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Abstract—Quadratic compressive sensing, as a nonlinear exten-
sion of compressive sensing, has attracted considerable attention
in optical image, X-ray crystallography, transmission electron
microscopy, etc. We introduce the concept of uniform s-regularity
to study the uniqueness in quadratic compressive sensing and
propose a greedy algorithm for the corresponding numerical op-
timization. Moreover, we prove the convergence of the proposed
algorithm under the uniform s-regularity condition. Finally, we
present numerical results to demonstrate the efficiency of the
proposed method.

Index Terms—quadratic compressive sensing; sparsity; unifor-
m s-regularity; uniqueness; greedy algorithm

I. INTRODUCTION AND MOTIVATION

Compressive sensing (CS) has been intensively studied and

widely used in the last decade. The main goal is to reconstruct

sparse signals from the sampled measurements. Recently the

theory has been extended to nonlinear compressive sensing,

see, e.g., [3], [4], [13], [14] and [15] for more details. Particu-

larly, the so-called quadratic compressive sensing (QCS) aims

to find the sparse signal x to the problem

min
x∈Rn

‖x‖0 s.t. yi = xTAix+ bTi x+ ci, i = 1, · · · ,m, (1)

where ‖x‖0 is the number of nonzero elements of x and

yi, ci ∈ R, bi ∈ R
n and Ai ∈ R

n×n, i = 1, · · · ,m are the

given real vectors and matrices respectively.

Similar to the linear compressive sensing, QCS has been

widely used in scientific discoveries. For example, [15] and

[16] point out that the relation between the measurements and

image for partially-spatially-incoherent light is quadratic and

demonstrate that the sub-wavelength optical images borne on

partially-spatially-incoherent light can be recovered from their

far-field or the blurred image, given the prior knowledge that

the image is sparse. Consequently, they introduce the QCS

to recover sub-wavelength information through bandwidth

extrapolation algorithms. Mathematically, their problems can

be described as follows: given an positive integer s and m
symmetric matrices A1, · · · , Am ∈ R

n×n, find a vector x
satisfying

xTAix ≈ yi, i = 1, · · · ,m,

‖x‖0 ≤ s.
.

Another example is the phase retrieval problem which plays

an important role in, e.g., X-ray crystallography, transmis-

sion electron microscopy and coherent diffractive imaging.

Generally speaking, the problem is to recover the lost phase

information through the observed magnitudes. Mathematically,

the phase retrieval problem is to find x ∈ C
n or R

n in the

following model

yi = |〈ai, x〉|2, i = 1, · · · ,m,

where ai ∈ C
n or R

n are given and yi ∈ R are observed

variables ( [5], [6], [7], [10]). Let R(x) and I(x) denote the

real and imaginary part for a complex number x respectively.

Then the above relationship can be rewritten as

yi = uTAiu, i = 1, · · · ,m,

where u = (R(x)T , Im(x)T )T and Ai is( R(ai)R(ai)
T I(ai)R(ai)

T −R(ai)I(ai)
T

R(ai)I(ai)
T − I(ai)R(ai)

T I(ai)I(ai)
T

)
.

In particular, in the real phase retrieval problem the goal is to

find x ∈ R
n such that

yi = xT (aia
T
i )x, i = 1, · · · ,m.

In the above two examples, the relationship between the

input and output signals has the form

yi = xTAix, i = 1, · · · ,m. (2)

For the sake of discussion, (2) is called a purely quadratic mea-

surements model. A general quadratic measurements model

can be defined as

yi = xTAix+ xT bi + ci, i = 1, · · · ,m. (3)

As is well-known in the literature, model (2) suffers the prob-

lem of identifiability because x and −x are not distinguishable

from the observed data. Usually this problem is dealt with

by adopting a modular mapping that identifies ±x for any

x ∈ R
n, so that a unique solution for model (2) is obtained

up to a change of sign. This method is widely used in the

phase retrieval literature such as [1] and [12].

Therefore by including a linear term, model (3) is not only

more general than model (2) mathematically, but it also helps
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to ensure unique solution. For this reason sometimes both

models are discussed separately below.

To solve problem (1) that includs sparse phase retrieval

problem, a general approach is to use a lifting technique and

recast it as a semi-definite programming (SDP) problem. See,

e.g., [14], [15] and [16].

Another approach to solving problem (1) is to use greedy

methods. For example, [4] shows that the iterative hard

thresholding (IHT) algorithm, a popular greedy method for

CS, can be used to accurately recover sparse or structured

signals from a few nonlinear observations. The main ideas

of this method is to first linearize the nonlinear mapping

between the input and output signals and then use the projected

gradient method to solve a sequence of linear least square

subproblems with sparse constraints. Further, [3] generalizes

the iterative hard thresholding method to solve a more general

problem of minimizing a continuously differentiable objective

function subject to a sparse constraint, which includes the

�0-constrained least squares methods for the sparse recovery

problems from quadratic measurements (2) as a special case.

To guarantee the convergence of the proposed algorithms, the

gradient of the nonlinear mapping in [4] or the objective

function in [3] is assumed to be Lipschitz. For recovering

a sparse signal in the phase retrieval problem, [17] employs

a �0-constrained nonlinear least square method and proposed

the GrEedy Sparse PhAse Retrieval (GESPAR) algorithm for

the corresponding numerical optimization. Generally speaking,

the GESPAR is an iterative local-search based algorithm for

solving the �0-constrained nonlinear least square problem,

where the support of the sought signal is updated iteratively

according to a set of selections and the damped Gauss-Newton

method is invoked to solve a subproblem for the given support.

Inspired by these works, we will employ the following �0-

constrained least squares method for solving the QCS problem

(1), i.e.,

min
x∈Rn

f(x) :=
m∑
i=1

(xTAix+ bTi x+ ci − yi)
2

s.t. ‖x‖0 ≤ s, (4)

where s < n is a positive integer. Note that the algorithms

of [4] and [3] cannot be used here because the gradient of

f(·) is not Lipschitz. In the GESPAR algorithm, [17] shows

that each limit point of the iterative sequence is a stationary

point if the minimum eigenvalues of the Jacobian matrices

calculated in the subproblems are uniformly bounded from

below. Recall that in [3] the authors show that the iterative

sequence generated by their algorithm converges when the

mapping matrix is s-regular. In this paper we extend the

s-regularity to uniform s-regularity. We will show that the

uniform s-regularity plays an important role both in the

uniqueness of the solution in the QCS problem and in the

convergence of the algorithm we propose.

This paper is organized as follows. In section 2, we intro-

duce the concept of uniform s-regularity and provide some

sufficient conditions. We also prove the uniqueness in QCS

problem. In section 3 we establish a fixed point equation

for the minimization (4) under the assumption of uniform s-

regularity. We also construct a projected gradient algorithm

and discuss the convergence of the proposed algorithm. In

section 4 we calculate some numerical examples to demon-

strate our method. Conclusions are given in section 5, while

some technical lemmas and mathematical proofs are given in

the Appendices.

Throughout the paper we use the following notations. For

any d-dimensional vector v = (v1, · · · , vd)T , let |v| =
(|v1|, · · · , |vd|)T , v2 = (v21 , · · · , v2d)T , ‖v‖2 = (

∑d
i=1 v

2
i )

1
2 ,

‖v‖1 =
∑d

i=1 |vi| and ‖v‖∞ = max{|v1|, · · · , |vd|}. For

any set Γ ⊆ {1, · · · , d}, |Γ| denotes its cardinality and

Γc = {1, · · · , d}/Γ. For any n × d matrix A = [aij ], denote

‖A‖F =
√∑n

i=1

∑d
j=1 a

2
ij and |A|∞ = max1≤i,j≤d |aij |.

Further denote by AΓ the sub-matrix of A consisting of

the columns of A with index in Γ ⊆ {1, · · · , d}, by AΓ′

the sub-matrix of A consisting of the rows with index in

Γ′ ⊆ {1, · · · , n}, and by AΓ′Γ the sub-matrix of A consisting

of the rows and columns indexed by Γ′ and Γ respectively.

Especially, we use the notation vΓ to denote the sub-vector for

either a column or a row vector v. Further, denote by A⊗B
the Kronecker product of two matrices A and B. Finally, ed,j
denotes the jth column of the d× d identity matrix Id.

II. UNIQUENESS

A. Uniform s-regularity

For a sparse linear model, [9] introduced the concept of

spark and showed that the uniqueness of the underlying signal

x can be characterized by the spark(B) which is defined

as the minimum number of linearly dependent columns of

the design matrix B. Another way to express this property

is via the s-regularity of B, i.e., any s columns of B are

linearly independent. Indeed, B is s-regular if and only if

spark(B) ≥ s + 1 [3]. Further, in a linear model the

residual function R(x) = y − Bx has Jacobian matrix −B,

where y = (y1, · · · , yn)T . Correspondingly, in model (3)

the residual function R(x) =
(
R1(x), · · · , Rn(x)

)T
, where

Ri(x) = yi − xTAix − bTi x − ci, has Jacobian (−2A1x −
b1, · · · ,−2Anx−bn

)T
. This leads to the following definition.

Definition II.1. The linear transform A(x) =

(A1x, · · · , Amx
)T

is said to be uniformly s-regular if

A(x)Γ has full column rank for any Γ ⊆ {1, · · · , n} with

|Γ| = s and x ∈ R
n/{0} with supp(x) ⊆ Γ.

Definition II.2. The affine transform A(x) = (A1x +

b1, · · · , Amx + bm
)T

is said to be uniformly s-regular, if

A(x)Γ has full column rank for any Γ ⊆ {1, · · · , n} with

|Γ| = s and x ∈ R
n with supp(x) ⊆ Γ.

It is easy to see that when all Ai are zero matrices, the

affine transform A(x) reduces to the constant transform B and

therefore the uniform s-regularity coincides with s-regularity.

Further, by taking x = 0 one can see that the uniform s-

regularity of the affine transform A(x) implies the s-regularity
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of B = (b1, · · · , bm)T . However, since the rank of the affine

transform A(x) depends on x, its rank cannot always be

determined by the ranks of Ai, i = 1, · · · ,m and B.

For any u ∈ R
s, denote AΓ(u) = (AΓΓ

1 u, · · · , AΓΓ
m u

)T
and

AΓ(u) = (AΓΓ
1 u, · · · , AΓΓ

m u
)T

+ (b1Γ, · · · , bmΓ)
T

= AΓ(u) +BΓ(u).

Then it is straightforward to verify the following results.

Property II.1. A(·) is uniformly s-regular if and only if AΓ(·)
has full column rank for any Γ ⊆ {1, · · · , n} with |Γ| = s
and u ∈ R

s/{0}.
Property II.2. A(·) is uniformly s-regular if and only if AΓ(·)
has full column rank for any index set Γ ⊆ {1, · · · , n} with

|Γ| = s and u ∈ R
s.

Moreover, we have the following results, where we denote

by ViΓ = {v ∈ R
s : AΓΓ

i v = λv, λ �= 0}/{0}, i = 1, · · · ,m,

for any index set Γ ⊆ {1, · · · , n} with |Γ| = s.

Proposition II.1. (i) Suppose matrices {Ai} are symmetric.

Then A(·) is uniformly s-regular, if for any Γ ⊆ {1, · · · , n}
with |Γ| = s and vi ∈ ViΓ, i = 1, · · · ,m, either {vi}i∈K or

{vi}i∈Kc span R
s for every subset K ⊆ {1, · · · ,m}.

(ii) Especially, if Ai = aia
T
i for some {ai} ∈ R

n/{0},
i = 1, · · · ,m, then the uniform s-regularity of A(·) is

equivalent to the so-called s-complement property of {ai},
i.e., either {aΓi }i∈K or {aΓi }i∈Kc span R

s for every subset

K ⊆ {1, · · · ,m} and Γ ⊆ {1, · · · , n} with |Γ| = s.

Remark II.1. In the phase retrieval problem, [1] and [2]

introduce the complement property and show that it is a

necessary and sufficient condition for the measurement vectors

to yield injective and stable intensity measurements. For the

sparse case, [12] propose the concept of s-complement proper-

ty which is less restrictive than the complement property. The

above proposition shows that the uniform s-regularity can be

applied to more negeral models.

Proposition II.2. If
∑m

i=1 bi⊗Ai = 0 and B = (b1, · · · , bm)T
is s-regular, then A(·) = A(·) + B is uniformly s-regular.

Especially, if Ai = I , i = 1, · · · ,m,
∑m

i=1 bi = 0 and B =
(b1, · · · , bm)T is s-regular, then A is uniformly s-regular.

B. Uniqueness

In [12] it is pointed out that the unique recovery of an s-

sparse real signal is guaranteed by the s-complement property

of {ai}. As discussed above, the s-complement property can

be generalized to the uniform s-regularity. A natural question

is whether the later condition implies the uniqueness solution

in QCS. To answer this quesiton, we provide the following

results.

Theorem II.1. (i) Let ȳi = x∗TAix
∗, i = 1, · · · ,m. Then

model (2) has unique solution x∗ satisfying ‖x∗‖0 ≤ s if A(·)
is uniformly 2s-regular.

(ii) Let ȳi = x∗TAix
∗ + bTi x

∗ + ci, i = 1, · · · ,m. Then

model (3) has unique solution x∗ satisfying ‖x∗‖0 ≤ s if A(·)
is uniformly 2s-regular.

III. OPTIMIZATION ALGORITHM

In this section we discuss the numerical computation of

problem (4). To this end we define S = {x ∈ R
n : ‖x‖0 ≤ s}

for a positive integer s and PS(·) to be the orthogonal

projection onto S, which is a vector consisting of the s
elements of x with the largest absolute values. For any x ∈ R

n,

let Mi(x) be the ith largest absolute value component in x,

where i = 1, · · · , n.

We first establish a fixed point equation for the optimization

problem (4), which is used to construct a projected gradient

algorithm.

Theorem III.1. Assume that (i) in model (2), A(·) is uni-

formly s-regular; or (ii) in model (3),
∑m

i=1 bi ⊗Ai = 0 and

B = (b1, · · · , bm)T is s-regular. Then there exists a vector

x̂ ∈ R
n that is a minimizer of problem (4). Further, there exists

a positive constant L̂ such that for any τ ∈ (
0,min{L̂−1, 1}],

it holds

x̂ = PS

(
x̂− τ∇f(x̂)

)
. (5)

Based on the fixed point equation (5), we propose the

following algorithm for the computation of (4).

Algorithm:

Step 0. Given λ > 0, ε ≥ 0, γ, α ∈ (0, 1), δ > 0, choose an

arbitrary x0 and set k = 0.

Step 1. (a) Compute ∇f(xk) from

∇f(x) = 2

m∑
i=1

(xTAix+ bTi x− yi)
(
(Ai +AT

i ))x+ bi
)
;

(b) Compute xk+1 = PS(x
k−τk∇f(xk)), where τk = γαjk

and jk is the smallest nonnegative integer such that

f(xk)− f(xk+1) ≥ δ

2
‖xk − xk+1‖22. (6)

Step 2. Stop if

‖xk+1 − xk‖2
max{1, ‖xk‖2} ≤ ε.

Otherwise, replace k by k + 1 and go to Step 1.

Remark III.1. A key point in the above algorithm is to find

the smallest nonnegative integer jk such that (6) holds, which

can be done successfully by Lemmas B.3 and B.4 in Appendix

B. Another key point is the choice of the sparsity parameter s
which may not be known a priori in some applications. A pop-

ular and efficient method for choosing the penalty parameter in

�1-regularized minimization is cross validation which can be

applied to problems such as compressed sensing. In the next
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section we will calculate some numerical examples using 5-

fold cross validation to determine the sparsity parameter s. The

numerical results demonstrate the efficiency of this method.

Remark III.2. In [3] the authors studied the sparsity con-

strained optimization problem

min
x∈Rn

h(x) s.t. ‖x‖0 ≤ s, (7)

where h(·) is a continuously differentiable function, and

introduced the so-called L-stationary point x that satisfies

x ∈ PS(x− 1

L
∇h(x)), L > 0.

They proved that the above relation holds if and only if ‖x‖0 ≤
s and

|∇h(x)i|
{ ≤ LMs(x), if i /∈ supp(x);
= 0, if i ∈ supp(x) (8)

where ∇h(x)i is the ith element of the gradient vector ∇h. In

articular, it is pointed out that if x is an L-stationary point for

some L > 0, then (i) ∇h(x) = 0 when ‖x‖0 < s; and (ii)
∇h(x)i = 0 for all i ∈ supp(x) when ‖x‖0 = s. Furthermore,

it is shown in [3] that under the assumption that the gradient of

the objective function ∇h is Lipschitz with constant L(h), the

minimizer of problem (7) must be an L-stationary point when

L > L(h). Unfortunately our function f(·) does not satisfy

this assumption. However, the problem can be overcome if the

uniform s-regularity is assumed.

Now we consider the convergence of the proposed algorith-

m.

Theorem III.2. Let {xk} be the sequence generated by the

above algorithm. Then,

(i) limk→∞ ‖xk+1 − xk‖2 = 0;

(ii) any accumulation point of {xk} is a stationary point of

the minimization problem (4).

IV. NUMERICAL EXAMPLES

In this section we demonstrate the efficiency of our proposed

algorithm by calculating some numerical examples related to

the phase retrieval problem with real measurement vectors and

real signal [1], [3], [12].

Example. Suppose that x ∈ R
n is a discrete signal and we

observe the squared modulus of the inner product between the

signal and some vectors aj ∈ R
n

yj = 〈aj , x〉2, j = 1, · · · ,m. (9)

Let the true value x∗ be generated randomly with s nonzero

components from the standard Gaussian distribution. To recov-

er x∗, we use the �0-constrained least squares method which

can be formulated as

min
x∈Rn

m∑
i=1

(
(xTai)

2 − yi
)2

s.t. ‖x‖0 ≤ s, (10)

where s is a positive integer and is treated as unknown here.

As mentioned in Remark III.1, we use cross validation method

to choose the sparsity s. To evaluate the performance of

our algorithm, we carry out 100 Monte Carlo runs in each

simulation and report the mean and standard errors (SE) of

‖x̂‖0, where x̂ is a minimizer of the optimization (10). We

also report the successful recovery (SR) rate using the criterion

Γ̂ = Γ∗ and ‖x̂− x∗‖2 ≤ 0.01, where Γ∗ = {j : x∗j �= 0} and

Γ̂ = {j : x̂j �= 0}.
In [12] it is pointed out that a set of 4s − 1 independent

samples from an n dimensional standard Gaussian distribution

satisfies the 2s complement property with probability 1. There-

fore in our simulations vectors aj ∈ R
n are generated from

the standard Gaussian distribution and the relation between

the dimension n and the sparsity s satisfies n ≥ 4s. Similar

to [3] we consider the cases n = 120 and m = 80 with

s = 3, 4, · · · , 10 respectively.

The numerical results are given in Table I. These results

show that the averages of ‖x̂‖0 are fairly close to the corre-

sponding true values ‖x∗‖0 and the SE are very small overall.

They also confirm that the cross validation method works well

in choosing the right sparsity parameter. The rates of success-

ful recovery are over 50% and are stable when the sparsity of

true value increases. These rates are comparable with similar

studies in the literature. For example, compared to the results

in [3], our SR rates are lower in the cases where s = 3, 4
but significantly higher in the cases where s = 5, 6, 7, 8, 9, 10.

Moreover, our SR rates can be significantly higher if more

relaxed numerical accuracy criterion is used. For example, if

an estimated value |x̂(i)| ≤ 5×10−4 can be regarded as being

estimated as zero, then the SR can be higher than 90%.

TABLE I
THE AVERAGE RESULTS OF 100 SIMULATIONS

WITH n = 120 AND m = 80.

‖x∗‖0 (‖x̂‖0, SE) SR

3 (3.7, 0.078) 0.52

4 (4.9, 0.127) 0.55

5 (5.8, 0.099) 0.50

6 (6.9, 0.115) 0.51

7 (8.0, 0.124) 0.51

8 (8.9, 0.135) 0.58

9 (10.2, 0.154) 0.52

10 (10.7, 0.087) 0.50

To assess the efficiency of our method in the situation of

high-dimensional signal recovery with low sample size, we

also run the simulations with m = 3n/4, s = 0.05n and n =
100, 200, 300, 400, 500, respectively. The numerical results

are given in Table II, which demonstrate further that cross

validation is an appropriate method for the choice of sparsity

used in the projection operator. While the last column in II

show that our method can recover the unknown signal with

higher success rates even in relatively high dimensional cases.
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TABLE II
THE AVERAGE RESULTS OF SUCCESSFUL RECOVERIES.

n ‖x∗‖0 (‖x̂‖0, SE) SR

100 5 (5.9, 0.120) 0.51

200 10 (10.6, 0.103) 0.67

300 15 (15.67, 0.111) 0.67

400 20 (20.6, 0.133) 0.71

500 25 (26.2, 0.233) 0.64

V. CONCLUSION

Quadratic compressive sensing (QCS) has been widely used

in many fields such as optical images, X-ray crystallogra-

phy, transmission electron microscopy. We have introduced

the concept of uniform s-regularity to study the uniqueness

of the solutions in quadratic measurements models. In the

framework of sparsity-constrained nonlinear optimization, we

have derived a fixed point equation and proposed a greedy

algorithm for the numerical computaiton. The convergence of

this algorithm is proved under fairly mild assumptions. Finally,

we have presented a numerical example to illustrate the pro-

posed method. The numerical results show that the proposed

method performs well in cases with various dimensions and

sparsity.
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APPENDIX A

UNIQUENESS ANALYSIS

Proof of Proposition II.1:
(i) First note that for any index set Γ ⊆ {1, · · · , n} with

|Γ| = s, it follows from the eigenvalue decomposition that,

for each i = 1, · · · ,m,

AΓΓ
i =

ri∑
j=1

λijqijq
T
ij

where {λij} are the nonzero eigenvalues and {qij} are orthog-

onal eigenvectors with ‖qij‖ = 1 for j = 1, · · · , ri. Hence it

is easy to verify that for any u ∈ R
s/{0},

(AΓΓ
1 u, · · · , AΓΓ

m u)T

=(

r1∑
j=1

λ1ju
T q1jq1j , · · · ,

rm∑
j=1

λmju
T qmjqmj)

T .

For any u ∈ R
s/{0}, we denote T = {i : uT qij =

0, for each j = 1, · · · , ri} and t = |T|. Then for the

case t ≥ 1 we can assume without loss of generality that

T = {1, · · · , t}. It follows that

(AΓΓ
1 u, · · · , AΓΓ

m u)T

=(0, · · · , 0,
rt+1∑
j=1

λt+1ju
T qt+1jqt+1j , · · · ,

rm∑
j=1

λmju
T qmjqmj)

T

which implies that

rank((AΓΓ
1 u, · · · , AΓΓ

m u))

=rank(

rt+1∑
j=1

λt+1ju
T qt+1jqt+1j , · · · ,

rm∑
j=1

λmju
T qmjqmj).

For each i = t+1, · · · ,m, since {qij} are linearly independent

and u �= 0, we have

ri∑
j=1

λiju
T qijqij ∈ Vi.

Therefore by the definition of T and that t ≥ 1,

there exists nonzero vector u0 such that uT
0 qij = 0

for i ∈ T and j = 1, · · · , ri. It follows that

{qij , j = 1, · · · , ri}i∈T are linearly dependent, which

together with the assumption of the Proposition imply
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that
∑rt+1

j=1 λt+1ju
T qt+1jqt+1j , · · · ,

∑rm
j=1 λmju

T qmjqmj s-

pan R
s. Therefore we have rank((AΓΓ

1 u, · · · , AΓΓ
m u)) = s.

Finally since u and Γ are arbitrary, property II.1 implies the

uniform s-regularity of A(·).
(ii) Suppose {ai} ∈ R

n/{0} satisfy the s-complement prop-

erty. We use the above result to show that A(·) is uniformly

s-regular. For any Γ ⊆ {1, · · · , n} with |Γ| = s, it is easy to

see that for each i = 1, · · · ,m, ‖aiΓ‖−1aiΓ is the unique

eigenvector associated with the unique nonzero eigenvalue

‖aiΓ‖2. That is, ViΓ = {v ∈ R
s : AΓΓ

i v = λv, λ �= 0}/{0} =
span(aiΓ)/{0}. Based on the s-complement property of {ai}
and the first result, it follows that A(·) is uniformly s-regular.

Given that A(·) is uniformly s-regular, we now show that

{ai} satisfy the s-complement property. To this end it suffices

to prove that either {aΓi }i∈K or {aΓi }i∈Kc span R
s for every

subset K ⊆ {1, · · · ,m}. Without loss of generality we assume

that K = {1, · · · , k}. We prove the result by contradiction.

Suppose that both a1Γ, · · · , akΓ and ak+1Γ, · · · , amΓ cannot

span R
s and denote Ã1 = (a1Γ, · · · , akΓ)T and Ã2 =

(ak+1Γ, · · · , amΓ)
T . Then there exists u0 ∈ R

s/{0} such that

Ã1u0 = 0 and it follows that(
(aT1Γu0)a1Γ, · · · , (aTmΓu0)amΓ

)T
=
(
0, ÃT

2 diag(a
T
k+1Γu0, · · · , aTmΓu0)

)T
and therefore

rank
(
(aT1Γu0)a1Γ, · · · , (aTmΓu0)amΓ

)T
=rank

(
0, ÃT

2 diag(a
T
k+1Γu0, · · · , aTmΓu0)

)T
.

Since ak+1Γ, · · · , amΓ cannot span R
s, it follows that

rank(Ã2) < s, which implies that

rank
(
0, ÃT

2 diag(a
T
k+1Γu0, · · · , aTmΓu0)

)
=rank

(
ÃT
2 diag(a

T
k+1Γu0, · · · , aTmΓu0)

)
≤rank(Ã2)

<s.

However, the uniform s-regularity of A(·) implies that

rank(AΓ(u)) = rank
(
(aT1Γu0)a1Γ, · · · , (aTmΓu0)amΓ

)T
has

full column rank, which is a contradiction.

Proof of Proposition II.2: Denote by ej the jth column

of the n × n identity matrix In. For each k, l = 1, 2, · · · , n,

it follows that

eTk (
n∑

i=1

Aixb
T
i )el = xT (

m∑
i=1

AT
i eke

T
l bi) = 0,

where the last equality follows from the assumption that∑m
i=1 bi ⊗Ai = 0. Therefore we have

n∑
i=1

Aixb
T
i = 0. (11)

Since

(A(x) +B)T (A(x) +B)

=A(x)T A(x) + A(x)TB +BT A(x) +BTB,

A(x)TB =
n∑

i=1

Aixb
T
i

and BTA = (ATB)T , we have

(A(x) +B)T (A(x) +B) = A(x)T A(x) +BTB.

For an index set Γ ⊆ {1, · · · , n} with |Γ| = s, we then

conclude from the s-regularity of BΓ that for any u ∈ R
s/{0}

the matrix

(AΓ(u) +BΓ)
T (AΓ(u) +BΓ) = AΓ(u)

T AΓ(u) +BT
ΓBΓ

is positive definite, which implies that rank(AΓ(u) +
BΓ)

T (AΓ(u) + BΓ) = s. Combing this and the fact that

rank(AΓ(u) +BΓ) = rank(AΓ(u) +BΓ)
T (AΓ(u) +BΓ), we

get the desired result.

Proof of Theorem II.1: We first prove the result

(i). Again we prove it by contradiction. Assume that x̃ �=
±x∗, ‖x̃‖0 ≤ ‖x∗‖0,M(x̃) = M(±x∗), x̃ ∈ R

n, where

the operator M is defined as
(M(x)

)
(i) = xTAix. Denote

Γ = supp(x̃)∪ supp(x∗). Then, |Γ| ≤ 2s. For any x ∈ R
n, it

follows that (M(x̃))(i) = (xΓ)TAΓΓ
i xΓ and therefore

0 =M(x̃)−M(x∗)

=
(
(x̃Γ − x∗Γ)TAΓΓ

1 (x̃Γ + x∗Γ), · · · ,
(x̃Γ − x∗Γ)TAΓΓ

m (x̃Γ + x∗Γ)
)T

=AΓ(x̃
Γ + x∗Γ)(x̃Γ − x∗Γ).

Since 0 �= x̃Γ+x∗Γ and A(·) is uniformly 2s-regular, it follows

that AΓ(x̃
Γ+ x∗Γ) has full column rank, which implies x̃Γ =

x∗Γ. This is a contradiction.

Next we prove result (ii) by contradiction. Assume that

x̃ �= x∗, ‖x̃‖0 ≤ ‖x∗‖0,M(x̃) = M(x∗), x̃ ∈ R
n, where

the operator M is defined as
(M(x)

)
(i) = xTAix + xT bi.

Denote Γ = supp(x̃) ∪ supp(x∗). Then, |Γ| ≤ 2s. For any

x ∈ R
n, it follows that (M(x̃))(i) = (xΓ)TAΓΓ

i xΓ+(xΓ)T bΓi
and therefore

0 =M(x̃)−M(x∗)

=
(
(x̃Γ − x∗Γ)T (AΓΓ

1 + bΓ1 )(x̃
Γ + x∗Γ), · · · ,

(x̃Γ − x∗Γ)T (AΓΓ
m + bΓm)(x̃

Γ + x∗Γ)
)T

=AΓ(x̃Γ + x∗Γ)(x̃Γ − x∗Γ).

Since A(·) is uniformly 2s-regular, it follows that AΓ(x̃Γ +
x∗Γ) has full column rank which leads to x̃Γ = x∗Γ. This is

a contradiciton.

APPENDIX B

OPTIMIZATION ALGORITHM ANALYSIS

Lemma B.1. For any b ∈ R
n, consider the following projec-

tion problem

min
x∈Rn

1

2
‖x− b‖22 s.t. ‖x‖0 ≤ s.

Then, the minimizer x̃ satisfies x̃ = PS(b).
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Lemma B.2. Let bi ∈ R
n and Ai ∈ R

n×n, i = 1, · · · ,m
be the given matrices (vectors). Let s be a positive integer

satisfying s < n and Γ be any subset of {1, 2, · · · , n}
satisfying |Γ| = s.
(i) If A(·) is uniformly s-regular, then the

function f1Γ(u) =
∑m

i=1(u
TAΓΓ

i u)2 is coercive, i.e.,

lim‖u‖→∞ f1(u) =∞.
(ii) If

∑m
i=1 bi ⊗ Ai = 0 and B = (b1, · · · , bm)T is s-

regular, then the function f2Γ(u) =
∑m

i=1(u
TAΓΓ

i u+uT biΓ)
2

is coercive, i.e., lim‖u‖→∞ f2Γ(u) =∞.

Proof: To show result (i), note that there exists a vector

v∗ ∈ R
s satisfying ‖v∗‖ = 1 and

f1Γ(v
∗) = min f1Γ(v) s.t. ‖v‖ = 1

because f1Γ(·) is continuous and the set ‖v‖ = 1 is com-

pact. Then the uniform s-regularity implies that the ma-

trix
∑m

i=1A
ΓΓ
i v∗v∗TAΓΓT

i is positive definite, and therefore

f1Γ(v
∗) > 0. For any nonzero vector u ∈ R

s, it follows that

f1Γ(u) = ‖u‖4
m∑
i=1

(
(

u

‖u‖ )
TAΓΓ

i (
u

‖u‖ ))
2 ≥ ‖u‖4f1Γ(v∗)

which implies that f1Γ(u) → ∞ as ‖u‖ → ∞. That is, the

first result holds.
To show the result (ii), note that for any vector u ∈ R

s, we

have

f2Γ(u)

=
m∑
i=1

(uTAΓΓ
i u+ uT biΓ)

2

=
m∑
i=1

(uTAΓΓ
i u)2 + 2

m∑
i=1

(uTAΓΓ
i u)(uT biΓ) +

m∑
i=1

(uT biΓ)
2.

Analog to the proof of (11), we can show that the assumption∑m
i=1 bi⊗Ai = 0 implies 2

∑m
i=1(u

TAΓΓ
i u)(uT biΓ) = 0 and

therefore

f2Γ(u) =

m∑
i=1

(uTAΓΓ
i u)2 + uT (

m∑
i=1

biΓb
T
iΓ)u.

It follows form the s-regularity that f2Γ(u)→∞ as u→∞.

Proof of Theorem III.1: We first prove the existence

of x̂. By Lemma B.2 it is easy to show that f(x) → ∞ as

‖x‖ → ∞ and ‖x‖0 ≤ s. It follows that there exists a positive

constant r̂ such that the problem (4) is equivalent to

min
x∈Rn

f(x) s.t. ‖x‖0 ≤ s, ‖x‖ ≤ r̂.

Since f is continuous and the constrained set is compact, it

follows that the problem (12) has a minimizer x̂ which is also

a solution of (4).
We now prove the fixed point equation (5). For any τ > 0,

define Fτ (x, x̂) := f(x̂) + 〈∇f(x̂), x− x̂〉+ 1
2τ ‖x− x̂‖22 and

consider the following auxiliary problem

min Fτ (x, x̂)

s.t. ‖x‖0 ≤ s,

x ∈ R
n. (12)

Denote Br̂,s = {x ∈ R
n : ‖x‖2 ≤ r̂, ‖x‖0 ≤ s} and Br̂,2s =

{x ∈ R
n : ‖x‖2 ≤ r̂, ‖x‖0 ≤ 2s}. It is clear that there exists

a positive constant L̂ such that L̂ = supx∈Br̂,2s
‖∇2f(x)‖2.

Note that for any x, y ∈ Br̂,s the line segment [x, y] ∈ Br̂,2s.

Therefore for any τ ∈ (0, L̂−1] and x ∈ Br̂,s, we have

f(x) (13)

= f(x̂) + 〈∇f(x̂), x− x̂〉+ 1

2
(x− x̂)T∇2f(ξ)(x− x̂)

= Fτ (x, x̂) +
1

2
(x− x̂)T∇2f(ξ)(x− x̂)− 1

2τ
‖x− x̂‖22

≤ Fτ (x, x̂) +
1

2
‖∇2f(ξ)‖2‖x− x̂‖22 −

1

2τ
‖x− x̂‖22

≤ Fτ (x, x̂) +
L̂

2
‖x− x̂‖22 −

1

2τ
‖x− x̂‖22

≤ Fτ (x, x̂), (14)

where ξ = x̂+ α(x− x̂) for some α ∈ (0, 1) and the second

inequality follows from the fact that ξ ∈ Br̂,2s and hence

‖∇2f(ξ)‖2 ≤ L̂.

Further, let

x̄ ∈ arg min
x∈Rn

Fτ (x, x̂) s.t. ‖x‖0 ≤ s,

where τ ∈ (0, L̂−1]. Since f(x̂) = Fτ (x̂, x̂), one can conclude

from the inequality (13) that for any τ ∈ (0, L̂−1],
Fτ (x̄, x̂) ≤ Fτ (x̂, x̂) = f(x̂) ≤ f(x̄) ≤ Fτ (x̄, x̂),

which leads to Fτ (x̂, x̂) = Fτ (x̄, x̂). Therefore x̂ is also a

minimizer of the problem (12).

On the other hand, it is easy to check that the problem (12)

is equivalent to the following minimization problem

min
x∈Rn

1

2
‖x− (x̂− τ∇f(x̂))‖22 s.t. ‖x‖0 ≤ s

which together with Lemma B.1 leads to the desired result.

Lemma B.3. Let gk = ‖∇f(xk)‖2 and Gk =
supβ∈Bk

‖∇2f(x)‖2, where Bk = {x ∈ R
n : ‖x‖2 ≤

‖xk‖2 + gk}. For any δ > 0, γ, α ∈ (0, 1), define

jk =

{
0, if γ(Gk + δ) ≤ 1;
−[ logα γ(Gk + δ)] + 1, otherwise.

Then (6) holds.

Proof: From the definition of τk and jk, it is easy to

verify that

Gk − 1

τk
≤ −δ. (15)

Indeed, by taking τk = γ we have

Gk − 1

τk
=

γGk − 1

γ
≤ −δ,

when γ(Gk + δ) ≤ 1. If γ(Gk + δ) > 1, then

τk = γαjk ≤ γαlogα γ(Gk+δ) =
1

Gk + δ

which also leads to (15).
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Further, since

xk+1 ∈ arg min
x∈Rn, ‖x‖0≤s

Fτk(x, x
k) (16)

and

‖xk+1‖2 ≤ ‖xk − τk∇f(xk)‖2 ≤ ‖xk‖2 + gk,

it follows that xk+1 ∈ Bk. Similar to (13), we obtain from

(15) that

f(xk+1) (17)

≤ Fτk(x
k+1, xk) +

1

2
‖xk+1 − xk‖22

(‖∇2f(ξk)‖2 − 1

τk

)

≤ Fτk(x
k+1, xk) +

1

2
‖xk+1 − xk‖22(Gk − 1

τk
)

≤ Fτk(x
k+1, xk)− δ

2
‖xk+1 − xk‖22,

where ξk = xk + 
(x̃k,t − xk) for some 
 ∈ (0, 1) and hence

the second inequality follows from ξk ∈ Bk. Combining this

and (16), we have

f(xk)− f(xk+1) = Fτk(x
k, xk)− f(xk+1) (18)

≥ Fτk(x
k+1, xk)− f(xk+1)

≥ δ

2
‖xk+1 − xk‖22,

which completes the proof.

Lemma B.4. Let {xk} and {τk} be generated by the
algorithm. Assume that A is uniformly 2s-regular. Then,
(i) {xk} is bounded;
(ii) there is a nonnegative integer j̄ such that τk ∈ [γαj̄ , γ].

Proof: We prove the result (i) by contradiction. Suppose

{xk} is bounded, which implies that there exists a subsequence

{xkj} tending to infinity as j → ∞. By Lemma B.3, we

have f(xkj ) → ∞ as j → ∞. On the other hand, Lemma

B.3 implies that {f(xk)} is strictly decreasing which together

with f(·) ≥ 0 implies that {f(xk)} converges to a constant

f∗(≥ 0), which is a contradiction.

To show (ii), we note that since f(·) is a twice continuous

differentiable function, it follows from the boundedness of

{xk} that there exist two positive constants ḡ and Ḡ such

that supk≥0{gk} ≤ ḡ and supk≥0{Gk} ≤ Ḡ. Define j̄ =
max(0, [− logα γ(Ḡ + δ)] + 1). Therefore 0 ≤ jk ≤ j̄ and it

follows from the definition of τk that τk ∈ [γαj̄ , γ].

Proof of Theorem III.2: (i) From the definition of xk+1

and (6), we have

n∑
k=0

‖xk+1 − xk‖22 ≤
2

δ

n∑
k=0

[f(xk)− f(xk+1)]

=
2

δ
[f(x0)− f(xn+1)]

≤2
δ
f(x0).

Hence,
∑∞

k=0 ‖xk+1 − xk‖22 < ∞ and therefore ‖xk+1 −
xk‖2 → 0 as k →∞.

(ii) Since {xk} is bounded, it has at least one accumulation

point. Let x̃ be an accumulation point and suppose that the

subsequence {xkj} tends to x̃. We show that it satisfies (5)

for some τ > 0. If ‖x̃‖0 < s, then ∇f(x̃) = 0 and therefore

it follows from ‖x̃‖0 < s that for any τ > 0,

x̃ = PS(x̃) = PS(x̃− τ∇f(x̃)).

Denote Γ̃ = supp(x̃) and let xi be the ith element of a vector

x . If ‖x̃‖0 = s, then x
kj

i �= 0 for large enough j when i ∈ Γ̃.

It follows from the property of the projection PS(·) and the

algorithm that

x
kj+1
i = x

kj

i − τkj
∇f(xkj )i.

Since x
kj

i → x̃i and ∇f is continuous, by the first result (i)
and Lemma B.4 (ii) we have

∇f(x̃)i = 0, for each i ∈ Γ̃, (19)

which together with ‖x̃‖0 = s yields that for any τ > 0,

PS(x̃i − τ∇f(x̃)i) = PS(x̃i) = x̃.

Since ‖xkj

i ‖0 ≤ s, x
kj

i → x̃ and ‖x̃‖0 = s, it follows that

x
kj

i = 0 for large enough kj when i /∈ Γ̃. Combing this and

the iterative formula, we obtain that there exists a positive τ
such that

τkj
|∇f(xkj )i| =|xkj

i − τkj
∇f(xkj )i|

<min
l∈Γ̃

|xkj

l − τkj
∇f(xkj )l|

=min
l∈Γ̃

|xkj+1
l |

which further implies that

lim sup
j→∞

τkj
|∇f(xkj )i| ≤ min

l∈Γ̃
lim sup
j→∞

|xkj+1
l |.

By Lemma B.4 (ii) and that xkj → x̃, we have

lim sup
j→∞

τkj |∇f(x̃)i| ≤ min
l∈Γ̃

|x̃l| =Ms(x̃).

On the other hand, (19) implies that for any τ > 0,

min
l∈Γ̃

|x̃l − τ∇f(x̃)l| = min
l∈Γ̃

|x̃l|.

From the above inequalities, we conclude that for each i /∈ Γ̃,

|x̃i − τ∇f(x̃)i| <|x̃i − (lim sup
j→∞

τkj
)∇f(x̃)i|

≤min
l∈Γ̃

|x̃l − τ∇f(x̃)l|

for any τ ∈ (0, lim supj→∞ τkj ). For each i /∈ Γ̃, we

then obtain that PS(x̃i − τ∇f(x̃)i) = 0 for any τ ∈
(0, lim infk→∞ τk).
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