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Abstract: Mixed effects models and Berkson measurement error models aetywised. They share fea-
tures which the author uses to develop a unified estimation frameworke#&le @ith models in which the
random effects (or measurement errors) have a general paiadistribution, whereas the random regres-
sion coefficients (or unobserved predictor variables) and erroisteawe nonparametric distributions. He
proposes a second-order least squares estimator and a simulaézhelstimator based on the first two mo-
ments of the conditional response variable given the observed c@gariée shows that both estimators are
consistent and asymptotically normally distributed under fairly generadiions. The author also reports
Monte Carlo simulation studies showing that the proposed estimators mesadisfactorily for relatively
small sample sizes. Compared to the likelihood approach, the prop&thdds are computationally feasi-
ble and do not rely on the normality assumption for random effects or wéhi@bles in the model.

Une stratégie d’estimation commune pour les modéles non linéaires

a effets mixtes et les modeles d’erreur de mesure de Berkson

Résuné : Les moalesa effets mixtes et les medks d’erreur de mesure de Berkson sogs tisiés. IIs par-
tagent certaines cardcistiques que I'auteur matprofit pourélaborer une stragie d’estimation commune.

Il consickre des mogles dans lesquels la loi des effetéatbires (ou des erreurs de mesure) est param
trique tandis que celles des coefficients @gression @&atoires (ou de variables ex@tes non obseees)

et des termes d’erreur ne le sont pas. Il propose une estimationaledres cais au second ordre et
une approche par simulation fagek sur les deux premiers moments conditionnels de la variable@ralog
sachant les variables exages obseges. Les deux estimateurs £agnt convergents et asymptotiquement
gaussiens sous des conditions as&eles. L'auteur fait ausétat detudes de Monte-Carlo attestant du
bon comportement des deux estimations dan€dkantillons relativement petits. Legthodes prop@&es

ne posent aucune difficélparticulere au plan nugrique et au contraire de I'approche par vraisemblance,
ne supposent ni la normaides effets &atoires, ni celle des autres variables du &led

1. INTRODUCTION

Mixed effects models and measurement error models are @gse$ of widely used statistical
models in many scientific fields, e.qg., in agriculture, bgital and biomedical sciences, econo-
metrics, environmental science, epidemiology and psyajylin econometrics they are usually
called, respectively, panel data models and errors-iralvbas models. Historically, these two
classes of models have completely different origins anerjmetations. Consequently, their sta-
tistical inference procedures have been studied sepgarattle literature.

Generally speaking, mixed effects models are used to amédymitudinal or repeated mea-
surement data arising from, e.g., clinical trials or pharakinetic and pharmacodynamic studies
(Davidian & Giltinan 1995; Vonesh & Chinchilli 1997; Lindgd 999), whereas panel data mod-
els are used to analyze longitudinal data arising in ecoc®amd business (Chamberlain 1984;
Arellano & Honok 2001; Hsiao 2003). In these models, the fixed and randoroteféee in-
terpreted as common and individual specific parameter&ctigply and are treated as fixed or
random unknown parameters. On the other hand, researaleeoftan interested in relations
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between a response variable and several predictor vasjadene of which are unobservable or
measured with substantial errors. For example, an epidegisb studies lung cancer incidence
of the residents in a city in relation to their exposures tdate pollutants in the air. While the
amount of the pollutants are measured at certain monitatiagons in the city, the actual indi-
vidual exposures vary around the observed values. Thisyipieal situation of Berkson-type
measurement errors (Fuller 1987; Gustafson 2004).

In this paper, we show that the mixed effects models and Berkseasurement error mod-
els share a common statistical structure and can therefotechted in a unified framework.
Specifically, consider the general model

yit:g(:cit,fi,ﬁ)Jreit, tzl,...,ﬂ,izl,...,N, (1)

wherey,; € R is the response variable;; € R* is the predictor variables;, ¢ R’ andd € R?
are unknown parameters, ang is the random error. Further, suppose

whereZ; € R"*? is a matrix of design variables; € R? is the vector of fixed effects and
d; € R’ is the vector of random effects, which is independenZpénd X; = (Tity - TiT,)-

In addition, d;, i« = 1,..., N are assumed to be independent and identically distributéd w
density f5(u, ), wherey) € R" is an unknown parameter. Finally, the random errqgs

t =1,...,T; are conditionally independent give¥y, Z;, independent acrogs=1,..., N, and
satisfyE (i | Xi, Zi, 6;) = 0 andE (3, | X;, Z;,8;) = o2. In generalg is nonlinear in either
or both of the predictor variables and unknown parametereeShere is no assumption about
the functional form of the distributions of;, Z; ande;;, (1) and (2) represent a semiparametric
model. In this model, only;:, X;, Z; are observable. Model (1) and (2) become a measure-
ment error model i€; represents the unobserved predictor variable. In paaticiily = 1 and

¢ = 1, then (2) is the so-called Berkson measurement error m&gekéon 1950; Fuller 1987;
Gustafson 2004). In its general form, (2) represents theessgpn calibration model (Carroll,
Ruppert & Stefanski 1995). Therefore, (1) and (2) incorpokmth mixed effects and Berkson
measurement error models.

The nonlinear mixed effects models have been intensivelglietl in recent years. The
mainstream of the research focuses on the (normal) liketihepproach (e.g., Lindstrom &
Bates 1990; Davidian & Gallant 1993; Ke & Wang 2001; Voneshng/ Nie & Majumdar 2002;
Wu 2002; Daimon & Goto 2003; Lai & Shih 2003a), though a noapaetric method has also
been considered recently (Lai & Shih 2003b). In economtiice research concentrates on
the likelihood approach and the generalized method of mtsfendynamic panel data models
(Wooldridge 1999; Arellano & Hon@ 2001; Hsiao, Peseran & Tahmiscioglu 2002). The main
challenge with the likelihood approach is that the numégoanputation of the maximum like-
lihood estimators is usually difficult or intractable, esiadly in the case of multivariate random
effects. Consequently, most existing approximate liladith methods rely on the normality as-
sumption for random effects and other variables in the maaleich is not always realistic in
applications. See, e.g., Hartford & Davidian (2000).

Despite their practical importance, nonlinear models \Bignkson measurement errors have
been less intensively studied in the literature. Two comlignosed methods for estimation are re-
gression calibration and simulation extrapolation (SINJE&arroll, Ruppert & Stefanski 1995).
These methods, however, yield only approximately consiststimators and are therefore ap-
plicable to small measurement error situations. Anotherash of research is consistent esti-
mation without the assumption of normality, for example,igyg2004) proposed a minimum
distance estimator and a simulation-based estimator lmas#te first two conditional moments
of the response variable given the observed predictorhiagaThe goal of the present paper is to
extend the methods of Wang (2004) to models (1) and (2), whimrporate the nonlinear mixed
effects and general regression calibration models for 8arkneasurement errors. Specifically,
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we propose a second-order least squares estimator for pamam= (7,0 ", ", 02) T based
on the first two conditional moments ¢f; given the observed covariatés’;, Z;). This estima-
tor can be easily computed if the closed forms of the two dimhl moments are available. For
the more general case where the closed forms are difficuthpossible to obtain, we propose a
simulation-based estimator. We show that both estimaters@nsistent and asymptotically nor-
mally distributed under fairly general regularity condits. Moreover, Monte Carlo simulation
studies of the finite sample performance of the proposethatdis and a real data application
are also presented.

The paper is organized as follows. Section 2 gives some deartgomotivate our estimation
methods. Section 3 introduces the second-order leastessjaatimator and gives its consistency
and asymptotic normality. Section 4 presents the simuiatimsed estimator and its asymptotic
properties. Monte Carlo simulation studies and a real dapéication are presented in Section 5.
The regularity conditions are given in Section 6, and cogiolus and discussion of possible
extensions of the proposed methods are given in Sectionnallysiproofs of the theorems are
provided in the Appendix.

2. EXAMPLES AND MOTIVATION

In this section we motivate our approach using two simplerg{as. It is well known that the
linear measurement error model under normal distributionsnidentifiable. Interestingly, non-
linear models with Berkson measurement errors are gepedaihtifiable (Rudemo, Ruppert &
Streibig 1989). Moreover, the models can usually be idewtiising the first two conditional
moments of the response variable given the observed poediatiables (Wang 2003, 2004).
In this section, we demonstrate that this remains true folinear mixed effects models. To
simplify the notation, we consider the cases where the manelffectsd; have zero mean and
the unknown parameters in their distributions consist ofaveces and covariances only, so that
Y= (i, 1 <i < lp;,1 <i<j</)T. Moreover, we denote the conditional expectation
givenX,, Z, asE;(-) =E (- | X;, Z;).

Example 1First consider an exponential modgl = &;; exp(—&2;zit) +ei andé; = ¢+, (SO
thatZ; = I, is a two-dimensional identity matrix). For this model, we@ase thad; is normally
distributed with zero mean and variances and covarianee(v, 12, 112) ' . Then the first two
moments ofy;, are

Ei(yit) = Ei(p1 + 01:)exp{—xi(p2 + 02:)} + Ei(eir)
= (o1 — Y12wit) exp(—pawit + P2173,/2), 3)
and
Ei(yiryis) = BEi(pr +61:)2 exp{—(p2 + 62;)(wir + 745)} + Ei(ciseis)
= [t1 4+ {1 — Yr2(@it + zis) }?]
x exp{—@2(Tit + Tis) + Vot + Tis)?/2} + Tirs, (4)

whereo;;s = o2 if t = s, and zero otherwise. Since (3) is a usual nonlinear regnessjuation,

it is clear thatyq, @2, 12 andy5 can be consistently estimated by the least squares method.
Similarly, ¢; can be consistently estimated by applying the least squaetisod to (4) with

t # s, ando? can be estimated by (4) with= s. Therefore the model is identifiable using the
first two moments ofy;; given X, Z;.

Example 2 Now consider the growth model studied by Lindstrom & BatE390), and many
other researchers,
&

- 1 —+ 91 exp(t92;1:1;t)

Yit + Eit, %)
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whereg; = ¢ + 6;. For this model the first two conditional momentsypf are

¥

E; (y:
(yir) = 1+ 01 exp(fa24)’

(6)

©* + 1
{1+ 01 exp(bawit) H{1 + 01 exp(bais) }
whereo;; is defined as in the previous example. Agdin, 0, andy can be consistently esti-
mated by (6) and the nonlinear least squares method, whikndo2 can be consistently esti-
mated by (7). Hence this model is identifiable using the fisst tnoments ofy;;. In Section 5,
this model will be applied to the well-known orange tree d&teaper & Smith 1998).

Ei(yityis) = + Oits, (7)

From the above examples it is easy to see that in many sitisagiarameters in nonlinear
mixed effects models can be identified and consistentlyne¢éid using the first two conditional
moments ofy;; given X;, Z;. Although the closed forms of the conditional moments can be
obtained in both examples, it is easy to see that the idditifiaholds more generally. In
fact, identifiability can always be achieved by imposing rappiate restrictions on unknown
parameters, as has usually been done in practice. Unféetyngiven its theoretical and practical
importance, general solutions to identifiability of nomlar mixed effects models do not exist. In
practice, it is usually done in an heuristic way.

3. SECOND-ORDER LEAST SQUARES ESTIMATOR

Motivated by the examples in the previous section, we c@nsiddminimum distance estima-
tor for models(1) and (2) based on the first two moments of the response variabley L-et
07, 07,97, 02T denote the vector of model parameters Bind © x & x U x ¥ ¢ RPT¢H7+1
the corresponding parameter space which is assumed to hgactnThen under the model as-
sumptions given in Section 1, the first two conditional motaerfiy;; given the observed covari-
atesX;, Z; are

pit(v) = Ey(yie | Xis Zs)

= /g(aﬁit,u, 0)fs(u— Zip; 1)) du, (8
vies(7) = E, (Yityis | Xi, Zi)

— [ 9w, 0.0 1,0, s~ Zigi ) du+ o ©)

whereo ;s = o2 if t = s, and zero ift # s. Throughout this paper all integrals are taken to be
over the space R Then the second-order least squares estimator (SLS)ifodefined as

Yy = argmin@y () = argmin Z p; (VWipi(y (20)
el vel' 4

wherep;(v) = (yit — pit(7),1 < t < Thyarlis — vies(7),1 <t < 5 < Ti)T andW; =
W(X;, Z;) is a nonnegative definite matrix which may dependgnZz;.

Now we investigate the asymptotic propertiesigf. To simplify the notation, we present
our theoretical results for the case whékte=T',7 = 1,..., N. The extension of the results to
more general cases will be discussed in Section 7. The mtyutanditions for the consistency
and asymptotic normality of are given in Section 6. In particular, Assumption A3 and the
dominated convergence theorem imply that the partial dévies

9pi (1) _ <5un(’v) <t vits(7)

1<t<s<T
oy oy - oy TS >
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exist and are as given after A4 of Section 6. Throughout tipeipthe true parameter value of
models(1) and(2) is denoted byy, € T".

THEOREM 1. As N — oo, the second-order least squares estimator ShSas the following
properties:

1. UnderA1-A2, 4n =2 7.

2. UnderAl-A4, VN (4y — 70) — N(0, B-"1CB~1), where

_ = [ 9n () T 9pi(70)
c—E{ S 0] (20 2 (11)
e i () (70)
9p; (0) 1, Opi(0
B=E L i . 12
{ oy Wi oy’ } (12)
Furthermore, with probability one,
N
o L 3 Api (n) 1, Ipi(An)
B]\}EI(I)ONZ_I{ 0y Wi o7 (13)
e 1 9Qn(3n) 9Qn (3v)
_ e L OUN(YN N{IN
40_1\}220N Oy oyt (14)
where

0QN(7) Y 9p! (7)
— 2N iy ().
5 ; y Wiri()

3. The above results hold A3 is replaced byA3'.
In the rest of this section, we briefly discuss the choice efwleighting matrixiv; in the

computation ofyy . First, theoretically a natural question is how to chodeo obtain the most
efficient estimator. To answer this question, we rewitas

- 5,0;(70) dpi(0)
o= e { P v |

where
Vi = E{pi(v0)pi (v0) | Xi, Zi}-
Then by the matrix form of the Cauchy—Schwartz inequalityhaee

i Ipi (30) -1 9pi(20)

(in that the difference between the left- and right-haneésits nonnegative definite), and the
lower bound is attained withV; = Vfl in B andC (Hansen 1982; Abarin & Wang 2006). In
practice, however, the use of is infeasible because it depends on the unknown parameters t
be estimated. A possible solution is similar to the two-stpgpcedure used in generalized least
squares estimation (e.g., Amemiya 1974; Gallant 1987, cHriEst, minimizeQ v () using the
identity weightl; = I to obtain the first-stage estimatpg. Second, estimatg; by

)

N
1 - -
= > piGn)ed i)
=1
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and then minimizel v () again withW,; = ‘7{1 to obtain the second-stage estimatar.
Since the asymptotic covariance matrix§ will be the same as the right-hand side of (15),
it is asymptotically more efficient than the first-stagerastiory,. However, becausy’; is of
dimensionT' (T + 3)/2, it is only practical to use the optimal weight wh&his not very large.
For largeT, either the identity matrix or certain block diagonal mezgs can be used.

4. SIMULATION-BASED ESTIMATOR

The SLS49y of the previous section can be computed using the usual ncaheptimization
procedures if closed forms ¢f;.() andv;.s(y) are available. Sometimes, however, explicit
forms of the integrals in (8) and (9) may be difficult or impib$s to obtain. In practice, the
numerical optimization of an objective function involvingultiple integrals can be troublesome,
especially when the dimension of the integral is higher ttvem or three. To overcome this
computational difficulty, in this section we consider a slation-based approach in which the
integrals are simulated by Monte Carlo methods such as itapoe sampling.

The simulation-based estimator can be constructed in th@nviag way. First, choose a
known density functiorh(u) and generate an independent and identically distributedora
sample{w;;, j = 1,...,25, i = 1,...,N} from it. Then approximate:;,(y) andv;s(v)
respectively using the corresponding Monte Carlo simuato

Hz’t,1(V) =

Wl

1< 9(@ie, uij, 0) fs(uij — Zip; )
; h(wij) (16)

and

s
1 Tit, Wij, 0)9(Tis, Wij, 0) f5 (i — Zip;
Vits}l(fy) — E Z g( t J )g( J )f&( J SO ’(/)) + Uits~ (17)
i=1

h(uij)

Similarly, we construct another set of simulat@rg 2(y), vits,2(y) using the second half of
the simulated point§u,;, j = S+ 1,...,25, i = 1,..., N}. Finally, the simulation-based
estimator (SBE) for is defined by

N

An.s = argminQn,s(y) = argmin ¥ p/, (v)Wipi2(7), (18)
~el’ yel i—1

wherep; ;j(v) = (yir — pit,;(7),1 < t < Ty, yiryis — Vies,j (1), 1 <t < s < Ti)TJ =12

It is easy to see that;, ;(v) andv;s ;(v) approximateu;.(y) andv;.s(y) respectively ass' is
sufficiently large. Moreover, becauge:(y) and p; »(v) are conditionally independent given
Y;, Xi, Zi, we haveE[p], (V) Wipi2(7)] = Elp; (Y)Wipi(7)]- ThusQn s(v) is an unbiased
simulator forQ (). For the simulation-based estimatp¢ s, we have the following results.

THEOREM 2. Suppose thaupp (k) 2 Supp (fs(-;¢)) forall ¢ € . Then, asV — oo, 4n,s
has the following properties:

1. UnderAl-A2, 4y s =% .
2. UnderA1-A4, v'N (4.5 — 7o) —= N(0, B-1CsB~1), where

8pzT1 (70) T 9pi(v0)
2Cs = E{(’%Wm,g(%)m,a(%)mw}

8/);1(70) dpi2(70)
+E {a’YWiPi,Q(VO)piT,l(VO)mW}. .
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Furthermore, with probability one,

_ .o 1 0Qn,s(On,s) 9QN,s(9n,s)

. (20)

3. The above results hold &3 is replaced byA3'.

The SBE9n, s is generally less efficient than the SE&, due to the simulation approxi-
mation of p; () throughp; 1(v) andp; 2(y). A natural question is how much efficiency is lost
due to simulation. The following Corollary shows that théaééncy loss caused by simulation
decreases at the ratq1/.5). The proof is completely analogous to that of Corollary 4 iany
(2004) and is therefore omitted.

COROLLARY 1. Under the conditions of Theorem 2,

_ 1 5/):W¢(pﬂ — pi) O(pi1 — pi)TWiPi
+ 1y A(pin — pi) " Wilpia — pi) O(pia — pi) " Wi(pir — pi)
452 67 8'yT ’

wherep; = p;(70) andp;; is the summand ip; 1 (vo) = Zle pij/S.

The above result also provides a practical guidance to tb&elof the simulation sizé'.
For example, one can control the efficiency loss by chooslagyge enough value &§. Asymp-
totically, the importance densify(«) has no effect on the efficiency of the estimator, as long as it
satisfies the condition of Theorem 2. In practice, howeherchoice of:(u) will affect the finite
sample variances of the Monte Carlo estimators sugh;ag~y). Theoretically, the best choice of
h(u) is proportional to the absolute value of the integrand, WiSg (¢, u;;, ) f5(uwi; — Zip; 1)
for p;e1 (7). Practically, however, a density close to being proposgida the integrand is a good
choice.

5. SIMULATION STUDIES AND APPLICATION

This section is an account of simulation studies we carrigidt@ demonstrate the finite sam-
ple performances of the proposed estimators. Specificalysimulate the exponential model
of Example 1 and a linear-exponential model with Berksonsueament errors. In addition,

we apply our methods to the well-known orange tree data sedll simulations, we calculate

the first-stage SLS (SLS1) using identity weight and the sedesiage SLS (SLS2) using esti-
mated optimal weight. For these and other estimators, weiledé the Monte Carlo means, the
simulation standard errors (SSE) and the root mean squened €RMSE).

Example 3 First consider the exponential model given in Example lictvhas two correlated
random effects. For this model, the closed forms of the fivettnoments ofy;; are given in (3)
and (4), so that the SLS can be computed by directly minirgign () in (10).

For comparison, we also calculate the quasilikelihoodvestirs of 3 = (1, @2, 2, 112)
base on the first moment condition (3). In particular, thévestors are calculated by solving the

estimating equation
N

> DVNY; - i) =0,

=1
whereY; = (1,1 <t < T)", Vi = V(Y3), i = (i, 1 <t < T;) T andD; is the matrix of
partial derivatives of:; with respect to all parameters jih In the quasilikelihood approach, the
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other “variance parameterg;, o2 have to be estimated through additional estimating equstio
because they do not appearninand therefore are not identified by (3). To simplify the compu
tation, we omit the quasilikelihood estimatiompf ands? and use their true values in the above
estimating equation.

The data were generated using = z; ~ (0,5) ande;; ~ N(0,02). We have considered
two sets of sample siz€$V, T"), which are(20, 5) and(40, 7). In each casel000 Monte Carlo
replications were carried out. The computation was donegusie statistical package R on a
workstation running Windows XP. The results are reportethinles 1 and 2. These results show
that both SLS estimators using the identity and optimal isiglo not have apparent biases and
they have similar SSE and RMSE. The reason that the SLS2 dvésprove SLS1 significantly
may be due to the fact that the weighting matrix is not eastymeated accurately with relatively
small sample sizes. Further, it is clear that the quasitikeld estimator (QLE) has finite sample
biases for most parameters and has smaller SSE but largeERIS both SLS estimators.

We have also tried other distributions for random effeatshsasy? distributions with low
degrees of freedoms. The results obtained follow patténmi¢as to those in Tables 1 and 2.

TaBLE 1: Simulation results of Example 3 with sample si2és= 20,7 = 5.

True 1 =10 @a=5 Y1 =1 1h2=0.7 ¢12=05 o>=1

SLS1 9.9024 49369 1.0032 0.6803 0.5003 0.9827
SSE 0.0499 0.0229 0.0092 0.0055 0.0055 0.0051
RMSE 15816 0.7264 0.2915 0.1749 0.1733 0.1612

SLS2 9.8597 4.9365 0.9940 0.6913 0.5012  0.9395
SSE 0.0442 0.0214 0.0092 0.0056 0.0055  0.0051
RMSE 14030 0.6785 0.2919 0.1768 0.1734  0.1722

QLE 11.2574 5.4979 - 0.6056 0.4935 -
SSE 0.0333 0.0186 - 0.0051 0.0055 -
RMSE 1.6392 0.7707 - 0.1868 0.1743 -

Example 4 Now consider a measurement error mogiel= 6:&1; + 62 exp(65&2;) + ¢; and
& = Z; + 6;, wheree; ~ N(0,02) ands; ~ N[(0,0)",diag(¢1,»)]. Here we have omitted
the indext everywhere, sincé; = 1. For this model, the conditional moments (8) and (9) have
closed forms

i (7) = 01Z1; + 05 exp(05 Z2; + 03102/2)

and
Z/L(’)/) = Gf(Zfz —+ ¢)1) —+ 9% CXp(203227; —+ 29%1,[}2) + 29102Z11‘ CXp(03Z2i + 0%1/)2/2) + O'?,

so that the SLS can be computed by minimizig; () in (10). For the purpose of demon-
stration, we also compute the simulation-based estimaforcompute the SBE, we choose
the density ofN[(0,0) ", diag(5, 5)] to be h(u), and generate independent points ~ h(u),
j=1,...,28,i=1,...,N usingS = 1000. Further, the simulated momenis; (), v; ;(7),

j = 1,2 are calculated according {@6) and(17). Finally, the SBEjy s is calculated by mini-
mizing Q@ n,s(7y) in (18) using the identity weight. The SBE using the estimated opitireight
has also been calculated but the numerical results are weitgisand are not reported here. The
data were generated usidfy ~ N[(1,2)T,diag(1,2)] and sample siz& = 50. In this sim-
ulation, 500 Monte Carlo replications were carried out. For comparisea,also included the
ordinary nonlinear least squares estimates ignoring thesorement errors. The computation
was done using the packageaM. AB on a workstation running Windows XP.
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TABLE 2: Simulation results of Example 3 with sample si2és= 40,7 = 7.

True 1 =10 @o=5 p1=1 =07 2=05 o>=1

SLS1 9.9178 4.8742 0.9959 0.6454 0.5104 0.9915
SSE 0.0475 0.0310 0.0089 0.0048 0.0055 0.0034
RMSE 1.5029 0.9888 0.2804 0.1614 0.1732 0.1073

SLS2 9.9049 4.8969 0.9971 0.6572 0.5055 0.9332
SSE 0.0391 0.0264 0.0091 0.0052 0.0054 0.0034
RMSE  1.2404 0.8406 0.2870 0.1691 0.1709 0.1269

QLE 11.4357 5.8306 - 0.6335 0.4920 -
SSE 0.0184 0.0129 - 0.0052 0.0055 -
RMSE 1.5491 0.9246 - 0.1759 0.1739 -

The results are reported in Table 3. These results show titlatanmoderate sample size
N = 50, both SLS and SBE perform reasonably well, though the imgm@nt of SLS2 over
SLS1 seems not to be significant. Moreover, with a simulatizaeS = 1000, the SBE performs
as well as the SLS, except for slightly higher standard diewvia. As expected, the nonlinear
least squares estimates (NLSE) are clearly biased for naoatpeters.

TABLE 3: Simulation results of Example 4 with sample si¥e= 50,7 = 1. The simulation standard
errors are in parentheses.

True 61 =3 =2 O3=—-1 o02=1 ¢r1=1 =15

SLS1 2.9974 1.9291 —0.8699 1.0032 1.0133  1.3929
(0.0065) (0.0065) (0.0045) (0.0052) (0.0057) (0.0047)
SLS2 2.9990 1.9470 —0.8616 1.0057 0.9851  1.3554
(0.0064) (0.0068) (0.0042) (0.0053) (0.0058) (0.0034)
SBE 29845 1.9114 —0.8668 1.0000 1.0031  1.3853
(0.0065) (0.0062) (0.0045) (0.0053) (0.0059) (0.0046)
NLSE 3.0926 2.1114 —0.9466 37.7340 - -
(0.0062) (0.0064) (0.0061) (4.8863) - -

Example 5 Finally we apply our methods to the orange tree data. Treatatgiven in Draper &
Smith (1998, p. 559) and contain the measurements on thk timmumferencesy,;, in mil-
limeters) of five orange trees taken at seven occasiopsif days from December 31, 1968).
The logistic growth model (5) in Example 2 has been used byyraathors (e.g., Lindstrom &
Bates 1990) to model this data set. Later, Pinheiro & Bat@9%Lrecalculated the estimates for
a reparameterized form of the model

_ o+ 0;
1+ exp{—(zit — 61)/02}

whered; ~ (0,9) ande;; ~ (0,02). For this model the first two conditional momentsyef

given X; are similar to those in (6) and (7). Here we have calculatedhS estimates using
the identity weight, which are shown in Table 4. As a “goldnstard”, we have included the
maximum likelihood estimates (MLE) and the linear mixeceets model approximation of the
restricted MLE presented in Pinheiro & Bates (1995). We @mthat the SLS are in line with

Yit + €it,
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the estimates obtained by the other two methods, and closkee tMLE than the LME for some
instances. Among the three methods, the estimates for tidoma effect variance look quite
different, which is not surprising because its estimatdmiswn to have a fairly large standard
deviation.

TABLE 4: Estimation of the orange tree growth model in Example 5.

01 02 © P o?

SLS 729.92 350.13 19250 1002.41 61.00
MLE 72791 348.07 192.05 1001.25 61.50
LME 72256 344.16 191.05 990.29 61.56

6. REGULARITY CONDITIONS

This section contains regularity conditions that are rexfuto derive the asymptotic properties
of the SLSyx and the SBEjy 5. In particular, for the consistency of the estimators, wsiase
the following conditions, wherg - || denotes the Euclidean norm.

Al. Foreach(¢,0T)T € RY x O, gz, &, 0) is a measurable function of;; and is
continuous in(¢;",07)T € R x © for all ;. fs(u;e) is continuous iy € W for all w.

FurthermoreE ||W;||(y+1) < co andE ||W1||(f supr 6% (zit, u, 0) f5s(u—Z;p; ) du)2 < 00.

A2. E{pi(7) = pi(r0)} " Wi{pi(7) — pi(70)} = 0 if and only if y = ~q.

The above conditions are common in the nonlinear regredérature. In particular, Al
is usually used to ensure the continuity and uniform coremcg ofQ (7). It is easy to see
that the moment conditions in Al are satisfied, e.qgg(if;;, &;, 0) is a polynomial and; has a
normal distribution. Moreover, A2 is the usual condition iidentifiability of parameters, which
implies thatQ () has unique minimizefy, for large N. For the asymptotic normality of our
estimators, we assume further conditions as follows.

A3. There exist open subséis € ©p C © and ¢y € ¥y C ¥, in whichg(z, &, 6) is twice

continuously differentiable with respect oand f5(u; 1)) is twice continuously differentiable
with respect to bothu and . Furthermore, there exists positive functi6itu, x, z) satisfying

2

such that all partial derivatives of order 0 to 2 of(zi,u,0)fs(u — Z;p;¢) and
9(it,u, 0)g(zis, u, 0) fs(u — Zip;1b) with respect to (6, p,1) are absolutely bounded by
G(U,X“Zl)

A4. The matrix

_ ap;(%) _5Pi(%)
B—E{ s W; 90T

is nonsingular.
Again, A3 and A4 are regularity conditions commonly seenicivlare sufficient for the as-

ymptotic normality of the second-order least squares edtira. In particular, while A3 ensures
that the first derivative of) i () admits a first-order Taylor expansion and the second demvat
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of @ () converges uniformly, A4 implies that the second derivati#@ y (v) has a nonsingular
limiting matrix. Again, it is easy to see that A3 and A4 areifad for the polynomial model
g(x;t, &, 0) and the normal random effecis

Moreover, assumption A3 and the dominated convergencedheionply that the first deriv-

atives

i (7) _ Opit () Ot (7y)
2l 284 )

exist and they are given by

Apie(v) 99(it, u, 0) .
i / S fslu = Zigs ) du

8 7 8 _Zi N
uaiv) —Zf/g(mit,u,@—f‘s(u 7 #i¥) du,

Ot 0 — Zip;

1‘87;27) /g(xit7u79)w

Opit ()
Oo?

1<t < T, 71§t§5§Ti>

du,

= 0

and

OVyts (7) / 3g(wit, u, e)g(misv u, 9) fg(’u N ZiQO' w) du

a6 06
al/gs(’y) _ _Z;F /g(mita u, e)g(xis’ u, 9) af5(u (_9 Zz@a ¢) du,
© u
virs () _ / ’ _ Ofs(u— Zip;y)
aw - g(litauve)g(xzsyuag) aw duv
i (y) its(v)
00z = 1, 902 = 0, t #s.

Note that A3 entails the differentiability ofs(u; ) with respect tou. This condition can
be replaced by the differentiability ef(x;;, &;, 6) with respect tc;, because through variable
substitution, integrals (8) and (9) can be written as

pa) = [ ol Zip+ u.0)fs(ui v)du (21)
vis1) = [ 9w Zio+ w0g(ois Zig 4w O fs(us ) dut o (@2)
Hence A3 can be modified as follows.
A3’. There exist open subsels € Oy C © andvyy € ¥g C U, in whichg(xz;,&;,0) is

twice continuously differentiable with respect(’,07) " and fs(u; ) is twice continuously
differentiable with respect t¢. Furthermore, there exists functigi(u, =, z) satisfying

2
B (W] ( / G(u,xi,z»du) < 0,

such that all partial derivatives of orderto 2 of g(x:, Z;o + u,0) fs(u; ) and g(xit, Zip +
u, 0)g(xis, Zip+u,0) fs5(u; 1) with respect td 6, ¢, 1) are absolutely bounded iy (u, X;, Z;).

Under this assumption, the first derivativegof(y) andv;; () with respect tap become

Opit(7y) _ T / 09(xit, Zip + u,0)
dp ! 213

f5 (U’, 1/1) dua
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and

fs(u;9) du,

Wits(v) _ 7 / 0g(wit, Zip + u,0)g(wis, Zip + u, 0)
op ! o0&
respectively, and all other derivatives remain the samendsruA3.
Finally note that, since the simulated objective functiQw s(y) does not involve inte-
grals any more, it is continuous in, and differentiable witspect to;y, as long as functions
g(zit, &, 0) and f5(u;v) have these properties. In this sense, the simulation-bestadator
requires weaker assumptions than the second-order lagstesgestimator.

7. CONCLUSIONS AND DISCUSSION

We have used a unified framework for estimation of the mix&etes and the Berkson measure-
ment error models, which are presented in different coatamt have different interpretations in
the literature. For the mixed effects models, this apprals not require the distribution of the
random effects to be normal, nor does it need any paramesimaption for the distribution of
the random errors in the regression equation. In the coofexteasurement error models, this
approach producesxactly(rather tharapproximately consistent estimators. The possible com-
putational issue of minimizing a function that involves tiple integrals is addressed using the
method of simulated moments, so that the proposed estisnatemumerically always feasible.
Limited Monte Carlo simulation studies show that the pregabsstimators perform fairly satis-
factorily for relatively small sample sizes and slightlyttee than the quasi-likelihood estimators,
even though the latter uses more information than the farmer

It is possible to extend the approach of this paper to moremgsituations. One possible
extension is that,;; ande;; are correlated, so th@t (c;1e;5 | X, Z;,6;) = ovs # 0. Itis easy
to see that the asymptotic results of the SLS and the SBE newaid with minor modification
of the asymptotic covariance matrix. The proofs can be medigiasily by repeatedly using the
Cauchy—Schwartz inequality. Another possible extensfdheoapproach is to cover the situation
where the individuals have unbalanced observations. ind&se;l; depends or and may be
different fori = 1,..., N. Because now;(vy), ¢« = 1,..., N have different dimensions, the
proofs of asymptotic normality of the estimators should beda on the central limit theorem
of Lindeberg—Feller, instead of Lindeberggy. Future research should include investigation
of the finite sample behavior of the proposed estimatorsutfitanore extensive Monte Carlo
simulation studies and comparisons with other existinghaoes in the literature.

APPENDIX

Proof of Theorem 1.1For anyl < i < N, by definition and the Cauchy—Schwartz inequality,

le ”2 < 22%&+223Jztyzs+22/92($it7%9)f5(U—Zz‘@ﬂ/’) du
t

t<s

—|—4Z/ Tty u, 0) fs(u — ng,w)du/ (246, u,0) f5(u — Zsp;2h) du

t<s
+ 4T o,

It follows from assumption A1l that

IN

E sup pi (N Wipi(7) E||W]| sup lloi(7)11?

IN

2ZE IWillys, +2 ) BIWillyiys + 4T'sup o E|| Wil

t<s

+ 2ZE Wil /st;ng(mit,u, 0) fs(u— Zip;v) du
t
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2+ 1/2
+4Z{E||W7:|</Sl;p92(wit,u,9)f5(ume) dU> }

t<s

24 1/2
x {E 1wl ( [ 5w s, 001stu - Zigi0) du) }

< ©oQ.

Again by the Cauchy—Schwartz inequality,
[ suplg(oie, w000 fou ~ Zigiydu < 00, j=1.2
r

It follows from A1 and the dominated convergence theorerh th@ay), and therefor&) v (), is
continuous iny € I'. Furthermore, by the uniform law of large numbers (Jennti@89, Th. 2),
uniformly inv € T, Qn ()/N converges almost surely to

Q(Y) =Ep] (MWipi(v) = Q(v0) + E{pi(7) = pi(v0)} Wilpi(v) — pi(10)}.  (23)

It follows thatQ(v) > Q(v0) and, by A2, equality holds if and only #f = ~,. Therefore by
Lemma 3 of Amemiya (1973), we havgy =>5+y.

Proof of Theorem 1.2By Assumption A3 the first derivativeQ y (y)/0~ exists and has a first-
order Taylor expansion in an open neighbourh®gd- T of 4. Sinced@Qn (§n)/dy = 0 and
AN 225, for sufficiently largeN we have

9Qn(v0) | *Qn(IN)
Oy OyoyT

(v —70) =0, (24)

where||¥n — voll < ||§n — Yol|- The first derivative of) () in (24) is given by

wheredp/ (v)/0~ is given in Section 6 after A4. Sinagp, (v)Wipi(v)/0v are independent
and identically distributed by the central limit theorem have, asV — oo,

1 9Qn(n) 1,
e T N, 4C), (25)

whereC'is given in (11). The second derivative @fy () in (24) is given by

ZTT( )/37)}

)

QN () L [pl (), () T dvec(dp
e 2 . | ; T
BT QZ{ oy Wigr tli (Wil >

i=1

where® is the Kronecker product, is the2N (p + ¢ + r + 1) dimensional identity matrix, and

T 2 2.,
Ovec(op; (1)/07) _ _(Ppay) |y O vis(1)
oy’ OyoyT OyoyT

-
1§t§s§T) .

Analogous to the proof of Theorem 1.1, by repeatedly usirgGhuchy—Schwartz inequality
and A3, we can verify that
2
\ ) <o

p] (V) .1, Opi(7)
‘ 284 Wi o’

it ()
Oy

E sup
r

Opir (y
'ngnwlnsl;pQ‘ :
t,s
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and

‘ (T ()W 1) dvec(dp; (v)/97) H

Esup
r oyT

dvec(dp (v)/97)
oy’

2> 1/2

That (1/N)9?Qn (7)/0v0y T 220%Q(7)/0v0y " uniformly in v € Ty follows from the uni-
form law of large numbers. Therefore, by Lemma 4 of Amemiya/@), we have
2 ~
ia QN('YN) 2237
N  OyoyT
whereB is given in (12). It follows then from (24)—(26), A4 and Slky%s theorem (Amemiya

1985) thaty/n (4 —0)—=N(0, B-1C'B~1). Moreover, (13) and (14) can be similarly verified
by Lemma 4 of Amemiya (1973).

< VI Far D) (E I3 lsup i) P sng

< 00.

(26)

Proof of Theorem 1.3Under the alternative assumption’Aghe above derivation remains valid
with minor modification. In fact, through variable subdtiten integrals in (8) and (9) can be
written as in (21) and (22), respectively. Therefore theyarlange is that the derivatives of
wit(7y) andw;s(7y) with respect tap now are calculated through the derivativesy@t;;, &;, 6)
with respect t@;, instead of the derivatives ¢gf(u; ¢) with respect tau.

Proof of Theorem 2The proof of Theorem 2.1 is analogous to that of Theorem lirkt, A3
implies thatQ v s(v) is continuous iny € I'. Then, by the uniform law of large numbers, we
have, agV — oo, uniformly in~ € T" that

—=Qns(NZSE{p (N Wipi2(1)} = Q().

Finally, 4,52, follows from (23), A2 and Lemma 3 of Amemiya (1973).

The proof of Theorem 2.2 is analog to that of Theorem 1.2.tHis A3 we have the first-
order Taylor expansion @lQ n s (v)/0v in a neighbourhoody, C T" of ~q

_ 2Qn,5(70) n 2*Qn,s(IN,3) .

— 27
0 a,_y 3737T <7N7S ’VO)’ ( )

where||9n,s — Yol < |¥n.s — Y0l @nd the first derivative of) v s(7y) is given by

0Qns(7) =[], (7) 9pia(7)
o —;{ N Wipi2(y) + i Wipi,l('}/)}‘

Sincep; 1 () has the same distribution as2(v), all terms in the above summation are inde-
pendent and identically distributed and have the commoariavce matrixtC's which is given
in (19). It follows by the central limit theorem that, 38 — oo,

1 9Qn.s(0) LN(0, 4C%). (28)

VN Oy

Now, the second derivative in (27) is given by

PQns() i Opls(3) , Dpia()
OOy T Oy ooyT

i=1
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+ (plTQ(’Y)VV? ® Iptqrt1)
E 8p1 2 apv 1( )
+ ’L
{ o7

+ (p;,rl (NMWi & Iyt gir+1)

ovec(dp],()/0)
o7 }

dvec(dp;5(7)/97) }
oy’ '

Again, by A3 and Lemma 4 of Amemiya (1973), uniformly-jne T,

i 5[)12(70) W 3/’1‘,1 (’Yo)

1 9?Qn.s(AN) as.p dpi1(70) W 0pi,2(70)
oy toonT Oy LooyT

=2B. 29
N OyoyT } (29)
Therefore by (27)—(29) and Slutsky's theorem, we ha\é (Y s — WO)LN(O, B~'CsB™1).
Moreover, (20) can be similarly shown by Lemma 4 of Amemiy@73). Finally, the same
argument as in the proof of Theorem 1.3 applies here, too.
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