesome,
especially when the dimension of the integral is higher thantwo or three. To overcome this
computational difficulty, in this section we consider a simulation-based approach in which the
integrals are simulated by Monte Carlo methods such as importance sampling.

The simulation-based estimator can be constructed in the following way. First, choose a
known density functionh(u) and generate an independent and identically distributed random
sample{uij , j = 1, . . . , 2S, i = 1, . . . , N} from it. Then approximateµit(γ) andνits(γ)
respectively using the corresponding Monte Carlo simulators

µit,1(γ) =
1

S

S∑

j=1

g(xit, uij , θ)fδ(uij − Ziϕ;ψ)

h(uij)
(16)

and

νits,1(γ) =
1

S

S∑

j=1

g(xit, uij , θ)g(xis, uij , θ)fδ(uij − Ziϕ;ψ)

h(uij)
+ σits. (17)

Similarly, we construct another set of simulatorsµit,2(γ), νits,2(γ) using the second half of
the simulated points{uij , j = S + 1, . . . , 2S, i = 1, . . . , N}. Finally, the simulation-based
estimator (SBE) forγ is defined by

γ̂N,S = argmin
γ∈Γ

QN,S(γ) = argmin
γ∈Γ

N∑

i=1

ρ⊤i,1(γ)Wiρi,2(γ), (18)

whereρi,j(γ) =
(
yit − µit,j(γ), 1 ≤ t ≤ Ti, yityis − νits,j(γ), 1 ≤ t ≤ s ≤ Ti

)⊤
, j = 1, 2.

It is easy to see thatµit,j(γ) andνits,j(γ) approximateµit(γ) andνits(γ) respectively asS is
sufficiently large. Moreover, becauseρi,1(γ) andρi,2(γ) are conditionally independent given
Yi, Xi, Zi, we haveE[ρ⊤i,1(γ)Wiρi,2(γ)] = E[ρ⊤i (γ)Wiρi(γ)]. ThusQN,S(γ) is an unbiased
simulator forQN (γ). For the simulation-based estimatorγ̂N,S , we have the following results.

THEOREM 2. Suppose thatSupp (h) ⊇ Supp (fδ( · ;ψ)) for all ψ ∈ Ψ. Then, asN → ∞, γ̂N,S

has the following properties:

1. UnderA1–A2, γ̂N,S
a.s.−→ γ0.

2. UnderA1–A4,
√
N (γ̂N,S − γ0)

L−→ N(0, B−1CSB
−1), where

2CS = E

{
∂ρ⊤i,1(γ0)

∂γ
Wiρi,2(γ0)ρ

⊤
i,2(γ0)Wi

∂ρi,1(γ0)

∂γ⊤

}

+ E

{
∂ρ⊤i,1(γ0)

∂γ
Wiρi,2(γ0)ρ

⊤
i,1(γ0)Wi

∂ρi,2(γ0)

∂γ⊤

}
. (19)
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Furthermore, with probability one,

4CS = lim
N→∞

1

N

∂QN,S(γ̂N,S)

∂γ

∂QN,S(γ̂N,S)

∂γ⊤
. (20)

3. The above results hold ifA3 is replaced byA3′.

The SBEγ̂N,S is generally less efficient than the SLŜγN , due to the simulation approxi-
mation ofρi(γ) throughρi,1(γ) andρi,2(γ). A natural question is how much efficiency is lost
due to simulation. The following Corollary shows that the efficiency loss caused by simulation
decreases at the rateO(1/S). The proof is completely analogous to that of Corollary 4 in Wang
(2004) and is therefore omitted.

COROLLARY 1. Under the conditions of Theorem 2,

CS = C +
1

2S
E

{
∂ρ⊤i Wi(ρi1 − ρi)

∂γ

∂(ρi1 − ρi)
⊤Wiρi

∂γ⊤

}

+
1

4S2
E

{
∂(ρi1 − ρi)

⊤Wi(ρi2 − ρi)

∂γ

∂(ρi2 − ρi)
⊤Wi(ρi1 − ρi)

∂γ⊤

}
,

whereρi = ρi(γ0) andρij is the summand inρi,1(γ0) =
∑S

j=1
ρij/S.

The above result also provides a practical guidance to the choice of the simulation sizeS.
For example, one can control the efficiency loss by choosing alarge enough value ofS. Asymp-
totically, the importance densityh(u) has no effect on the efficiency of the estimator, as long as it
satisfies the condition of Theorem 2. In practice, however, the choice ofh(u) will affect the finite
sample variances of the Monte Carlo estimators such asµit,1(γ). Theoretically, the best choice of
h(u) is proportional to the absolute value of the integrand, which isg(xit, uij , θ)fδ(uij−Ziϕ;ψ)
for µit,1(γ). Practically, however, a density close to being proportional to the integrand is a good
choice.

5. SIMULATION STUDIES AND APPLICATION

This section is an account of simulation studies we carried out to demonstrate the finite sam-
ple performances of the proposed estimators. Specifically,we simulate the exponential model
of Example 1 and a linear-exponential model with Berkson measurement errors. In addition,
we apply our methods to the well-known orange tree data set. In all simulations, we calculate
the first-stage SLS (SLS1) using identity weight and the second-stage SLS (SLS2) using esti-
mated optimal weight. For these and other estimators, we calculate the Monte Carlo means, the
simulation standard errors (SSE) and the root mean squared errors (RMSE).

Example 3. First consider the exponential model given in Example 1, which has two correlated
random effects. For this model, the closed forms of the first two moments ofyit are given in (3)
and (4), so that the SLS can be computed by directly minimizingQN (γ) in (10).

For comparison, we also calculate the quasilikelihood estimators ofβ = (ϕ1, ϕ2, ψ2, ψ12)
base on the first moment condition (3). In particular, the estimators are calculated by solving the
estimating equation

N∑

i=1

DiV
−1

i (Yi − µi) = 0,

whereYi = (yit, 1 ≤ t ≤ Ti)
⊤, Vi = V (Yi), µi = (µit, 1 ≤ t ≤ Ti)

⊤ andDi is the matrix of
partial derivatives ofµi with respect to all parameters inβ. In the quasilikelihood approach, the
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other “variance parameters”ψ1, σ2
ε have to be estimated through additional estimating equations

because they do not appear inµi and therefore are not identified by (3). To simplify the compu-
tation, we omit the quasilikelihood estimation ofψ1 andσ2 and use their true values in the above
estimating equation.

The data were generated usingxit = xt ∼ U(0, 5) andεit ∼ N(0, σ2
ε). We have considered

two sets of sample sizes(N,T ), which are(20, 5) and(40, 7). In each case,1000 Monte Carlo
replications were carried out. The computation was done using the statistical package R on a
workstation running Windows XP. The results are reported inTables 1 and 2. These results show
that both SLS estimators using the identity and optimal weights do not have apparent biases and
they have similar SSE and RMSE. The reason that the SLS2 does not improve SLS1 significantly
may be due to the fact that the weighting matrix is not easily estimated accurately with relatively
small sample sizes. Further, it is clear that the quasilikelihood estimator (QLE) has finite sample
biases for most parameters and has smaller SSE but larger RMSE than both SLS estimators.

We have also tried other distributions for random effects, such asχ2 distributions with low
degrees of freedoms. The results obtained follow patterns similar to those in Tables 1 and 2.

TABLE 1: Simulation results of Example 3 with sample sizesN = 20, T = 5.

True ϕ1 = 10 ϕ2 = 5 ψ1 = 1 ψ2 = 0.7 ψ12 = 0.5 σ2
= 1

SLS1 9.9024 4.9369 1.0032 0.6803 0.5003 0.9827

SSE 0.0499 0.0229 0.0092 0.0055 0.0055 0.0051

RMSE 1.5816 0.7264 0.2915 0.1749 0.1733 0.1612

SLS2 9.8597 4.9365 0.9940 0.6913 0.5012 0.9395

SSE 0.0442 0.0214 0.0092 0.0056 0.0055 0.0051

RMSE 1.4030 0.6785 0.2919 0.1768 0.1734 0.1722

QLE 11.2574 5.4979 - 0.6056 0.4935 -

SSE 0.0333 0.0186 - 0.0051 0.0055 -

RMSE 1.6392 0.7707 - 0.1868 0.1743 -

Example 4. Now consider a measurement error modelyi = θ1ξ1i + θ2 exp(θ3ξ2i) + εi and
ξi = Zi + δi, whereεi ∼ N(0, σ2

ε) andδi ∼ N[(0, 0)⊤,diag(ψ1, ψ2)]. Here we have omitted
the indext everywhere, sinceTi = 1. For this model, the conditional moments (8) and (9) have
closed forms

µi(γ) = θ1Z1i + θ2 exp(θ3Z2i + θ23ψ2/2)

and

νi(γ) = θ21(Z
2
1i + ψ1) + θ22 exp(2θ3Z2i + 2θ23ψ2) + 2θ1θ2Z1i exp(θ3Z2i + θ23ψ2/2) + σ2

ε ,

so that the SLS can be computed by minimizingQN (γ) in (10). For the purpose of demon-
stration, we also compute the simulation-based estimator.To compute the SBE, we choose
the density ofN [(0, 0)⊤,diag(5, 5)] to beh(u), and generate independent pointsuij ∼ h(u),
j = 1, . . . , 2S, i = 1, . . . , N usingS = 1000. Further, the simulated momentsµi,j(γ), νi,j(γ),
j = 1, 2 are calculated according to(16) and(17). Finally, the SBÊγN,S is calculated by mini-
mizingQN,S(γ) in (18) using the identity weight. The SBE using the estimated optimal weight
has also been calculated but the numerical results are very similar and are not reported here. The
data were generated usingZi ∼ N[(1, 2)⊤,diag(1, 2)] and sample sizeN = 50. In this sim-
ulation,500 Monte Carlo replications were carried out. For comparison,we also included the
ordinary nonlinear least squares estimates ignoring the measurement errors. The computation
was done using the package MATLAB on a workstation running Windows XP.
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TABLE 2: Simulation results of Example 3 with sample sizesN = 40, T = 7.

True ϕ1 = 10 ϕ2 = 5 ψ1 = 1 ψ2 = 0.7 ψ12 = 0.5 σ2
= 1

SLS1 9.9178 4.8742 0.9959 0.6454 0.5104 0.9915

SSE 0.0475 0.0310 0.0089 0.0048 0.0055 0.0034

RMSE 1.5029 0.9888 0.2804 0.1614 0.1732 0.1073

SLS2 9.9049 4.8969 0.9971 0.6572 0.5055 0.9332

SSE 0.0391 0.0264 0.0091 0.0052 0.0054 0.0034

RMSE 1.2404 0.8406 0.2870 0.1691 0.1709 0.1269

QLE 11.4357 5.8306 - 0.6335 0.4920 -

SSE 0.0184 0.0129 - 0.0052 0.0055 -

RMSE 1.5491 0.9246 - 0.1759 0.1739 -

The results are reported in Table 3. These results show that with a moderate sample size
N = 50, both SLS and SBE perform reasonably well, though the improvement of SLS2 over
SLS1 seems not to be significant. Moreover, with a simulationsizeS = 1000, the SBE performs
as well as the SLS, except for slightly higher standard deviations. As expected, the nonlinear
least squares estimates (NLSE) are clearly biased for most parameters.

TABLE 3: Simulation results of Example 4 with sample sizeN = 50, T = 1. The simulation standard
errors are in parentheses.

True θ1 = 3 θ2 = 2 θ3 = −1 σ2

ε
= 1 ψ1 = 1 ψ2 = 1.5

SLS1 2.9974 1.9291 −0.8699 1.0032 1.0133 1.3929

(0.0065) (0.0065) (0.0045) (0.0052) (0.0057) (0.0047)

SLS2 2.9990 1.9470 −0.8616 1.0057 0.9851 1.3554

(0.0064) (0.0068) (0.0042) (0.0053) (0.0058) (0.0034)

SBE 2.9845 1.9114 −0.8668 1.0000 1.0031 1.3853

(0.0065) (0.0062) (0.0045) (0.0053) (0.0059) (0.0046)

NLSE 3.0926 2.1114 −0.9466 37.7340 - -

(0.0062) (0.0064) (0.0061) (4.8863) - -

Example 5. Finally we apply our methods to the orange tree data. The data are given in Draper &
Smith (1998, p. 559) and contain the measurements on the trunk circumferences (yit, in mil-
limeters) of five orange trees taken at seven occasions (xit, in days from December 31, 1968).
The logistic growth model (5) in Example 2 has been used by many authors (e.g., Lindstrom &
Bates 1990) to model this data set. Later, Pinheiro & Bates (1995) recalculated the estimates for
a reparameterized form of the model

yit =
ϕ+ δi

1 + exp{−(xit − θ1)/θ2}
+ εit,

whereδi ∼ (0, ψ) andεit ∼ (0, σ2). For this model the first two conditional moments ofyit

givenXi are similar to those in (6) and (7). Here we have calculated the SLS estimates using
the identity weight, which are shown in Table 4. As a “gold standard”, we have included the
maximum likelihood estimates (MLE) and the linear mixed effects model approximation of the
restricted MLE presented in Pinheiro & Bates (1995). We can see that the SLS are in line with
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the estimates obtained by the other two methods, and closer to the MLE than the LME for some
instances. Among the three methods, the estimates for the random effect varianceψ look quite
different, which is not surprising because its estimator isknown to have a fairly large standard
deviation.

TABLE 4: Estimation of the orange tree growth model in Example 5.

θ1 θ2 ϕ ψ σ2

ε

SLS 729.92 350.13 192.50 1002.41 61.00

MLE 727.91 348.07 192.05 1001.25 61.50

LME 722.56 344.16 191.05 990.29 61.56

6. REGULARITY CONDITIONS

This section contains regularity conditions that are required to derive the asymptotic properties
of the SLSγ̂N and the SBÊγN,S . In particular, for the consistency of the estimators, we assume
the following conditions, where‖ · ‖ denotes the Euclidean norm.

A1. For each(ξ⊤i , θ
⊤)⊤ ∈ Rℓ × Θ, g(xit, ξi, θ) is a measurable function ofxit and is

continuous in(ξ⊤i , θ
⊤)⊤ ∈ Rℓ × Θ for all xit. fδ(u;ψ) is continuous inψ ∈ Ψ for all u.

Furthermore,E ‖Wi‖(y4
it+1) <∞ andE ‖Wi‖

(∫
supΓ g

2(xit, u, θ)fδ(u−Ziϕ;ψ) du
)2
<∞.

A2. E {ρi(γ) − ρi(γ0)}⊤Wi{ρi(γ) − ρi(γ0)} = 0 if and only if γ = γ0.

The above conditions are common in the nonlinear regressionliterature. In particular, A1
is usually used to ensure the continuity and uniform convergence ofQN (γ). It is easy to see
that the moment conditions in A1 are satisfied, e.g., ifg(xit, ξi, θ) is a polynomial andδi has a
normal distribution. Moreover, A2 is the usual condition for identifiability of parameters, which
implies thatQN (γ) has unique minimizerγ0 for largeN . For the asymptotic normality of our
estimators, we assume further conditions as follows.

A3. There exist open subsetsθ0 ∈ Θ0 ⊂ Θ and ψ0 ∈ Ψ0 ⊂ Ψ, in whichg(xit, ξi, θ) is twice
continuously differentiable with respect toθ and fδ(u;ψ) is twice continuously differentiable
with respect to bothu andψ. Furthermore, there exists positive functionG(u, x, z) satisfying

E ‖Wi‖
(∫

G(u,Xi, Zi) du

)2

<∞,

such that all partial derivatives of order 0 to 2 ofg(xit, u, θ)fδ(u − Ziϕ;ψ) and
g(xit, u, θ)g(xis, u, θ)fδ(u − Ziϕ;ψ) with respect to (θ, ϕ, ψ) are absolutely bounded by
G(u,Xi, Zi).

A4. The matrix

B = E

{
∂ρ⊤i (γ0)

∂γ
Wi

∂ρi(γ0)

∂γ⊤

}

is nonsingular.

Again, A3 and A4 are regularity conditions commonly seen, which are sufficient for the as-
ymptotic normality of the second-order least squares estimators. In particular, while A3 ensures
that the first derivative ofQN (γ) admits a first-order Taylor expansion and the second derivative
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ofQN (γ) converges uniformly, A4 implies that the second derivativeofQN (γ) has a nonsingular
limiting matrix. Again, it is easy to see that A3 and A4 are satisfied for the polynomial model
g(xit, ξi, θ) and the normal random effectsδi.

Moreover, assumption A3 and the dominated convergence theorem imply that the first deriv-
atives

∂ρ⊤i (γ)

∂γ
= −

(
∂µit(γ)

∂γ
, 1 ≤ t ≤ Ti,

∂νit(γ)

∂γ
, 1 ≤ t ≤ s ≤ Ti

)

exist and they are given by

∂µit(γ)

∂θ
=

∫
∂g(xit, u, θ)

∂θ
fδ(u− Ziϕ;ψ) du,

∂µit(γ)

∂ϕ
= −Z⊤

i

∫
g(xit, u, θ)

∂fδ(u− Ziϕ;ψ)

∂u
du,

∂µit(γ)

∂ψ
=

∫
g(xit, u, θ)

∂fδ(u− Ziϕ;ψ)

∂ψ
du,

∂µit(γ)

∂σ2
= 0

and

∂νits(γ)

∂θ
=

∫
∂g(xit, u, θ)g(xis, u, θ)

∂θ
fδ(u− Ziϕ;ψ) du,

∂νits(γ)

∂ϕ
= −Z⊤

i

∫
g(xit, u, θ)g(xis, u, θ)

∂fδ(u− Ziϕ;ψ)

∂u
du,

∂νits(γ)

∂ψ
=

∫
g(xit, u, θ)g(xis, u, θ)

∂fδ(u− Ziϕ;ψ)

∂ψ
du,

∂νitt(γ)

∂σ2
= 1,

∂νits(γ)

∂σ2
= 0, t 6= s.

Note that A3 entails the differentiability offδ(u;ψ) with respect tou. This condition can
be replaced by the differentiability ofg(xit, ξi, θ) with respect toξi, because through variable
substitution, integrals (8) and (9) can be written as

µit(γ) =

∫
g(xit, Ziϕ+ u, θ)fδ(u;ψ) du, (21)

νits(γ) =

∫
g(xit, Ziϕ+ u, θ)g(xis, Ziϕ+ u, θ)fδ(u;ψ) du+ σits. (22)

Hence A3 can be modified as follows.

A3′. There exist open subsetsθ0 ∈ Θ0 ⊂ Θ and ψ0 ∈ Ψ0 ⊂ Ψ, in which g(xit, ξi, θ) is
twice continuously differentiable with respect to(ξ⊤i , θ

⊤)⊤ and fδ(u;ψ) is twice continuously
differentiable with respect toψ. Furthermore, there exists functionG(u, x, z) satisfying

E ‖Wi‖
(∫

G(u,Xi, Zi) du

)2

<∞,

such that all partial derivatives of order0 to 2 of g(xit, Ziϕ+ u, θ)fδ(u;ψ) andg(xit, Ziϕ+
u, θ)g(xis, Ziϕ+u, θ)fδ(u;ψ) with respect to(θ, ϕ, ψ) are absolutely bounded byG(u,Xi, Zi).

Under this assumption, the first derivatives ofµit(γ) andνit(γ) with respect toϕ become

∂µit(γ)

∂ϕ
= Z⊤

i

∫
∂g(xit, Ziϕ+ u, θ)

∂ξ
fδ(u;ψ) du,
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and
∂νits(γ)

∂ϕ
= Z⊤

i

∫
∂g(xit, Ziϕ+ u, θ)g(xis, Ziϕ+ u, θ)

∂ξ
fδ(u;ψ) du,

respectively, and all other derivatives remain the same as under A3.
Finally note that, since the simulated objective functionQN,S(γ) does not involve inte-

grals any more, it is continuous in, and differentiable withrespect to,γ, as long as functions
g(xit, ξi, θ) andfδ(u;ψ) have these properties. In this sense, the simulation-basedestimator
requires weaker assumptions than the second-order least squares estimator.

7. CONCLUSIONS AND DISCUSSION

We have used a unified framework for estimation of the mixed effects and the Berkson measure-
ment error models, which are presented in different contexts and have different interpretations in
the literature. For the mixed effects models, this approachdoes not require the distribution of the
random effects to be normal, nor does it need any parametric assumption for the distribution of
the random errors in the regression equation. In the contextof measurement error models, this
approach producesexactly(rather thanapproximately) consistent estimators. The possible com-
putational issue of minimizing a function that involves multiple integrals is addressed using the
method of simulated moments, so that the proposed estimators are numerically always feasible.
Limited Monte Carlo simulation studies show that the proposed estimators perform fairly satis-
factorily for relatively small sample sizes and slightly better than the quasi-likelihood estimators,
even though the latter uses more information than the former.

It is possible to extend the approach of this paper to more general situations. One possible
extension is thatεit andεis are correlated, so thatE (εitεis |Xi, Zi, δi) = σts 6= 0. It is easy
to see that the asymptotic results of the SLS and the SBE remain valid with minor modification
of the asymptotic covariance matrix. The proofs can be modified easily by repeatedly using the
Cauchy–Schwartz inequality. Another possible extension of the approach is to cover the situation
where the individuals have unbalanced observations. In this case,Ti depends oni and may be
different for i = 1, . . . , N . Because nowρi(γ), i = 1, . . . , N have different dimensions, the
proofs of asymptotic normality of the estimators should be based on the central limit theorem
of Lindeberg–Feller, instead of Lindeberg–Lévy. Future research should include investigation
of the finite sample behavior of the proposed estimators through more extensive Monte Carlo
simulation studies and comparisons with other existing methods in the literature.

APPENDIX

Proof of Theorem 1.1.For any1 ≤ i ≤ N , by definition and the Cauchy–Schwartz inequality,

‖ρi(γ)‖2 ≤ 2
∑

t

y2
it + 2

∑

t≤s

y2
ity

2
is + 2

∑

t

∫
g2(xit, u, θ)fδ(u− Ziϕ;ψ) du

+ 4
∑

t≤s

∫
g2(xit, u, θ)fδ(u− Ziϕ;ψ) du

∫
g2(xis, u, θ)fδ(u− Ziϕ;ψ) du

+ 4Tσ4.

It follows from assumption A1 that

E sup
Γ

ρ⊤i (γ)Wiρi(γ) ≤ E ‖Wi‖ sup
Γ

‖ρi(γ)‖2

≤ 2
∑

t

E ‖Wi‖y2
it + 2

∑

t≤s

E‖Wi‖y2
ity

2
is + 4T sup

Σ

σ4E‖Wi‖

+ 2
∑

t

E ‖Wi‖
∫

sup
Γ

g2(xit, u, θ)fδ(u− Ziϕ;ψ) du
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+ 4
∑

t≤s

{
E ‖Wi‖

(∫
sup
Γ

g2(xit, u, θ)fδ(u− Ziϕ;ψ) du

)2}1/2

×
{

E ‖Wi‖
(∫

sup
Γ

g2(xis, u, θ)fδ(u− Ziϕ;ψ) du

)2}1/2

< ∞.

Again by the Cauchy–Schwartz inequality,
∫

sup
Γ

|g(xit, u, θ)|jfδ(u− Ziϕ;ψ) du <∞, j = 1, 2.

It follows from A1 and the dominated convergence theorem that ρi(γ), and thereforeQN (γ), is
continuous inγ ∈ Γ. Furthermore, by the uniform law of large numbers (Jennrich1969, Th. 2),
uniformly in γ ∈ Γ,QN (γ)/N converges almost surely to

Q(γ) = E ρ⊤i (γ)Wiρi(γ) = Q(γ0) + E {ρi(γ) − ρi(γ0)}⊤Wi{ρi(γ) − ρi(γ0)}. (23)

It follows thatQ(γ) ≥ Q(γ0) and, by A2, equality holds if and only ifγ = γ0. Therefore by
Lemma 3 of Amemiya (1973), we havêγN

a.s.−→γ0.

Proof of Theorem 1.2.By Assumption A3 the first derivative∂QN (γ)/∂γ exists and has a first-
order Taylor expansion in an open neighbourhoodΓ0 ⊂ Γ of γ0. Since∂QN (γ̂N )/∂γ = 0 and
γ̂N

a.s.−→γ0, for sufficiently largeN we have

∂QN (γ0)

∂γ
+
∂2QN (γ̃N )

∂γ∂γ⊤
(γ̂N − γ0) = 0, (24)

where‖γ̃N − γ0‖ ≤ ‖γ̂N − γ0‖. The first derivative ofQN (γ) in (24) is given by

∂QN (γ)

∂γ
= 2

N∑

i=1

∂ρ⊤i (γ)

∂γ
Wiρi(γ),

where∂ρ⊤i (γ)/∂γ is given in Section 6 after A4. Since∂ρ⊤i (γ)Wiρi(γ)/∂γ are independent
and identically distributed by the central limit theorem wehave, asN → ∞,

1√
N

∂QN (γ0)

∂γ

L−→N(0, 4C), (25)

whereC is given in (11). The second derivative ofQN (γ) in (24) is given by

∂2QN (γ)

∂γ∂γ⊤
= 2

N∑

i=1

{
∂ρ⊤i (γ)

∂γ
Wi

∂ρi(γ)

∂γ⊤
+ (ρ⊤i (γ)Wi ⊗ I)

∂ vec(∂ρ⊤i (γ)/∂γ)

∂γ⊤

}
,

where⊗ is the Kronecker product,I is the2N(p+ q + r + 1) dimensional identity matrix, and

∂ vec(∂ρ⊤i (γ)/∂γ)

∂γ⊤
= −

(
∂2µit(γ)

∂γ∂γ⊤
, 1 ≤ t ≤ T,

∂2νits(γ)

∂γ∂γ⊤
, 1 ≤ t ≤ s ≤ T

)⊤

.

Analogous to the proof of Theorem 1.1, by repeatedly using the Cauchy–Schwartz inequality
and A3, we can verify that

E sup
Γ

∥∥∥∥
∂ρ⊤i (γ)

∂γ
Wi

∂ρi(γ)

∂γ⊤

∥∥∥∥ ≤
∑

t,s

E ‖W1‖ sup
Γ

(∥∥∥∥
∂µit(γ)

∂γ

∥∥∥∥
2

+

∥∥∥∥
∂νits(γ)

∂γ

∥∥∥∥
2)

<∞
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and

E sup
Γ

∥∥∥∥(ρ⊤i (γ)Wi ⊗ I)
∂ vec(∂ρ⊤i (γ)/∂γ)

∂γ⊤

∥∥∥∥

≤
√

2ℓ(p+ q + r + 1)

(
E ‖Wi‖ sup

Γ

‖ρi(γ)‖2E‖Wi‖ sup
Γ

∥∥∥∥
∂ vec(∂ρ⊤i (γ)/∂γ)

∂γ⊤

∥∥∥∥
2)1/2

<∞.

That (1/N)∂2QN (γ)/∂γ∂γ⊤
a.s.−→∂2Q(γ)/∂γ∂γ⊤ uniformly in γ ∈ Γ0 follows from the uni-

form law of large numbers. Therefore, by Lemma 4 of Amemiya (1973), we have

1

N

∂2QN (γ̃N )

∂γ∂γ⊤
a.s.−→2B, (26)

whereB is given in (12). It follows then from (24)–(26), A4 and Slutsky’s theorem (Amemiya

1985) that
√
n (γ̂N −γ0)

L−→N(0, B−1CB−1). Moreover, (13) and (14) can be similarly verified
by Lemma 4 of Amemiya (1973).

Proof of Theorem 1.3.Under the alternative assumption A3′, the above derivation remains valid
with minor modification. In fact, through variable substitution integrals in (8) and (9) can be
written as in (21) and (22), respectively. Therefore the only change is that the derivatives of
µit(γ) andνits(γ) with respect toϕ now are calculated through the derivatives ofg(xit, ξi, θ)
with respect toξi, instead of the derivatives offδ(u;ψ) with respect tou.

Proof of Theorem 2.The proof of Theorem 2.1 is analogous to that of Theorem 1.1. First, A3
implies thatQN,S(γ) is continuous inγ ∈ Γ. Then, by the uniform law of large numbers, we
have, asN → ∞, uniformly in γ ∈ Γ that

1

N
QN,S(γ)

a.s.−→E {ρ⊤i,1(γ)Wiρi,2(γ)} = Q(γ).

Finally, γ̂N,S
a.s.−→γ0 follows from (23), A2 and Lemma 3 of Amemiya (1973).

The proof of Theorem 2.2 is analog to that of Theorem 1.2. First, by A3 we have the first-
order Taylor expansion of∂QN,S(γ)/∂γ in a neighbourhoodΓ0 ⊂ Γ of γ0

0 =
∂QN,S(γ0)

∂γ
+
∂2QN,S(γ̃N,S)

∂γ∂γ⊤
(γ̂N,S − γ0), (27)

where‖γ̃N,S − γ0‖ ≤ ‖γ̂N,S − γ0‖ and the first derivative ofQN,S(γ) is given by

∂QN,S(γ)

∂γ
=

N∑

i=1

{
∂ρ⊤i,1(γ)

∂γ
Wiρi,2(γ) +

∂ρ⊤i,2(γ)

∂γ
Wiρi,1(γ)

}
.

Sinceρi,1(γ) has the same distribution asρi,2(γ), all terms in the above summation are inde-
pendent and identically distributed and have the common covariance matrix4CS which is given
in (19). It follows by the central limit theorem that, asN → ∞,

1√
N

∂QN,S(γ0)

∂γ

L−→N(0, 4CS). (28)

Now, the second derivative in (27) is given by

∂2QN,S(γ)

∂γ∂γ⊤
=

N∑

i=1

{
∂ρ⊤i,1(γ)

∂γ
Wi

∂ρi,2(γ)

∂γ⊤
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+ (ρ⊤i,2(γ)Wi ⊗ Ip+q+r+1)
∂ vec(∂ρ⊤i,1(γ)/∂γ)

∂γ⊤

}

+

N∑

i=1

{
∂ρ⊤i,2(γ)

∂γ
Wi

∂ρi,1(γ)

∂γ⊤

+ (ρ⊤i,1(γ)Wi ⊗ Ip+q+r+1)
∂ vec(∂ρ⊤i,2(γ)/∂γ)

∂γ⊤

}
.

Again, by A3 and Lemma 4 of Amemiya (1973), uniformly inγ ∈ Γ,

1

N

∂2QN,S(γ̃N )

∂γ∂γ⊤
a.s.−→E

{
∂ρ⊤i,1(γ0)

∂γ
Wi

∂ρi,2(γ0)

∂γ⊤
+
∂ρ⊤i,2(γ0)

∂γ
Wi

∂ρi,1(γ0)

∂γ⊤

}
= 2B. (29)

Therefore by (27)–(29) and Slutsky’s theorem, we have
√
N (γ̂N,S − γ0)

L−→N(0, B−1CSB
−1).

Moreover, (20) can be similarly shown by Lemma 4 of Amemiya (1973). Finally, the same
argument as in the proof of Theorem 1.3 applies here, too.
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