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This paper deals with a nonlinear errors-in-variables model where the distributions of the unobserved
predictor variables and of the measurement errors are nonparametric. Using the instrumental variable
approach, we propose method of moments estimators for the unknown parameters and simulation-
based estimators to overcome the possible computational difficulty of minimizing an objective function
which involvesmultiple integrals. Both estimators are consistent and asymptotically normally distributed
under fairly general regularity conditions. Moreover, root-n consistent semiparametric estimators and a
rank condition for model identifiability are derived using the combined methods of the nonparametric
technique and Fourier deconvolution.
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1. Introduction

Measurement error occurs frequently (e.g. Aigner et al., 1984;
Fuller, 1987; Hsiao, 1992). If a model is linear in variables, the is-
sue of randommeasurement error can often be overcome through
the use of the instrumental variable method. If a model is nonlin-
ear in variables, the conventional instrumental variablemethod, in
general, does not yield consistent estimators of the unknown pa-
rameters when the variables are subject to random measurement
errors (e.g. Amemiya, 1985, 1990; Hsiao, 1989).

To obtain consistent estimators for nonlinear measurement er-
ror models, some researchers assume that the measurement er-
ror variances tend to zero as sample size increases to infinity
(e.g. Wolter and Fuller, 1982; Amemiya, 1985, 1990; Stefanski and
Carroll, 1985; Amemiya and Fuller, 1988). Alternatively, other re-
searchers assume that the conditional distribution of the unob-
served predictor variable given its observed proxy is known up
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to a finite-dimensional parameter (e.g. Hsiao, 1989, 1992). Later
Li (2002) and Schennach (2004) studied models with replicate
observations, while Schennach (2007) used the instrumental vari-
able approach. Besides, various special nonlinear models are
investigated, e.g., polynomial models with a scalar predictor vari-
able (Cheng and Schneeweiss, 1998; Hausman et al., 1991, 1995;
Huang andHuwang, 2001), and limited dependent variablemodels
(Weiss, 1993; Wang, 1998, 2002; Wang and Hsiao, 2007). Another
stream of investigation consists of non- or semi-parametric meth-
ods with the assumption that the measurement error is univariate
and its distribution is either completely known or is normal with
an unknown variance parameter (e.g., Fan and Truong, 1993; Car-
roll et al., 1999; Taupin, 2001; Carroll et al., 2004; Delaigle, 2007).

In this paper, we consider the method of moments estimation
of a general nonlinear measurement error model. Specifically, we
consider the model

Y = g(X; θ0)+ ε, (1.1)

where Y ∈ R, X ∈ Rk, ε is the random error and θ0 ∈ Rp is a
vector of unknown parameters. In general, g(x; θ0) is nonlinear in
x. Suppose that X is unobservable, instead we observe

Z = X + δ, (1.2)
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where δ is a random measurement error. Further, we assume that
an instrumental variableW ∈ Rl exists and is related to X through

X = Γ0W + U, (1.3)

where Γ0 is a k × lmatrix of unknown parameters which has rank
k and U is independent ofW with E(U) = 0. The random errors in
(1.1) and (1.2) are supposed to satisfy E(ε | X, Z,W ) = 0 and E(δ |

X,W ) = 0. The functional forms of the distributions of X, ε and
δ are unknown. In this sense model (1.1)–(1.3) is semiparametric.
In this model, the observed variables are (Y , Z,W ). Our primary
interest is to estimate θ0,Γ0 and the distribution FU of U .

Model (1.1)–(1.3) was considered by these and other authors
before. Wang and Hsiao (1995) derived a rank condition for iden-
tifiability and proposed a semiparametric estimator under the
condition that g(x; θ0) is integrable. Later, the integrability con-
dition was relaxed by Schennach (2007) who used the general-
ized function technique and achieved more general identifiabil-
ity conditions. In addition, assuming the model to be identifiable,
Newey (2001) derived a consistent estimator when Fu(u) belongs
to a parametric family and a consistent semiparametric estima-
tor when Fu(u) is nonparametric but may be approximated by a
parametric family. In this paper, we use the approach of Wang and
Hsiao (1995) and extend their results to the general g(x; θ0)which
is not necessarily integrable.

In particular, for the case of a parametric distribution fU(u;φ0)
we propose method of moments estimators for θ and φ
which are shown to be consistent and asymptotically normally
distributed under fairly general regularity conditions. Simulation-
based estimators are also considered to overcome the possible
computational difficulty of minimizing an objective function
which involves multiple integrals. For the case of nonparametric
distribution FU(u), we combine the nonparametric technique with
Fourier deconvolution to obtain a root-n consistent estimator for
θ and a kernel-based estimator for the density of U . Moreover,
this approach results in a surprisingly simple condition for the
identifiability of a nonlinear errors-in-variables model.

The paper is organized as follows. In Section 2 we introduce the
method of moments estimators and derive their consistency and
asymptotic normality. In Section 3 we construct simulation-based
estimators and show their asymptotic properties. In Section 4 we
propose a nonparametric estimator for the density of U and a
root-n consistent semiparametric estimator for θ . Section 5 gives a
rank condition for model identifiability and illustrative examples.
Finally, conclusions and discussions are contained in Section 6,
whereas proofs are given in Section 7.

2. Method of moments estimator

In this section we propose a method of moments estimator for
a nonlinear errors-in-variables model under the assumption that
the distribution fU(u;φ0) of U is known up to a vector of unknown
parameters φ0 ∈ Φ ⊂ Rq. The case where the distribution of U is
nonparametric is treated in Sections 4 and 5.

First, substituting (1.3) into (1.2) results in a usual linear regres-
sion equation

E(Z | W ) = Γ0W . (2.1)

ThereforeΓ0 can be consistently estimated by the least squares fit-
ting of Z onW . Moreover, by model assumptions we have

E(Y | W ) =

∫
g(Γ0W + u; θ0)fU(u;φ0)du (2.2)

and

E(YZ | W ) =

∫
(Γ0W + u)g(Γ0W + u; θ0)fU(u;φ0)du. (2.3)
Throughout the paper, all integrals are taken over the space Rk.
It follows that θ0 and φ0 can be estimated using a nonlinear least
squares method, given that they are identifiable by (2.2) and (2.3).

Since it is straightforward to estimate Γ0, in the following we
focus on the estimation of θ0 and φ0. First, we use some examples
to demonstrate that θ0 and φ0 may indeed be estimated using (2.2)
and (2.3). To simplify notation, we consider the casewhereΓ0 = 1,
all variables are scalars and U ∼ N(0, φ). For the same reason, we
suppress the subscript zero in θ0 and denote it as θ .

Example 2.1. Linear model g(x; θ) = θx. For this model, it is easy
to find E(Y | W ) = θW and E(YZ | W ) = θφ + θW 2, from which
both θ and φ can be consistently estimated by the nonlinear least
squares method.

Example 2.2. Polynomial model g(x; θ) = θ1 + θ2x2. In this case,
we have E(Y | W ) = (θ1 + θ2φ) + θ2W 2 and E(YZ | W ) =

(θ1 + 3θ2φ)W + θ2W 3. Again, it is clear that θ2, θ1 + θ2φ and
θ1 + 3θ2φ can be consistently estimated and, therefore, so do θ1
and φ.

Example 2.3. Exponential model g(x; θ) = θ1 exp(θ2x), where
θ1θ2 ≠ 0. For this model, we have E(Y | W ) = θ1 exp(θ2W +

θ22φ/2) and E(YZ | W ) = θ1(θ2φ + W ) exp(θ2W + θ22φ/2). Now
θ2 and θ1 exp(θ22φ/2) can be consistently estimated from the first
equation, and θ1θ2φ exp(θ22φ/2) from the second. It follows that θ1
and φ can be consistently estimated too.

Let ψ = (θ ′, φ′)′ and Ψ = Θ × Φ , which is assumed to be
compact in Rp+q. The true parameter value of themodel is denoted
by ψ0 ∈ Ψ . To simplify notation, let Z̃ = (1, Z ′)′ and x̃ = (1, x′)′.
Then through variable substitution, (2.2) and (2.3) can be written
together as

E(Y Z̃ |W ) =

∫
x̃g(x; θ0)fU(x − Γ0W ;φ0)dx. (2.4)

For every v ∈ Rk and ψ ∈ Ψ , define

m(v;ψ) =

∫
x̃g(x; θ)fU(x − v;φ)dx. (2.5)

Then it is clear thatm(Γ0W ;ψ0) = E(Y Z̃ |W ).
Suppose (Yj, Zj,Wj), j = 1, 2, . . . , n, is an i.i.d. random sample

with finite moments EY 2 < ∞, E‖YZ‖
2 < ∞ and nonsingular

EWW ′, where ‖·‖ denotes the Euclidian norm. Further, let ρ̂j(ψ) =

YjZ̃j − m(Γ̂Wj;ψ), where

Γ̂ =


n−

j=1

ZjW ′

j


n−

j=1

WjW ′

j

−1

(2.6)

is the least squares estimator of Γ0. Then the method of moments
estimator (MME) for ψ is defined as ψ̂n = argminψ∈ΨQn(ψ),
where

Qn(ψ) =

n−
j=1

ρ̂ ′

j (ψ)Ajρ̂j(ψ), (2.7)

andAj = A(Wj) is a nonnegative definitematrixwhichmaydepend
onWj.

Throughout the paper, let γ = vecΓ denote the vector con-
sisting of the columns of Γ , where vec is the so-called vectoriza-
tion operator. We also assume that the parameter space of γ is a
compact subset of Rkl containing the true value γ0 = vecΓ0. The
consistency of ψ̂n can be derived in traditional fashion by establish-
ing the uniform convergence of Qn(ψ)/n to a nonstochastic func-
tion Q (ψ)which has a unique minimizer ψ0 ∈ Ψ . To achieve this,
we assume the following regularity conditions, where µ denotes
Lebesgue measure.
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Assumption 1. g(x; θ) is a measurable function of x for each θ ∈

Θ and is continuous in θ ∈ Θ(a.e. µ). fU(u;φ) is continuously
differentiable with respect to (w.r.t.) u for each φ ∈ Φ and is
continuous in φ ∈ Φ(a.e. µ). Furthermore, E‖A(W )‖(|Y |

2
+

‖YZ‖
2) < ∞,

E‖A(W )‖

×

∫
sup
ψ,γ

|g(x; θ)fU(x − ΓW ;φ)|(‖x‖ + 1)dx
2

< ∞ (2.8)

and

E‖A(W )‖


‖W‖

∫
sup
ψ,γ

g(x; θ)∂ fU(x − ΓW ;φ)

∂u′


× (‖x‖ + 1)dx

2

< ∞, (2.9)

where the supremum is taken within the compact parameter
spaces of ψ and γ .

Assumption 2. E[ρ(ψ)−ρ(ψ0)]
′A(W )[ρ(ψ)−ρ(ψ0)] = 0 if and

only if ψ = ψ0, where ρ(ψ) = Y Z̃ − m(Γ0W ;ψ).

Assumptions 1 and 2 are common in the literature of nonlinear
regression. Assumption 2 is a high level condition for identifiabil-
ity. Some sufficient conditions for the identifiability are given in
Section 5. Assumption 1 ensures that the objective function Qn(ψ)
is continuous and converges uniformly in ψ . The following exam-
ple shows that (2.8) and (2.9) are generally satisfied, e.g., when
g(x; θ) is a polynomial in x and U has a normal distribution.

Example 2.4. Suppose g(x; θ) = θx,U ∼ N(0, φ), all variables
are scalars and the parameter spaces are compact intervals
[θmin, θmax], [φmin, φmax] and [Γmin,Γmax]. Then, for every x, w ∈ R
and θ, φ,Γ in their respective parameter spaces,

|g(x; θ)fU(x − Γw;φ)|(|x| + 1)

=

 θx
√
2πφ

exp


−
(x − Γw)2

2φ

 (|x| + 1)

≤
θmax|x|(|x| + 1)

√
2πφmin

exp


−
x2 + Γ 2

minw
2

2φmax


×

[
exp


Γmaxxw
φmax


+ exp


Γminxw
φmax

]
,

which clearly satisfies (2.8) if, e.g., A(W ) is an identity matrix.
Similarly, it is easy to see that (2.9) is satisfied too. �

Theorem 2.1. Under Assumptions 1 and 2, ψ̂n
a.s.
−→ ψ0, as n → ∞.

To derive the asymptotic normality for ψ̂n, we assume further
regularity conditions as follows.

Assumption 3. There exist open subsets θ0 ∈ Θ0 ⊂ Θ and
φ0 ∈ Φ0 ⊂ Φ , inwhich g(x; θ) is twice continuously differentiable
w.r.t. θ(a.e. µ) and fU(u;φ) is twice continuously differentiable
w.r.t. φ(a.e. µ). Furthermore, γ0 has an open neighborhood, such
that the first two derivatives of g(x; θ)fU(x − Γw;φ) w.r.t. ψ
are uniformly bounded by a function η(x, w), which satisfies
E‖A(W )‖


η(x,W )(‖x‖ + 1)dx

2
< ∞.

Assumption 4. For ψ0 ∈ Ψ ,

E‖A(W )‖


‖W‖

∫
sup
γ

∂ fU(x − ΓW ;φ0)

∂u′

 ∂g(x; θ0)∂θ


× (‖x‖ + 1)dx

2

< ∞ (2.10)
and

E‖A(W )‖


‖W‖

∫
sup
γ

∂2fU(x − ΓW ;φ0)

∂φ∂u′

 |g(x; θ0)|

× (‖x‖ + 1)dx
2

< ∞, (2.11)

where the supremum is taken within the open subset of γ .

Assumption 5. The matrix

B = E
[
∂ρ ′(ψ0)

∂ψ
A(W )

∂ρ(ψ0)

∂ψ ′

]
is nonsingular, where

∂ρ(ψ)

∂θ ′
= −

∫
x̃
∂g(x; θ)
∂θ ′

fU(x − Γ0W ;φ)dx (2.12)

and

∂ρ(ψ)

∂φ′
= −

∫
x̃g(x; θ)

∂ fU(x − Γ0W ;φ)

∂φ′
dx. (2.13)

Again, Assumptions 3–5 are commonly used regularity condi-
tions that are sufficient for the asymptotic normality of method of
moments estimators. Together with the Dominated Convergence
Theorem (DCT), Assumption 3 implies that the first derivative of
Qn(ψ) admits the first-order Taylor expansion and that the sec-
ond derivative of Qn(ψ) converges uniformly. Moreover, it ensures
that the first derivative ∂ρ(ψ)/∂ψ ′ exists and is given by (2.12)
and (2.13), while Assumption 4 implies that the first derivative
∂ρ(ψ)/∂γ ′ exists and is given by

∂ρ(ψ)

∂γ ′
=

∫
x̃g(x; θ)

∂ fU(x − Γ0W ;φ)

∂u′
dx(W ⊗ Ik)′, (2.14)

where⊗ stands for theKronecker product (Magnus andNeudecker,
1988, p. 30). Finally, Assumption 5 and the DCT imply that the sec-
ond derivative of Qn(ψ) has a non-singular limiting matrix. Again,
it is easy to see that Assumptions 3–5 are satisfied for the polyno-
mial model g(x; θ) and the normal random error U .

Theorem 2.2. Under Assumptions 1–5, as n → ∞,
√
n(ψ̂n −

ψ0)
L

−→ N(0, B−1DCD′B−1), where

D =

[
Ip+q, E


∂ρ ′(ψ0)

∂ψ
A(W )

∂ρ(ψ0)

∂γ ′

 
EWW ′

⊗ Ik
−1
]
,

C =


C11 C ′

21
C21 C22


,

C11 = E
[
∂ρ ′(ψ0)

∂ψ
A(W )ρ(ψ0)ρ

′(ψ0)A(W )
∂ρ(ψ0)

∂ψ ′

]
,

C21 = E
[
(W ⊗ (Z − Γ0W )) ρ ′(ψ0)A(W )

∂ρ(ψ0)

∂ψ ′

]
and C22 = E[WW ′

⊗ (Z − Γ0W )(Z − Γ0W )′]. Furthermore,

B = plim
n→∞

1
n

n−
j=1

∂ρ̂ ′

j (ψ̂n)

∂ψ
Aj
∂ρ̂j(ψ̂n)

∂ψ ′

and

DCD′
= plim

n→∞

1
4n
∂Qn(ψ̂n)

∂ψ

∂Qn(ψ̂n)

∂ψ ′
,

where

∂Qn(ψ)

∂ψ
= 2

n−
j=1

∂ρ̂ ′

j (ψ)

∂ψ
Ajρ̂j(ψ).
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The asymptotic covariance of ψ̂n depends on the weight A(W ).
A natural question is how to choose A(W ) to obtain the most
efficient estimator. To answer this question, we first write D =

(Ip+q,G), so that DCD′
= C11 + GC21 + C ′

21G
′
+ GC22G′. It is easy

to see that the last three terms in DCD′ are due to the least squares
estimation of Γ . To simplify discussion, assume for the moment
that Γ0 is known, so that these three terms do not appear in DCD′.
The following discussion remains valid, when Γ0 is unknown and
estimated using a subset of the sample (Yj, Zj,Wj), j = 1, 2, . . . , n,
while Qn(ψ) is constructed using the rest of the sample points.
Then the independence of the sample points implies that C21 = 0.
Since ∂ρ ′(ψ0)/∂ψ depends on W only, matrix C11 can be written
as

C11 = E
[
∂ρ ′(ψ0)

∂ψ
A(W )HA(W )

∂ρ(ψ0)

∂ψ ′

]
,

where H = H(W ) = E[ρ(ψ0)ρ
′(ψ0)|W ]. Then, analogous to the

weighted (nonlinear) least squares estimation, we have

B−1C11B−1
≥ E

[
∂ρ ′(ψ0)

∂ψ
H−1 ∂ρ(ψ0)

∂ψ ′

]−1

(2.15)

(in the sense that the difference of the left-hand and right-hand
sides is nonnegative definite), and the lower bound is attained for
A(W ) = H−1 in both B and C11 (Hansen, 1982; Abarin and Wang,
2006).

In practice, however, H depends on unknown parameters and
therefore needs to be estimated. This suggests the following two-
stage procedure of estimation. First, minimize Qn(ψ)with identity
matrix A(W ) = Ik+1 to obtain the first-stage estimator ψ̂n.
Secondly, estimate H = H(W ) by a nonparametric method such
as a kernel estimator or by Ĥ =

1
n

∑n
j=1 ρ̂j(ψ̂n)ρ̂

′

j (ψ̂n) for models
where H does not depend on W , and then minimize Qn(ψ) again

with A(W ) = Ĥ−1 to obtain the second-stage estimator ˆ̂
ψn. Since

Ĥ is consistent for H , the asymptotic covariance of ˆ̂
ψn is given by

the right-hand side of (2.15). Consequently ˆ̂
ψn is asymptotically

more efficient than the first-stage estimator ψ̂n. More detailed
discussions about the so-called feasible generalized least squares
estimators can be found in, e.g., Amemiya (1974) and Gallant
(1987, Chapter 5).

3. Simulation-based estimator

The numerical computation of MME ψ̂n or adaptive generalized
method of moments estimator is straightforward if the explicit
form of m(v;ψ) can be obtained. However, explicit forms of
the integrals in (2.5) can be difficult or impossible to derive (for
instance, if g is logistic and fU is normal). In this case, one may use
a simulation-based approach to approximate themultiple integrals
in which they are simulated by Monte Carlo methods such as
importance sampling.

First, choose a known density h(x) and generate an i.i.d. random
sample {xjs, s = 1, 2, . . . , 2S, j = 1, 2, . . . , n} from h(x). Then
approximatem(ΓWj;ψ) by Monte Carlo simulators

mS(ΓWj;ψ) =
1
S

S−
s=1

x̃jsg(xjs; θ)fU(xjs − ΓWj;φ)

h(xjs)

and

m2S(ΓWj;ψ) =
1
S

2S−
s=S+1

x̃jsg(xjs; θ)fU(xjs − ΓWj;φ)

h(xjs)
,

where x̃js = (1, x′

js)
′. Finally, the simulation-based estimator (SBE)

for ψ is defined by ψ̂n,S = argminψ∈ΨQn,S(ψ), where

Qn,S(ψ) =

n−
j=1

ρ̂ ′

j,S(ψ)Ajρ̂j,2S(ψ), (3.1)
and ρ̂j,S(ψ) = YjZ̃j − mS(Γ̂Wj;ψ) and ρ̂j,2S(ψ) = YjZ̃j −

m2S(Γ̂Wj;ψ).
It is easy to see that mS(ΓWj;ψ) and m2S(ΓWj;ψ) are

unbiased simulators for m(ΓWj;ψ), because by construction,
E[mS(ΓWj;ψ)|Wj] = E[m2S(ΓWj;ψ)|Wj] = m(ΓWj;ψ). In ad-
dition, using two independent sets of simulated points in ρ̂j,S and
ρ̂j,2S guarantees Qn,S(ψ) to be an unbiased simulator for Qn(ψ) in
the sense that they have the same conditional expectation given
the data (Yj, Zj,Wj), j = 1, 2, . . . , n. This ‘‘simulation-by-parts’’
has an important consequence that the following consistency and
asymptotic normality of ψ̂n,S hold for a fixed S. In contrast, most
simulation-based methods in the literature require that S → ∞.

Since Qn,S(ψ) does not involve integrals any more, it is contin-
uous in and differentiable with respect to ψ , as long as functions
g(x; θ) and fU(u;φ) have these properties. In particular, the first
derivative ∂ρ ′

j,S(ψ)/∂ψ consists of

∂ρ ′

j,S(ψ)

∂θ
= −

1
S

S−
s=1

∂g(xjs; θ)
∂θ

x̃′

jsfU(xjs − ΓWj;φ)

h(xjs)
,

∂ρ ′

j,S(ψ)

∂φ
= −

1
S

S−
s=1

∂ fU(xjs − ΓWj;φ)

∂φ

x̃′

jsg(xjs; θ)

h(xjs)

and the first derivative ∂ρ ′

j,2S(ψ)/∂ψ is given similarly.

Theorem 3.1. Suppose that the support of h(x) covers the support of
|g(x; θ)|fU(x − v;φ) for all v ∈ Rk and ψ ∈ Ψ . Then the simulation
estimator ψ̂n,S has the following properties:

1. Under Assumptions 1 and 2, ψ̂n,S
a.s.
−→ ψ0, as n → ∞.

2. Under Assumptions 1–5,
√
n(ψ̂n,S −ψ0)

L
−→ N(0, B−1DCSD′B−1),

where

CS =


CS,11 C ′

21
C21 C22


and

2CS,11 = E
[
∂ρ ′

1,S(ψ0)

∂ψ
A1ρ1,2S(ψ0)ρ

′

1,2S(ψ0)A1
∂ρ1,S(ψ0)

∂ψ ′

]
+ E

[
∂ρ ′

1,S(ψ0)

∂ψ
A1ρ1,2S(ψ0)ρ

′

1,S(ψ0)A1
∂ρ1,2S(ψ0)

∂ψ ′

]
.

Furthermore,

DCSD′
= plim

n→∞

1
4n
∂Qn,S(ψ̂n)

∂ψ

∂Qn,S(ψ̂n)

∂ψ ′
,

where

∂Qn,S(ψ)

∂ψ
=

n−
j=1

[
∂ρ̂ ′

j,S(ψ)

∂ψ
Ajρ̂j,2S(ψ)+

∂ρ̂ ′

j,2S(ψ)

∂ψ
Ajρ̂j,S(ψ)

]
.

Although ψ̂n,S is feasible in general, the simulation approxima-
tion of ρj(ψ) by ρj,S(ψ) and ρj,2S(ψ)may cause efficiency loss. The
following corollary shows that the efficiency loss due to simulation
is ofmagnitudeO(1/S), the proof of which is completely analogous
to that of Corollary 4 of Wang (2004) and hence is omitted.

Corollary 3.2. Under the conditions of Theorem 3.1,

CS,11 = C11 +
1
2S

E
[
∂(ρ11 − ρ1)

′A1ρ1

∂ψ

∂ρ ′

1A1(ρ11 − ρ1)

∂ψ ′

]
+

1
4S2

E
[
∂(ρ11 − ρ1)

′A1(ρ12 − ρ1)

∂ψ

×
∂(ρ12 − ρ1)

′A1(ρ11 − ρ1)

∂ψ ′

]
, (3.2)



34 L. Wang, C. Hsiao / Journal of Econometrics 165 (2011) 30–44
where ρ1 = ρ1(ψ0) and ρjs = YjZ̃j − x̃jsg(xjs; θ0)fU(xjs −

Γ0Wj;ψ0)/h(xjs) is the summand in ρj,S(ψ0) =
∑S

s=1 ρjs/S.

Asymptotically, the importance density h(x) has no effect on
the efficiency of ψ̂n,S , as long as it satisfies the condition of Theo-
rem3.1. In practice, however, the choice of h(x)will affect the finite
sample variances of the Monte Carlo estimators mS(ΓWj;ψ) and
m2S(ΓWj;ψ). Theoretically, the best choice of h(x) is proportional
to the absolute value of the integrand ‖x̃g(x; θ)fU(x − ΓW ;ψ)‖.
Practically, a density close to being proportional to the integrand
is a good choice.

4. Semiparametric estimator

In this and next section, we relax the parametric restriction on
the distribution of U and instead assume that FU is nonparametric.
We derive a semiparametric estimator for θ and a kernel-based
nonparametric estimator for FU usingmoments Eqs. (2.2) and (2.3)
which become

E(Y | W ) =

∫
g(Γ0W + u; θ0)dFU(u) (4.1)

and

E(YZ | W ) =

∫
(Γ0W + u)g(Γ0W + u; θ0)dFU(u). (4.2)

The basic idea is to apply Fourier deconvolution to (4.1) or (4.2)
to separate θ and FU . This approach is based on the following
assumptions.

Assumption 6. The distribution of W is absolutely continuous
with respect to the Lebesgue measure and has support Rl.

Assumption 7. g(x; θ0)(‖x‖ + 1) ∈ L1(Rk), the space of all
absolutely integrable functions on Rk. Furthermore, the set T =

{t ∈ Rk
: g̃(t; θ0) ≠ 0} is dense in Rk, where g̃(t; θ0) =

e−it ′xg(x; θ0)dx is the Fourier transform of g(x; θ0) and i =
√

−1.

The integrability of g(x; θ0) in Assumption 7 implies the existence
of the Fourier transform g̃(t; θ0). Roughly speaking, the secondpart
of the assumption means that the zeros of g̃(t; θ0) are isolated
points in Rk. The examples given at the end of the next section
show that this condition is fairly general. Further discussion and
possible generalization of this condition is given in Remark 5.1. For
every v ∈ Rk, let

m1(v) =

∫
g(v + u; θ0)dFU(u). (4.3)

SinceΓ0 has full rank, Assumption6 implies thatm1(Γ0W ) = E(Y |

W ) is fully observable on Rk. Moreover, Assumption 7 implies that
m1(v) ∈ L1(Rk). Taking the Fourier transformation on both sides
of (4.3) yields

m̃1(t) =

∫
e−it ′vm1(v)dv

=

∫
e−it ′xg(x; θ0)dx ·

∫
eit

′udFu(u)

= g̃(t; θ0)f̃U(t), (4.4)

where f̃U(t) is the characteristic function of U . Here we have
slightly abused notation by using f̃U(t) to denote the Fourier
inverse transform, which applies to f̃U(t) only throughout this
article. It follows from (4.4) that, for any t ∈ T , f̃U(t) is uniquely
determined by

f̃U(t) = m̃1(t)/g̃(t; θ0). (4.5)
Further, because any characteristic function is uniformly continu-
ous inRk, Assumption 7 implies that the value of f̃U(t) at any zero of
g̃(t, θ0) is also uniquely determined. If, in addition, f̃U(t) ∈ L1(Rk),
then the density of U exists and is given by

fU(u; θ0) =
1

(2π)k

∫
eit

′u m̃1(t)
g̃(t; θ0)

dt. (4.6)

This expression can be substituted into (4.1) and (4.2), so that the
method ofmoments estimator for θ can be obtained byminimizing
an objective function similar to (2.7). Details of this construction is
given below.

First, let Γ̂ denote the least squares estimator in (2.6) and Vj =

Γ̂Wj, j = 1, 2, . . . , n. Then the density function fV (v) of V = Γ0W
and the conditional mean functionm1(v) are estimated by

f̂V (v) =
1
nakn

n−
j=1

K

v − Vj

an


(4.7)

and

m̂1(v) =
1
nakn

n−
j=1

YjK

v − Vj

an


/f̂V (v), (4.8)

where K(·) is a kernel function and an is the bandwidth satisfying
0 < an → 0 as n → ∞.

Second, let ˆ̃m1(t) =

Bn

e−it ′vm̂1(v)dv, where Bn = {v ∈ Rk
:

|f̂V (v)| ≥ bn}, 0 < bn → 0 as n → ∞, and define, for each θ ∈ Θ ,

f̂U(u; θ) =
1

(2π)k

∫
Cn

eit
′u

ˆ̃m1(t)
g̃(t; θ)

dt,

where Cn = {t ∈ Rk
: ‖t‖ ≤ 1/cn, |g̃(t; θ)| ≥ cn} and 0 < cn → 0,

as n → ∞.
Finally, the semiparametric estimator (SPE) for θ is defined as

θ̂n = argminθ∈ΘQn(θ), where

Qn(θ) =

n−
j=1

ρ̂ ′

j (θ)Ajρ̂j(θ) (4.9)

with ρ̂j(θ) = YjZ̃j −

x̃g(x; θ)f̂U(x − Γ̂Wj; θ)dx. The consistency

of θ̂n can be derived similarly as for the MME ψ̂n. However,
as in many cases, e.g. Robinson (1988), the derivation becomes
much more complicated because of the presence of the first-stage
nonparametric estimators in Qn(θ), which have convergence rates
lower than

√
n. To achieve the

√
n-consistency, usually higher

order kernels are used and combined with certain smoothness
conditions for the density and conditional mean functions.

Assumption 8. There exists an integer d ≥ 1, such that fV (v),
m1(v)fV (v) and their partial derivatives of order 1 through d are
continuous and uniformly bounded on Rk.

Assumption 9. The kernel function K(v) is bounded on Rk and,
for the integer d in Assumption 8, satisfies: (1)


K(v)dv =

1;

v
d1
1 v

d2
2 · · · v

dk
k K(v)dv = 0, for dj ≥ 0 and 1 ≤

∑k
j=1 dj ≤ d−1;

and


|v
d1
1 v

d2
2 · · · v

dk
k K(v)|dv < ∞, for dj ≥ 0 and

∑k
j=1 dj = d; (2)

for every 1 ≤ j ≤ k, supv∈Rk ‖∂K(v)/∂vj‖(‖v‖ + 1) < ∞; and (3)
K(v) ∈ L1(Rk) and


eit

′vK(v)dv ∈ L1(Rk).

Assumption 10. supΘ |g(x; θ)|(‖x‖ + 1) ∈ L1(Rk) and supΘ
|m̃1(t)/g̃(t; θ)|(‖t‖ + 1) ∈ L1(Rk).

Assumption 11. g(x; θ) is a measurable function of x for each
θ ∈ Θ and is continuous in θ ∈ Θ(a.e. µ). Furthermore,
E‖A(W )‖(‖W‖

2
+ 1) < ∞, E‖A(W )‖(|Y |

2
+ ‖YZ‖

2) < ∞ and

E‖A(W )‖
∫

sup
Θ

|g(x; θ)fU(x − Γ0W ; θ)|(‖x‖ + 1)dx
2

< ∞. (4.10)
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Assumption 12. E[ρ(θ)− ρ(θ0)]
′A(W )[ρ(θ)− ρ(θ0)] = 0 if and

only if θ = θ0, where ρ(θ) = Y Z̃ −

x̃g(x; θ)fU(x − Γ0W ; θ)dx.

Assumptions 8 and 9 have been used by Robinson (1988) and
Andrews (1995) to achieve uniform convergence for their kernel
estimators of the conditional mean functions. Assumption 10
guarantees that the Fourier transform g̃(t; θ) exists for all θ ∈

Θ and that the density fU(u; θ) exists and is given by (4.6). This
assumption may be weaken to that the density fU(u; θ) exists and
is piecewise continuous, in which case fU(u; θ)may be defined by
the usual inversion formula or the so-called principal value of the
integral on the right-hand side of (4.6) (Walker, 1988). Similarly
to Assumption 2, Assumption 12 is a high-level assumption for
identifiability, which is implied by the conditions of Theorem 5.1
in the next section.

Theorem 4.1. Suppose Assumptions 6–12 hold and, as n → ∞,√
nak+1

n b3nc
k+1
n → ∞, adnb

−3
n c−k−1

n → 0 and c−k−1
n


Bcn

|m1(v)|dv
P
−→ 0, where Bc

n is the complement of Bn in Rk. Then, as n → ∞,

(1) θ̂n
P
−→ θ0; (2) supu∈Rk |f̂U(u; θ̂n) − fU(u; θ0)|

P
−→ 0; and (3) for

every t ∈ Rk such that g̃(t; θ0) ≠ 0, ˆ̃f U(t; θ̂n) = ˆ̃m1(t)/g̃(t; θ̂n)
P
−→

f̃U(t; θ0).

The above semiparametric estimator involves three tuning
parameters. In practice, these parameters can be chosen as follows.
First, take the bandwidth an = n−a where 0 < a < 1/2(k + 1)
can be chosen according to a certain optimum criterion for the
kernel estimators in (4.7) and (4.8). Second, the quantity dn =
Bcn

|m1(v)|dv reflects the tail behavior of m1(v) as v → ∞ which
can be evaluated for the given model g(x, θ0) and density fV (v).
Suppose dn = o(n−δ) for some δ > 0. Then cn = n−cδ/(k+1), 0 <
c < 1 satisfies c−k−1

n dn → 0. Finally, choose b > 0 and 0 <
c < 1 such that 3b + cδ < min{ad, 1/2 − a(k + 1)}. Then
bn = n−b satisfies

√
nak+1

n b3nc
k+1
n = n1/2−a(k+1)−3b−cδ

→ ∞ and
adnb

−3
n c−k−1

n = n−ad+3b+cδ
→ 0.

Similar to the simulation-based estimator of Section 3, we
can also construct a simulated version of the semiparametric
estimator. Specifically, ρ̂j(θ) in (4.9) can be replaced by Monte
Carlo simulators such as ρ̂j,S(θ) and ρ̂j,2S(θ) in (3.1). Then a
simulation-based semiparametric estimator (SBSPE) θ̂n,S can be
defined by minimizing the simulated version of Qn(θ), i.e.,

Qn,S(θ) =

n−
j=1

ρ̂ ′

j,S(θ)Ajρ̂j,2S(θ), (4.11)

where ρ̂j,S(θ) = YjZ̃j − 1
S

∑S
s=1 x̃jsg(xjs; θ)f̂U(xjs − Γ̂Wj; θ)/h(xjs),

and ρ̂j,2S(θ) is defined similarly using {xjs, s = S+1, S+2, . . . , 2S}.
Moreover, from Section 3 it is easy to see that θ̂n,S has the same
properties given in Theorem 4.1 for the SPE θ̂n. The asymptotic
normality of θ̂n,S can also be established in a similar way, under
the following further assumptions.

Assumption 13. Θ contains an open neighborhood Θ0 of θ0 such
that (1) g(x; θ) is twice continuously differentiable w.r.t. θ in Θ0;
(2) the first two derivatives of ˆ̃m1(t)/g̃(t; θ) w.r.t. θ and its first
derivative w.r.t. γ are uniformly bounded in Θ0 and an open
and bounded neighborhood of γ0 by η(t) > 0 which satisfies
Cn
η(t)dt < ∞; (3) g(x; θ)fU(x−Γ0W ; θ) has the same properties

given in Assumptions 3 and 4 for g(x; θ)fU(x − Γ0W ;φ).

Assumption 14. The kernel functionK(v) admits the second order
partial derivatives and

sup
v∈Rk

‖∂2K(v)/∂v∂v′
‖ < ∞.
Assumption 15. supu |f cU (u; θ0)− fU(u; θ0)| = op(n−1/2), where

f cU (u; θ0) =
1

(2π)k

∫
Cn

e−it ′u

g̃(t; θ0)

∫
Bn

e−it ′vm1(v)dvdt.

Assumption 16. The matrix

B = E

∂ρ ′(θ0)

∂θ
A(W )

∂ρ(θ0)

∂θ ′


is nonsingular.

The asymptotic normality of our estimator relies on the asymp-
totic behavior of the empirical process ξj = (ξ ′

1j, ξ
′

2j, ξ
′

3j, ξ
′

4j)
′,

where

ξ1j =
∂ρ ′

j,S(θ0)

∂θ
Ajρj,2S(θ0), (4.12)

ξ2j =
1

(2π)k
Ej
∂ρ ′

0(θ0)

∂θ
Aj

∫
x̃g(x; θ0)

×

∫
Cn

e−it ′(x−Γ0W )

g̃(t; θ0)

∫
e−it ′vηj(v)

fV (v)
dvdtdx, (4.13)

ξ ′

3j =
ρ ′

0(θ0)Aj

(2π)k
Ej
∂

∂θ

∫
x̃g(x; θ0)

∫
Cn

e−it ′(x−Γ0W )

g̃(t; θ)


θ=θ0

×

∫
e−it ′vηj(v)

fV (v)
dvdtdx (4.14)

and ξ4j = Wj ⊗ (Zj − Γ0Wj). Here ρ0(θ0) = YZ − E(YZ | W ) and Ej
denotes the conditional expectation given

ηj(v) =
Yj − m1(v)

akn
K

v − Γ0Wj

an


− E

[
Yj − m1(v)

akn
K

v − Γ0Wj

an

]
. (4.15)

Then, we have the following result.

Theorem 4.2. In addition to the conditions of Theorem 4.1, suppose√
na2k+1

n b2n → ∞ and
√
naqnb−2

n c−k−1
n → 0, where d is

as in Assumption 8. Then under Assumptions 13–16, as n →

∞,
√
n(θ̂n,S − θ0)

L
−→ N(0, B−1DCD′B−1), where C = limn→∞ Eξjξ ′

j
and

D =

[
Ip, Ip, Ip, E


∂ρ ′

j (θ0)

∂θ
Aj
∂ρj(θ0)

∂γ ′

 
EWW ′

⊗ Ik
−1
]
.

It is easy to see that ξ1j = ξ5j + ξ6j, where

ξ5j =
∂ρ ′

j (θ0)

∂θ
Ajρj(θ0),

ξ6j =
∂∆′

j,2S

∂θ
Ajρj(θ0)+

∂ρ ′

j (θ0)

∂θ
Aj∆j,S +

∂∆′

j,2S

∂θ
Aj∆j,S

and

∆j,S = E(Yj | Wj)−
1
S

S−
s=1

x̃jsg(xjs; θ0)fU(xjs − Γ0Wj; θ0)

h(xjs)
.

Moreover, the asymptotic covariance matrix of θ̂n,S consists of
the approximation errors of Γ̂ for Γ0, ξ4j, f̂u for fu, ξ2j and ξ3j, the
sampling error ξ5j and the simulation error ξ6j. It is easy to see that,
if Γ0 is known, then ξ4j = 0, and if fU is known, then ξ2j = ξ3j =

0. Therefore, if Γ0 and fU are known, the asymptotic covariance
matrix of our simulation estimator only depends on the sampling
error ξ5j and simulation error ξ6j. Since Eξ6jξ ′

6j = O(S−1), the
impact of the simulation error can be reduced by increasing the
simulation size S.
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5. Identifiability

Identifiability is a long-standing and difficult problem in non-
linear errors-in-variables models. It has both theoretical and prac-
tical importance, but very few results have been obtained so far
because of itsmathematical complexity. In the literature, this prob-
lem has usually been avoided by assuming distributions of certain
unobserved variables or random errors are known, or it has been
completely ignored in applied work. For a model with errors-in-
variables to be identifiable, additional information such as vali-
dation data, repeated measurements or instrumental variables is
needed (Fuller, 1987; Carroll et al., 1995). Hausman et al. (1991)
showed that the polynomialmodel is identifiable using instrumen-
tal variables. Also using the IV approachWang andHsiao (1995) ob-
tained identifiability for models with integrable g(x; θ0). Further,
Schennach (2007) showed that the identifiability holds for general
models which is not necessarily integrable. In this section, we use
the framework of the previous section to derive a rank condition
for identifiability of model (1.1)–(1.3).

First, Γ0 is clearly identifiable by (2.1) and the least squares
method. In the previous section, we have demonstrated that FU is
uniquely determined by θ0 and Γ0 through (4.5). In the following,
we study the identifiability of θ0 using (4.1) and (4.2), given thatΓ0
is identified. Analogous to (4.3), for every v ∈ Rk, let

m2(v) =

∫
(v + u)g(v + u; θ0)dFU(u). (5.1)

Then m2(Γ0W ) = E(YZ | W ) and Assumption 7 implies that
m2(v) ∈ L1(Rk). Now, integrating both sides of (4.3) and (5.1) and
applying the Fubini Theorem, we obtain∫

m1(v)dv =

∫
g(x; θ0)dx := g1(θ0), (5.2)∫

m2(v)dv =

∫
xg(x; θ0)dx := g2(θ0). (5.3)

The left-hand sides of (5.2) and (5.3) are observable and the
closed forms of the integrals on the right-hand sides can be
obtained, because the functional form of g(x; θ0) is known. By the
Rank Theorem (Zeidler, 1986, page 178), a sufficient condition for
(5.2)–(5.3) to have a unique solution θ0 in its neighborhood is that
the Jacobian matrix (e.g., Hsiao, 1983)

J(θ0) =


∂g1(θ0)
∂θ

,
∂g ′

2(θ0)

∂θ


(5.4)

has full rank. Thus, we have the following result.

Theorem 5.1. Under Assumptions 6 and 7, a sufficient condition for
θ0 and FU to be identifiable is rank J(θ0) = p.

It is easy to see that a necessary condition for rank J(θ0) = p is
p ≤ k + 1, because J(θ0) has dimensions p by k + 1.

Remark 5.1. If the second condition in Assumption 7 is violated
but there exists a 1 ≤ j ≤ k, such that the set of all zeros
of g̃j(t; θ0) =


e−it ′xxjg(x; θ0)dx is dense in Rk, where xj is the

j-th coordinate of x = (x1, x2, . . . , xk), then f̃U(t) can still be
identified by using the j-th equation in (5.1). This is easy to see
by taking a Fourier transformation on both sides of (5.1), which
yields m̃2(t) = f̃U(t)


e−it ′xxg(x; θ0)dx. Moreover, if f̃U(t) is

analytic, then the second condition in Assumption 7 can be further
weakened to the assumption that g̃(t; θ0) ≠ 0 from some t ∈ Rk.
This follows from the facts that the continuity of g̃(t; θ0) implies
that g̃(t; θ0) ≠ 0 in an open neighborhood, and that any analytic
function is uniquely determined by its values on a finite segment of
the complex plane. Note that any distribution admitting amoment
generating function has an analytic characteristic function (Lukacs,
1970, p. 197–198). Examples of such distributions include uniform,
normal, double-exponential and many discrete distributions.
From a practical point of view, integrability of g(x; θ0) in
Assumption 7 is not as restrictive as it appears, because in many
real problems, the possible values of X are bounded. In this sense
a truncated model which vanishes outside a sufficiently large
compact set can be used which satisfies Assumption 7. From a
theoretical point of view, the integrability of g(x; θ0) may be
weakened to the following assumption.

Assumption 17. E|g(X; θ0)|(‖X‖ + 1) < ∞.

To see this, let gn(x; θ0) = g(x; θ0)1(‖x‖ < Tn), where 1(·) is
the indicator function and Tn → ∞ (e.g., Tn = cna, for some c > 0
and a > 0), and modifym1(v) and m2(v) in (4.3) and (5.1) as

m1,n(v) =

∫
gn(v + u; θ0)dFU(u),

m2,n(v) =

∫
(v + u)gn(v + u; θ0)dFU(u).

Thenm1,n(Γ0W ) andm2,n(Γ0W ) approximate E(Y | W ) and E(YZ |

W ) respectively in the following sense.

Theorem 5.2. Under Assumption 17, it holds that

lim
n→∞

E|m1,n(Γ0W )− E(Y |W )| = 0 (5.5)

and

lim
n→∞

E‖m2,n(Γ0W )− E(YZ |W )‖ = 0. (5.6)

Since E(Y |W ) and E(YZ |W ) can be consistently estimated
by nonparametric methods, together with Assumptions 6, Theo-
rem 5.2 implies that m1,n(Γ0W ) and m2,n(Γ0W ) are (asymptoti-
cally) observable onRk. Therefore results of Theorem 5.1 holdwith
g(x; θ0) replaced by gn(x; θ0) in Assumption 7 and in the Jacobian
matrix J(θ0).

In the rest of this section, we use some examples to illustrate
how to apply Theorem 5.1 to checkmodel identifiability. Again, we
consider cases where all variables are scalars and Γ0 = 1. In this
case, we need only to verify Assumptions 7 or 17.

Example 5.1. Exponential model g(x; θ) = e−θx2 , θ > 0. Clearly
g(x; θ) is integrable. Further, the second part of Assumption 7
is satisfied because g̃(t; θ) =

√
π/θe−t2/4θ . To check the rank

condition, we calculate g1(θ) =

e−θx2dx =

√
π/θ and g2(θ) =

xe−θx2dx = 0. It follows that J(θ) = (−
√
π/(2θ

√
θ), 0) which

has rank one. Therefore by Theorem 5.1 the model is identifiable.

Example 5.2. Linear model g(x; θ) = θx. For this model, Assump-
tion 17 is satisfied if E‖X‖

2 < ∞. Further, since for any T > 0,

g̃(t; θ) =

∫ T

−T
e−it ′xθxdx = 2iθ


T cos(tT )

t
−

sin(tT )
t2


,

the second condition in Assumption 7 is satisfied. To check the
rank condition, we calculate g1(θ) = θ

 T
−T xdx = 0 and g2(θ) =

θ
 T
−T x

2dx = 2θT 3/3. Therefore J(θ) = (0, 2T 3/3)which has rank
one. Hence by Theorem 5.1 the model is identifiable.

Example 5.3. Polynomial model g(x; θ) = θ1x+ θ2x2. In this case,
Assumption 17 is satisfied if E‖X‖

3 < ∞. Further, because for any
T > 0,

g̃(t; θ) = 2T cos(tT )

iθ1
t

+
θ2

t2


+ 2 sin(tT )


θ2T 2

t
−

iθ1
t2

−
2θ2
t3


,
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the second condition in Assumption 7 is clearly satisfied. Again,
it is straightforward to calculate g1(θ) = 2θ2T 3/3 and g2(θ) =

2θ1T 3/3. Hence

J(θ) =
2T 3

3


0 1
1 0


,

which has rank two. Therefore the model is identifiable.

Example 5.4. Exponential g(x; θ) = exp(θx), θ ≠ 0. For this
model, Assumption 17 becomes


eθxdFX (x) < ∞ and


‖x‖

eθxdFX (x) < ∞, which are satisfied if X has a normal distribution.
Since for any T > 0 and t ≠ −iθ ,

g̃(t; θ) =
e(θ−it)T

− e−(θ−it)T

θ − it
,

the second condition in Assumption 7 is satisfied. Moreover, since
for any θ, g1(θ) = (eθT − e−θT )/θ , and

g2(θ) =
T (eθT + e−θT )

θ
−

eθT − e−θT

θ2
.

Jacobian matrix J(θ) is of rank one, which implies that the model
is identifiable.

Example 5.5. Consider g(x; θ) = θ1 + θ2xθ3 , where θ2θ3 ≠ 0.
Clearly thismodelwould be identifiable if X were observable. Since
now the rank of J(θ) is at most two while p = 3, the model cannot
be identified by (4.1) and (4.2).

Example 5.6. Let g(x; θ) = (θ1 + θ2x)2, θ2 ≠ 0. Again, θ1 and θ2
would be identifiable if X were observable. However, θ1 and θ1 are
not identifiable by (4.1) and (4.2) if θ21 = θ22 , because now J(θ) =

(θ21 −θ22 ) = 0. Note that if the prior restriction θ1 = θ2 or θ1 = −θ2
is imposed, then the model can again be identifiable. However,
these restrictions imply very different model specifications.

6. Conclusions and discussion

Consistent estimation and identifiability of general nonlinear
errors-in-variables models with multivariate predictor variables
and possibly non-normal random errors have been challenging
problems for decades. Most researchers rely on restrictive condi-
tions to achieve consistent estimation, or treat more general mod-
els at the expense of the accuracy of estimation (e.g., approximately
consistent approach).Moreover,mostmethods in the literature are
designed for the case where either validation or replicate data are
available.

In this paper, we use the instrumental variable approach to
study a general model, where the predictor variable is multivariate
and the distributions of the measurement error and the random
error in the regression equation are nonparametric. Root-n con-
sistent parametric and semiparametric estimators for the model
are developed using the method of moments. A rank condition for
model identifiability is derived by combining the nonparametric
technique and Fourier deconvolution.

It is possible to generalize the prediction Eq. (1.3) to a nonlinear
one, say, X = Γ (W ) + U . All the results of this paper should be
obtained analogously, provided function Γ (·) can be consistently
estimated with convergence rate

√
n. The latter is generally satis-

fied ifΓ (·) is parametric and estimated by the usual nonlinear least
squares method. The independence between W and U is stronger
than the usual instrumental variable assumption that they are un-
correlated. As pointed out by a referee, this assumption can be
relaxed through parametric modeling of conditional distribution
fU|W (u|w;φ0) instead of the marginal distribution fU(u;φ0). How-
ever, it is not clear, and deserves future research, how such an ex-
tension is possible for the nonparametric case. Another issue that
should be investigated in the future research is the finite sample
properties of the proposed estimators, whichmay be done through
extensive and carefully designed simulation studies.

7. Proofs

7.1. Proof of Theorem 2.1

Since fU(u;φ) is continuously differentiable with respect to u
(Assumption 1), by (2.9) and the Dominated Convergence Theorem
(DCT), ρ̂j(ψ) and henceQn(ψ) are continuously differentiablewith
respect to γ = vecΓ . For sufficiently large n, therefore, Qn(ψ) has
the first-order Taylor expansion about γ0 = vecΓ0:

Qn(ψ) =

n−
j=1

ρ ′

j (ψ)Ajρj(ψ)

+ 2
n−

j=1

ρ ′

j (ψ, γ̃ )Aj
∂ρj(ψ, γ̃ )

∂γ ′
(γ̂ − γ0), (7.1)

where ρj(ψ) = YjZ̃j −m(Γ0Wj;ψ), ρj(ψ, γ̃ ) = YjZ̃j −m(Γ̃Wj;ψ),

∂ρj(ψ, γ̃ )

∂γ ′
=

∫
x̃g(x; θ)

∂ fU(x − Γ̃Wj;ψ)

∂u′
dx(Wj ⊗ Ik)′

and γ̃ = vecΓ̃ satisfies ‖γ̃−γ0‖ ≤ ‖γ̂−γ0‖. Further, since g(x; θ)
and fU(u;φ) are continuous in θ andφ respectively, by (2.8) and the
DCT, ρj(ψ) is continuous in ψ and, moreover,

E sup
ψ

|ρ ′

1(ψ)A1ρ1(ψ)|

≤ E‖A1‖ sup
ψ

‖ρ1(ψ)‖
2

≤ 2E‖A1‖(|Y1|
2
+ ‖Y1Z1‖2)

+ 2E‖A1‖

∫
sup
ψ

|g(x; θ)fU(x − Γ0W1;φ)|(‖x‖ + 1)dx
2

< ∞.

It follows from the uniform law of large numbers (ULLN Jennrich,
1969, Theorem 2) that the first term on the right-hand side of (7.1)
satisfies

sup
ψ

1n
n−

j=1

ρ ′

j (ψ)Ajρj(ψ)− Q (ψ)

 a.s.
−→ 0, (7.2)

where Q (ψ) = Eρ ′

1(ψ)A1ρ1(ψ). Similarly, since by the Cauchy–
Schwarz inequality and (2.9),
E sup
ψ,γ

ρ ′

1(ψ, γ )A1
∂ρ1(ψ, γ )

∂γ ′

2

≤


E‖A1‖ sup

ψ,γ

‖ρ1(ψ, γ )‖

∂ρ1(ψ, γ )∂γ ′

2

≤ E‖A1‖ sup
ψ,γ

‖ρ1(ψ, γ )‖
2E‖A1‖ sup

ψ,γ

∂ρ1(ψ, γ )∂γ ′

2
≤ kE‖A1‖ sup

ψ,γ

‖ρ1(ψ, γ )‖
2E‖A1‖ ‖W1‖

2

×

∫
sup
ψ,γ

g(x; θ)∂ fU(x − ΓW1;φ)

∂u′

 (‖x‖ + 1)dx
2

< ∞,

again by the ULLN we have

sup
ψ,γ

1n
n−

j=1

ρ ′

j (ψ, γ )Aj
∂ρj(ψ, γ )

∂γ ′

 = O(1) (a.s.)
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and therefore

sup
ψ

1n
n−

j=1

ρ ′

j (ψ, γ̃ )Aj
∂ρj(ψ, γ̃ )

∂γ ′
(γ̂ − γ0)


≤ sup

ψ,γ

1n
n−

j=1

ρ ′

j (ψ, γ )Aj
∂ρj(ψ, γ )

∂γ ′

 ‖γ̂ − γ0‖
a.s.
−→ 0. (7.3)

It follows from (7.1)–(7.3) that

sup
ψ

1nQn(ψ)− Q (ψ)
 a.s.
−→ 0. (7.4)

Further, because E(ρ1(ψ0)|W1) = 0 and ρ1(ψ)− ρ1(ψ0) depends
onW1 only, we have

E[ρ ′

1(ψ0)A1(ρ1(ψ)− ρ1(ψ0))]

= E[E(ρ ′

1(ψ0)|W1)A1(ρ1(ψ)− ρ1(ψ0))] = 0,

which implies Q (ψ) = Q (ψ0)+ E[(ρ1(ψ)− ρ1(ψ0))
′A1(ρ1(ψ)−

ρ1(ψ0))]. By Assumption 2, Q (ψ) ≥ Q (ψ0) and the equality holds
if and only if ψ = ψ0. It follows that Q (ψ) attains a unique
minimum atψ0 ∈ Ψ and, therefore, by Amemiya (1973, Lemma 3)
that ψ̂n

a.s.
−→ ψ0.

7.2. Proof of Theorem 2.2

By Assumption 3 and the DCT, the first derivative ∂Qn(ψ)/∂ψ
exists and has the first-order Taylor expansion in the open
neighborhood Ψ0 ⊂ Ψ of ψ0. Since ∂Qn(ψ̂n)/∂ψ = 0 and ψ̂n

a.s.
−→

ψ0, for sufficiently large nwe have

∂Qn(ψ0)

∂ψ
+
∂2Qn(ψ̃)

∂ψ∂ψ ′
(ψ̂n − ψ0) = 0, (7.5)

where ‖ψ̃ − ψ0‖ ≤ ‖ψ̂n − ψ0‖. The first derivative of Qn(ψ) in
(7.5) is given by

∂Qn(ψ)

∂ψ
= 2

n−
j=1

∂ρ̂ ′

j (ψ)

∂ψ
Ajρ̂j(ψ), (7.6)

where ∂ρ̂ ′

j (ψ)/∂ψ consists of

∂ρ̂ ′

j (ψ)

∂θ
= −

∫
∂g(x; θ)
∂θ

x̃′fU(x − Γ̂Wj;φ)dx (7.7)

and

∂ρ̂ ′

j (ψ)

∂φ
= −

∫
∂ fU(x − Γ̂Wj;φ)

∂φ
x̃′g(x; θ)dx. (7.8)

The second derivative in (7.5) is given by

∂2Qn(ψ)

∂ψ∂ψ ′
= 2

n−
j=1

[
∂ρ̂ ′

j (ψ)

∂ψ
Aj
∂ρ̂j(ψ)

∂ψ ′

+ (ρ̂ ′

j (ψ)Aj ⊗ Ip+q)
∂vec(∂ρ̂ ′

j (ψ)/∂ψ)

∂ψ ′

]
,

where ∂vec(∂ρ̂ ′

j (ψ)/∂ψ)/∂ψ
′ consists of

∂vec(∂ρ̂ ′

j (ψ)/∂θ)

∂θ ′
= −

∫
x̃ ⊗

∂2g(x; θ)
∂θ∂θ ′

fU(x − Γ̂Wj;φ)dx,

∂vec(∂ρ̂ ′

j (ψ)/∂θ)

∂φ′
= −

∫
x̃ ⊗

∂g(x; θ)
∂θ

∂ fU(x − Γ̂Wj;φ)

∂φ′
dx,

∂vec(∂ρ̂ ′

j (ψ)/∂φ)

∂θ ′
= −

∫
x̃ ⊗

∂ fU(x − Γ̂Wj;φ)

∂φ

∂g(x; θ)
∂θ ′

dx,
and

∂vec(∂ρ̂ ′

j (ψ)/∂φ)

∂φ′
= −

∫
x̃ ⊗

∂2fU(x − Γ̂Wj;φ)

∂φ∂φ′
g(x; θ)dx.

It follows from Assumption 3 that

E sup
ψ,γ

∂ρ ′

1(ψ, γ )

∂ψ
A1
∂ρ1(ψ, γ )

∂ψ ′


≤ E‖A1‖ sup

ψ,γ

∂ρ1(ψ, γ )∂ψ ′

2
= E‖A1‖ sup

ψ,γ

∂ρ1(ψ, γ )∂θ ′

2 +

∂ρ1(ψ, γ )∂φ′

2


≤ E‖A1‖

∫
sup
ψ,γ

∂g(x; θ)∂θ
fU(x − ΓW1;φ)

 (‖x‖ + 1)dx
2

+ E‖A1‖

×

∫
sup
ψ,γ

∂ fU(x − ΓWj;φ)

∂φ
g(x; θ)dx

 (‖x‖ + 1)dx
2

< ∞.

Similarly, by Assumption 3 we have
E sup
ψ,γ

(ρ ′

1(ψ, γ )A1 ⊗ Ip+q)
∂vec(∂ρ ′

1(ψ, γ )/∂ψ)

∂ψ ′

2

≤ (p + q)

E‖A1‖ sup

ψ,γ

‖ρ1(ψ, γ )‖

∂vec(∂ρ ′

1(ψ, γ )/∂ψ)

∂ψ ′

2

≤ (p + q)E‖A1‖ sup
ψ,γ

‖ρ1(ψ, γ )‖
2E‖A1‖

× sup
ψ,γ

∂vec(∂ρ ′

1(ψ, γ )/∂ψ)

∂ψ ′

2
< ∞.

It follows from the ULLN and Amemiya (1973, Lemma 4) that

1
2n
∂2Qn(ψ̃)

∂ψ∂ψ ′

a.s.
−→ E

[
∂ρ ′

1(ψ0)

∂ψ
A1
∂ρ1(ψ0)

∂ψ ′

+

ρ ′

1(ψ0)A1 ⊗ Ip+q
 ∂vec(∂ρ ′

1(ψ0)/∂ψ)

∂ψ ′

]
= B, (7.9)

where the last equality holds because ∂vec(∂ρ ′

1(ψ0)/∂ψ)/∂ψ
′

depends on W1 only and therefore

E
[
ρ ′

1(ψ0)A1 ⊗ Ip+q
 ∂vec(∂ρ ′

1(ψ0)/∂ψ)

∂ψ ′

]
= E

[
E(ρ ′

1(ψ0)|W1)A1 ⊗ Ip+q
 ∂vec(∂ρ ′

1(ψ0)/∂ψ)

∂ψ ′

]
= 0.

Further, by Assumption 4 and the DCT, ∂Qn(ψ0)/∂ψ is continu-
ously differentiable with respect to γ and hence, for sufficiently
large n, has the first-order Taylor expansion about γ0:

∂Qn(ψ0)

∂ψ
= 2

n−
j=1

∂ρ ′

j (ψ0)

∂ψ
Ajρj(ψ0)

+
∂2Q̃n(ψ0)

∂ψ∂γ ′
(γ̂ − γ0), (7.10)

where
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∂2Q̃n(ψ0)

∂ψ∂γ ′
= 2

n−
j=1

[
∂ρ ′

j (ψ0, γ̃ )

∂ψ
Aj
∂ρj(ψ0, γ̃ )

∂γ ′

+ (ρ ′

j (ψ0, γ̃ )Aj ⊗ Ip+q)
∂vec(∂ρ ′

j (ψ0, γ̃ )/∂ψ)

∂γ ′

]
,

∂ρj(ψ0, γ̃ )

∂γ ′
=

∫
x̃g(x; θ0)

∂ fU(x − Γ̃Wj;φ0)

∂u′
dx(Wj ⊗ Ik)′,

∂vec(∂ρ ′

j (ψ0, γ̃ )/∂θ)

∂γ ′

=

∫
x̃ ⊗

∂g(x; θ0)
∂θ

∂ fU(x − Γ̃Wj;φ0)

∂u′
dx(Wj ⊗ Ik)′,

∂vec(∂ρ ′

j (ψ0, γ̃ )/∂φ)

∂γ ′

=

∫
g(x; θ0)x̃ ⊗

∂2fU(x − Γ̃Wj;φ0)

∂φ∂u′
dx(Wj ⊗ Ik)′

and γ̃ = vecΓ̃ satisfies ‖γ̃ − γ0‖ ≤ ‖γ̂ − γ0‖. Similarly to (7.9),
by Assumption 4 we can show that

1
2n
∂2Q̃n(ψ0)

∂ψ∂γ ′

a.s.
−→ E

[
∂ρ ′

1(ψ0)

∂ψ
A1
∂ρ1(ψ0)

∂γ ′

]
. (7.11)

By definition (2.6), Γ̂ − Γ0 =
∑n

j=1(Zj − Γ0Wj)W ′

j

 ∑n
j=1

WjW ′

j

−1, which can be written as

γ̂ − γ0 = vec(Γ̂ − Γ0)

=

−
WjW ′

j ⊗ Ik
−1 n−

j=1

Wj ⊗ (Zj − Γ0Wj)

(Magnus and Neudecker, 1988, p. 30). Hence (7.10) can be written
as

∂Qn(ψ0)

∂ψ
= 2Dn

n−
j=1

Tj,

where

Dn =

Ip+q,
1
2
∂2Q̃n(ψ0)

∂ψ∂γ ′


n−

j=1

WjW ′

j ⊗ Ik

−1


and

Tj =

 ∂ρ ′

j (ψ0)

∂ψ
Ajρj(ψ0)

Wj ⊗ (Zj − Γ0Wj)

 .
By the Law of Large Numbers, n

∑
WjW ′

j ⊗ Ik
−1 a.s.

−→ (EW1W ′

1 ⊗

Ik)−1, which together with (7.11) implies

Dn
a.s.
−→


Ip+q, E

[
∂ρ ′

1(ψ0)

∂ψ
A1
∂ρ1(ψ0)

∂γ ′

] 
EW1W ′

1 ⊗ Ik
−1


= D.

Moreover, since Tj, j = 1, 2, . . . , n are i.i.d., by the Central Limit

Theorem, 1
√
n

∑n
j=1 Tj

L
−→ N(0, C), where C = E(T1T ′

1). Therefore,
by Slutsky’s Theorem, we have

1
2
√
n
∂Qn(ψ0)

∂ψ

L
−→ N(0,DCD′). (7.12)

Finally, the theorem follows from (7.5), (7.9) and (7.12).
7.3. Proof of Theorem 3.1

We only sketch the proofs here because they are similar to the
proofs of Theorems 2.1 and 2.2. Details are available in Wang and
Hsiao (2008). The proof of Theorem 3.1.1 is based on the first-order
Taylor expansion of Qn,S(ψ) about γ0:

Qn,S(ψ) =

n−
j=1

ρ ′

j,S(ψ)Ajρj,2S(ψ)

+

n−
j=1

[
ρ ′

j,S(ψ, γ̃ )Aj
∂ρj,2S(ψ, γ̃ )

∂γ ′

+ ρ ′

j,2S(ψ, γ̃ )Aj
∂ρj,S(ψ, γ̃ )

∂γ ′

]
(γ̂ − γ0), (7.13)

where ‖γ̃ − γ0‖ ≤ ‖γ̂ − γ0‖, ρj,S(ψ) = YjZ̃j −

mS(Γ0Wj;ψ), ρj,S(ψ, γ̃ ) = YjZ̃j − mS(Γ̃Wj;ψ),

∂ρj,S(ψ, γ̃ )

∂γ ′

=
1
S

S−
s=1

x̃jsg(xjs; θ)
h(xjs)

∂ fU(xjs − Γ̃Wj;φ)

∂u′
(Wj ⊗ Ik)′

and ρj,2S(ψ, γ̃ ), ∂ρj,2S(ψ, γ̃ )/∂γ ′ are given similarly. By Assump-
tions 1, the ULLN and the conditional independence of ρ1,S(ψ) and
ρ1,2S(ψ)we can show that

sup
ψ

1nQn,S(ψ)− Eρ ′

1,S(ψ)A1ρ1,2S(ψ)

 a.s.
−→ 0, (7.14)

where

Eρ ′

1,S(ψ)A1ρ1,2S(ψ)

= E

E(ρ ′

1,S(ψ)|W1, Y1, Z1)A1E(ρ ′

1,2S(ψ)|W1, Y1, Z1)


= Q (ψ)

which has been shown in the proof of Theorem 2.1 to attain a
unique minimum at ψ0 ∈ Ψ . Therefore ψ̂n,S

a.s.
−→ ψ0 follows from

Amemiya (1973, Lemma 3).
The proof of Theorem 3.1.2 is based on the first-order Taylor

expansion of ∂Qn,S(ψ)/∂ψ in an open neighborhood Ψ0 ⊂ Ψ of
ψ0:

∂Qn,S(ψ0)

∂ψ
+
∂2Qn,S(ψ̃)

∂ψ∂ψ ′
(ψ̂n,S − ψ0) = 0, (7.15)

where ‖ψ̃ −ψ0‖ ≤ ‖ψ̂n,S −ψ0‖. Analogous to (7.9), we can show
that

1
n
∂2Qn,S(ψ̃)

∂ψ∂ψ ′

a.s.
−→ 2B. (7.16)

Again, by Assumption 4 ∂Qn,S(ψ0)/∂ψ has the first-order Taylor
expansion about γ0:

∂Qn,S(ψ0)

∂ψ
=

n−
j=1

[
∂ρ ′

j,S(ψ0)

∂ψ
Ajρj,2S(ψ0)+

∂ρ ′

j,2S(ψ0)

∂ψ
Ajρj,S(ψ0)

]

+
∂2Q̃n,S(ψ0)

∂ψ∂γ ′
(γ̂ − γ0)

which can be rewritten as

∂Qn,S(ψ0)

∂ψ
= 2Dn,S

n−
j=1

Tj,S,

where
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Dn,S =

Ip+q,
1
2
∂2Q̃n,S(ψ0)

∂ψ∂γ ′


n−

j=1

WjW ′

j ⊗ Ik

−1


and

Tj,S =
1
2

∂ρ ′

j,S(ψ0)

∂ψ
Ajρj,2S(ψ0)+

∂ρ ′

j,2S(ψ0)

∂ψ
Ajρj,S(ψ0)

2Wj ⊗ (Zj − Γ0Wj)

 .
Then, analogous to (7.11), by Assumption 4 we can show that

1
n
∂2Q̃n,S(ψ0)

∂ψ∂γ ′

a.s.
−→ 2E

[
∂ρ ′

1(ψ0)

∂ψ
A1
∂ρ1(ψ0)

∂γ ′

]
and hence

Dn,S
a.s.
−→


Ip+q, E

[
∂ρ ′

1(ψ0)

∂ψ
A1
∂ρ1(ψ0)

∂γ ′

] 
EW1W ′

1 ⊗ Ik
−1


= D. (7.17)

Further, by the Central Limit Theorem we have

1
√
n

n−
j=1

Tj,S
L

−→ N(0, CS), (7.18)

where

CS = ET1,ST ′

1,S =


CS,11 C ′

S,21
CS,21 CS,22


,

CS,11

=
1
4
E
[
∂ρ ′

1,S(ψ0)

∂ψ
A1ρ1,2S(ψ0)+

∂ρ ′

1,2S(ψ0)

∂ψ
A1ρ1,S(ψ0)


×


ρ ′

1,2S(ψ0)A1
∂ρ1,S(ψ0)

∂ψ ′
+ ρ ′

1,S(ψ0)A1
∂ρ1,2S(ψ0)

∂ψ ′

]
=

1
2
E
[
∂ρ ′

1,S(ψ0)

∂ψ
A1ρ1,2S(ψ0)ρ

′

1,2S(ψ0)A1
∂ρ1,S(ψ0)

∂ψ ′

]
+

1
2
E
[
∂ρ ′

1,S(ψ0)

∂ψ
A1ρ1,2S(ψ0)ρ

′

1,S(ψ0)A1
∂ρ1,2S(ψ0)

∂ψ ′

]
,

CS,21 =
1
2
E
[
(W1 ⊗ (Z1 − Γ0W1))

×


ρ ′

1,2S(ψ0)A1
∂ρ1,S(ψ0)

∂ψ ′
+ ρ ′

1,S(ψ0)A1
∂ρ1,2S(ψ0)

∂ψ ′

]
= C21

and CS,22 = E[(W1 ⊗ (Z1 − Γ0W1))(W1 ⊗ (Z1 − Γ0W1))
′
] = C22. It

follows from (7.17) and (7.18) we have

1
2
√
n
∂Qn,S(ψ0)

∂ψ

L
−→ N(0,DCSD′). (7.19)

Finally, Theorem 3.1.2 follows from (7.15), (7.16) and (7.19).

7.4. Proof of Theorem 4.1

First, by Andrews (1995, Theorem 2), under Assumptions 8 and
9, the kernel estimators in (4.7) and (4.8) satisfy

sup
v∈Rk

|f̂V (v)− fV (v)| = Op(n−1/2a−k−1
n )+ Op(adn) (7.20)

and

sup
Bn

|m̂1(v)− m1(v)| = Op(n−1/2a−k−1
n b−2

n )+ Op(adnb
−2
n ). (7.21)

Further, for any θ ∈ Θ and u ∈ Rk,
(2π)k|f̂U(u; θ)− fU(u; θ)|

≤


∫
Cn

eit
′u

ˆ̃m1(t)− m̃1(t)
g̃(t; θ)

dt

+
∫

Cc
n

eit
′u m̃1(t)
g̃(t; θ)

dt


≤

∫
Cn

 ˆ̃m1(t)− m̃1(t)
g̃(t; θ)

 dt +

∫
Cc
n

 m̃1(t)
g̃(t; θ)

 dt
≤

1
cn

∫
Cn

| ˆ̃m1(t)− m̃1(t)|dt +

∫
Cc
n

sup
Θ

 m̃1(t)
g̃(t; θ)

 dt
≤

2k

ck+1
n

∫
Bn

|m̂1(v)− m1(v)|dv +

∫
Bcn

|m1(v)|dv


+

∫
Cc
n

sup
Θ

 m̃1(t)
g̃(t; θ)

 dt. (7.22)

Since, by (7.20), limn→∞ P(infBn |fV (v)| ≥ bn/2) = 1, with
probability approaching one, we have∫
Bn

|m̂1(v)− m1(v)|dv ≤
2
bn

∫
Bn

|m̂1(v)− m1(v)|fV (v)dv

≤
2
bn

sup
Bn

|m̂1(v)− m1(v)| = op(ck+1
n ),

where the last equality follows by (7.21) and condition of
Theorem 4.1. It follows from (7.22) and Assumption 10, that

sup
θ∈Θ

sup
u

|f̂U(u; θ)− fU(u; θ)| = op(1). (7.23)

Now, we write

Qn(θ) =

n−
j=1

ρj(θ)
′Ajρj(θ)+ 2

n−
j=1

ρ ′

j (θ)Aj(ρ̂j(θ)− ρj(θ))

+

n−
j=1

(ρ̂j(θ)− ρj(θ))
′Aj(ρ̂j(θ)− ρj(θ)), (7.24)

where ρj(θ) = YjZ̃j −

x̃g(x; θ)fU(x − Γ0Wj; θ)dx. Then, since

|fU(x − Γ0Wj; θ)− fU(x − Γ̂Wj; θ)|

=

 1
(2π)k

∫
(e−it ′Γ0Wj − e−it ′Γ̂Wj)eit

′x m̃1(t)
g̃(t; θ)

 dt
≤

1
(2π)k

∫ e−it ′Γ0Wj − e−it ′Γ̂Wj
  m̃1(t)

g̃(t; θ)

 dt
≤

2‖Γ̂ − Γ0‖ ‖Wj‖

(2π)k

∫
‖t‖

 m̃1(t)
g̃(t; θ)

 dt,
we have

‖ρ̂j(θ)− ρj(θ)‖

≤

∫
‖x̃g(x; θ)‖ |fU(x − Γ0Wj; θ)− f̂U(x − Γ̂Wj; θ)|dx

≤

∫
‖x̃g(x; θ)‖ |fU(x − Γ0Wj; θ)− fU(x − Γ̂Wj; θ)|dx

+

∫
‖x̃g(x; θ)‖ |fU(x − Γ̂Wj; θ)− f̂U(x − Γ̂Wj; θ)|dx

≤
2‖Γ̂ − Γ0‖ ‖Wj‖

(2π)k

∫
‖t‖ sup

Θ

 m̃1(t)
g̃(t; θ)

 dt
×

∫
sup
Θ

|g(x; θ)|(‖x‖ + 1)dx

+ sup
θ∈Θ

sup
u

|f̂U(u; θ)− fU(u; θ)|
∫

sup
Θ

|g(x; θ)|(‖x‖ + 1)dx

= α1‖Γ̂ − Γ0‖ ‖Wj‖ + α2 sup
θ∈Θ

sup
u

|f̂U(u; θ)− fU(u; θ)|,
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whereα1 andα2 are positive constants. Further, by theCauchy–Schwa
inequality,

(E sup
Θ

‖A1‖(‖W1‖ + 1)‖ρ1(θ)‖)2

≤ E‖A1‖(‖W1‖ + 1)2E‖A1‖ sup
Θ

‖ρ1(θ)‖
2

≤ 2E‖A1‖(‖W1‖
2
+ 1)

[
E‖A1‖(‖Y1‖

2
+ ‖Y1Z1‖2)

+ E‖A1‖

∫
sup
Θ

‖x̃g(x; θ)fU(x − Γ0W1; θ)‖dx
2]

< ∞,

which implies 1
n

∑n
j=1 ‖Aj‖(‖Wj‖ + 1) supΘ ‖ρj(θ)‖ = Op(1).

Therefore we have

sup
Θ

1n
n−

j=1

ρj(θ)
′Aj(ρ̂j(θ)− ρj(θ))


≤

1
n

n−
j=1

‖Aj‖ sup
Θ

‖ρj(θ)‖‖ρ̂j(θ)− ρj(θ)‖

≤


α1‖Γ̂ − Γ0‖ + α2 sup

θ∈Θ

sup
u∈Rk

|f̂U(u; θ)− fU(u; θ)|



×
1
n

n−
j=1

‖Aj‖(‖Wj‖ + 1) sup
Θ

‖ρj(θ)‖

= op(1), (7.25)

and analogously,

sup
Θ

1n
n−

j=1

(ρ̂j(θ)− ρj(θ))
′Aj(ρ̂j(θ)− ρj(θ))


≤

1
n

n−
j=1

‖Aj‖ sup
Θ

‖ρ̂j(θ)− ρj(θ)‖
2

≤


2α2

1‖Γ̂ − Γ0‖
2
+ 2α2

2 sup
θ∈Θ

sup
u∈Rk

|f̂U(u; θ)− fU(u; θ)|2


×
1
n

n−
j=1

‖Aj‖(‖Wj‖
2
+ 1)

= op(1). (7.26)

Since

E sup
Θ

ρ ′

1(θ)A1ρ1(θ)


≤ E‖A1‖ sup
Θ

‖ρ1(θ)‖
2

≤ 2E‖A1‖(|Y1|
2
+ ‖Y1Z1‖2)

+ E‖A1‖

∫
sup
Θ

‖x̃g(x; θ)fU(x − Γ0W1; θ)‖dx
2

< ∞,

by the ULLN we have

sup
Θ

1n
n−

j=1

ρj(θ)
′Ajρj(θ)− Q (θ)

 = op(1), (7.27)

where Q (θ) = Eρ1(θ)′A1ρ1(θ). It follows from (7.24)–(7.27) that
1
nQn(θ)

P
−→ Q (θ) uniformly in θ ∈ Θ . Analogous to the proof of

Theorem 2.1, by Assumption 12 we can show that Q (θ) attains
a unique minimum at θ0 ∈ Θ . Therefore θ̂n

P
−→ θ0 follows from

Amemiya (1973, Lemma 3).
rz Furthermore, Theorem 4.1.2 follows from (7.23) and Amemiya
(1973, Lemma 4).

To prove Theorem 4.1.3, note that for any t ∈ Rk, since
g̃(t; θ0) ≠ 0 and g̃(t; θ) is continuous in θ , there exists an open
neighborhood Θt of θ0 in Θ , such that infθ∈Θt |g̃(t; θ)| ≥ c > 0.
Therefore, for any θ ∈ Θt , ˆ̃m1(t)− m̃1(t)

g̃(t; θ)

 ≤
1
c

∫
Bn

|m̂1(v)− m1(v)|dv +
1
c

∫
Bcn

|m1(v)|dv,

which implies that supθ∈Θt |
ˆ̃f U(t; θ)− f̃U(t; θ)| = op(1). The result

then follows from Amemiya (1973, Lemma 4).

7.5. Proof of Theorem 4.2

By Assumption 13 the first derivative ∂Qn,S(θ)/∂θ exists and
has the first order Taylor expansion in a neighborhood of θ0. Since
∂Qn,S(θ̂n)/∂θ = 0 and θ̂n,S

P
−→ θ0, for sufficiently large n, we have

0 =
∂Qn,S (θ0)

∂θ
+
∂2Qn,S(θ̃)

∂θ∂θ ′
(θ̂n,S − θ0), (7.28)

where θ̃ satisfies ‖θ̃ − θ0‖ ≤ ‖θ̂n,S − θ0‖. The first derivative in
(7.28) is given by

∂Qn,S(θ)

∂θ
=

n−
j=1

[
∂ρ̂ ′

j,S(θ)

∂θ
Ajρ̂j,2S(θ)+

∂ρ̂ ′

j,2S(θ)

∂θ
Ajρ̂j,S(θ)

]
,

where

∂ρ̂ ′

j,S(θ)

∂θ
= −

1
S

S−
j=1

x̃′

js

h(xjs)

[
∂g(xjs; θ)
∂θ

f̂U(xjs − Γ̂Wj; θ)

+ g(xjs; θ)
∂ f̂U(xjs − Γ̂Wj; θ)

∂θ

]
and

∂ f̂U(xjs − Γ̂Wj; θ)

∂θ

= −
1

(2π)k

∫
Cn

eit
′(xjs−Γ̂Wj)

ˆ̃m1(t)
g̃2(t; θ)

∂ g̃(t; θ)
∂θ

dt.

The second derivative in (7.28) is given by

∂2Qn,S(θ)

∂θ∂θ ′

=

n−
j=1

[
∂ρ̂ ′

j,S(θ)

∂θ
Aj
∂ρ̂j,2S(θ)

∂θ ′

+ (ρ̂ ′

j,2S(θ)Aj ⊗ Ip)
∂vec(∂ρ̂ ′

j,S(θ)/∂θ)

∂θ ′

]
+

n−
j=1

[
∂ρ̂ ′

j,2S(θ)

∂θ
Aj
∂ρ̂j,S(θ)

∂θ ′

+ (ρ̂ ′

j,S(θ)Aj ⊗ Ip)
∂vec(∂ρ̂ ′

j,2S(θ)/∂θ)

∂θ ′

]
,

where ∂vec(∂ρ̂ ′

j,S(θ̃)/∂θ)/∂θ
′ is given by
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−
1
S

S−
j=1

[
x̃js ⊗

∂2g(xjs; θ)
∂θ∂θ ′


f̂U(xjs − Γ̂Wj; θ)

+


x̃js ⊗

∂g(xjs; θ)
∂θ


∂ f̂U(xjs − Γ̂Wj; θ)

∂θ ′

+


x̃js ⊗

∂ f̂U(xjs − Γ̂Wj; θ)

∂θ


∂g(xjs; θ)
∂θ ′

+


x̃js ⊗

∂2 f̂U(xjs − Γ̂Wj; θ)

∂θ∂θ ′


g(xjs; θ)

]
1

h(xjs)

and ∂2 f̂U(xjs − Γ̂Wj; θ)/∂θ∂θ
′ is given by

−
1

(2π)k

∫
Cn

eit
′(xjs−Γ̂Wj)

ˆ̃m1(t)
g̃2(t; θ)

×

[
∂2g(xjs; θ)
∂θ∂θ ′

−
2

g̃(t; θ)
∂ g̃(t; θ)
∂θ

∂ g̃(t; θ)
∂θ ′

]
dt.

Since ρ̂j,S(θ) and its derivatives are continuous in θ by Assump-
tion 13, analogous to the proof of (7.16) it can be shown by As-
sumption 13 that

1
n
∂2Qn,S(θ̃)

∂θ∂θ ′

P
−→ E

[
∂ρ ′

j,S(θ0)

∂θ
Aj
∂ρj,2S(θ0)

∂θ ′

+ (ρ ′

j,2S(θ0)Aj ⊗ Ip)
∂vec(∂ρ ′

j,S(θ0)/∂θ)

∂θ ′

]
= E

[
∂ρ ′

j (θ0)

∂θ
Aj
∂ρj(θ0)

∂θ ′

]
= B. (7.29)

In the following let f̄V (v), m̄1(v) be defined similarly as f̂V (v),
m̂1(v) in (4.7) and (4.8), but with Γ̂ substituted by Γ0. Similarly,
f̄U(u; θ) and ρ̄j,S(θ) are used for the same situation. Then, by
Assumption 13, ∂Qn,S(θ0)/∂θ has the first-order Taylor expansion
about γ0:

∂Qn,S(θ0)

∂θ
=

n−
j=1

[
∂ρ̄ ′

j,S(θ0)

∂θ
Ajρ̄j,2S(θ0)+

∂ρ̄ ′

j,2S(θ0)

∂θ
Ajρ̄j,S(θ0)

]

+
∂2Qn,S(θ0)

∂θ∂γ ′
(γ̂ − γ0)+ op(

√
n), (7.30)

where
∂2Qn,S(θ)

∂θ∂γ ′
=

n−
j=1

[
∂ρ̄ ′

j,S(θ)

∂θ
Aj
∂ρ̄j,2S(θ)

∂γ ′

+ (ρ̄ ′

j,2S(θ)Aj ⊗ Ip+q)
∂vec(∂ρ̄ ′

j,S(θ)/∂θ)

∂γ ′

]
+

n−
j=1

[
∂ρ̄ ′

j,2S(θ)

∂θ
Aj
∂ρ̄j,S(θ)

∂γ ′

+ (ρ̄ ′

j,S(θ)Aj ⊗ Ip+q)
∂vec(∂ρ̄ ′

j,2S(θ)/∂θ)

∂γ ′

]
,

∂ρ̄ ′

j,S(θ)

∂γ ′
= −

1
S

S−
s=1

x̃jsg(xjs; θ)
h(xjs)

∂ f̄U(xjs − Γ0Wj; θ)

∂γ ′
,

and
∂ f̄U(xjs − Γ0Wj; θ)

∂γ ′

=
1

(2π)k

∫
Cn

eit
′(xjs−Γ0Wj)

g̃(t; θ)


∂ ˜̄m1(t)
∂γ ′

− i ˜̄m1(t)(Wj ⊗ t)′

dt.
Here

∂ ˜̄m1(t)
∂γ ′

=

∫
Bn

e−it ′v ∂m̄1(v)

∂γ ′
dv,

∂m̄1(v)

∂γ ′

=
1

f̄V (v)nan

n−
j=1

(m̄1(v)− Yj)
∂Ka(v − Vj)

∂v′
(Wj ⊗ Ik)′

and

Ka(v − Vj) =
1
akn

K

v − Vj

an


.

In the above we have slightly abused notation by using Vj = Γ0Wj.
This will not cause confusion, since Γ̂Wj will not appear any more
subsequently. Again, analogous to (7.11), by Assumptions 13 and
14 we can show that

1
n
∂2Qn,S(θ0)

∂θ∂γ ′

P
−→ 2E

[
∂ρ ′

j (θ0)

∂θ
Aj
∂ρj(θ0)

∂γ ′

]
.

In the following, because all functions of parameters are evaluated
at θ0, we will omit it to further simplify notation. In addition,
let ujs = xjs − Γ0Wj, gjs = g(xjs; θ0), hjs = h(xjs) and f̄js be
similarly defined. Now we express the first term of (7.30) in terms
of ξ1j, ξ2j, ξ3j, ξ4j. To this end, we write

n−
j=1

∂ρ̄ ′

j,S

∂θ
Ajρ̄j,2S =

n−
j=1

∂ρ ′

j,S

∂θ
Ajρj,2S +

n−
j=1

∂ρ ′

j,S

∂θ
Aj(ρ̄j,2S − ρj,2S)

+

n−
j=1


∂ρ̄ ′

j,S

∂θ
−
∂ρ ′

j,S

∂θ


Ajρj,2S

+

n−
j=1


∂ρ̄ ′

j,S

∂θ
−
∂ρ ′

j,S

∂θ


Aj(ρ̄j,2S − ρj,2S). (7.31)

Then by Assumption 15 we have

ρ̄j,S − ρj,S = −
1
S

S−
s=1

x̃jsgjs
hjs

(f̄js − f cjs )+ op(
√
n),

where

f̄js − f cjs

=
1

(2π)k

∫
Cn

e−it ′ujs

g̃(t; θ0)

∫
Bn

e−it ′v(m̄1(v)− m1(v))dvdt

=
1

n(2π)k

n−
ℓ=1

∫
Cn

e−it ′ujs

g̃(t; θ0)

×

∫
Bn

e−it ′v

f̄V (v)
(Yℓ − m1(v))Ka(v − Vℓ)dvdt

=
1

n(2π)k

n−
ℓ=1

∫
Cn

e−it ′ujs

g̃(t; θ0)

∫
Bn

e−it ′vηℓ

f̄V (v)
dvdt

+
1

n(2π)k

n−
ℓ=1

∫
Cn

e−it ′ujs

g̃(t; θ0)

×

∫
Bn

e−it ′v

f̄V (v)
E(Yℓ − m1(v))Ka(v − Vℓ)dvdt (7.32)

and ηℓ is defined in (4.15). Since, by (7.24), limn→∞ P(infBn |f̄V (v)|
≥ bn/2) = 1 and limn→∞ P(infBn |fV (v)| ≥ bn/2) = 1, with
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probability approaching one, the absolute value of the second term
of the last equation of (7.32) satisfies
∫
Cn

e−it ′ujs

g̃(t; θ0)

∫
Bn

e−it ′v

f̄V (v)
E(Yℓ − m1(v))Ka(v − Vℓ)dvdt


≤

∫
Cn

1g̃(t; θ0)
×

∫
Bn

1f̄V (v) |E (Yℓ − m1(v)) Ka(v − Vℓ)| dvdt

≤
4

b2nc
k+1
n

∫
|E(Yℓ − m1(v))Ka(v − Vℓ)| fV (v)dv

= Op(adnb
−2
n c−k−1

n ) = op(n−1/2),

where the last two equalities follow from Assumptions 13 and 14
and theorem conditions. Furthermore, since

∑
ηℓ = Op(

√
n),

1
n

n−
ℓ=1

∫
Cn

e−it ′ujs

g̃(t; θ0)

∫
Bn

e−it ′v


1
f̄V (v)

−
1

fV (v)


ηℓdvdt = op(n−1/2)

and, similarly,

1
n

n−
ℓ=1

∫
Cn

e−it ′ujs

g̃(t; θ0)

∫
Bcn

e−it ′v

fV (v)
ηℓdvdt = op(n−1/2).

It follows that

f̄js − f cjs =
1

n(2π)k

n−
ℓ=1

∫
Cn

e−it ′ujs

g̃(t; θ0)

∫
e−it ′vηℓ

fV (v)
dvdt + op(n−1/2).

Therefore, the second term on the right-hand side of (7.31) equals

−
1

nS(2π)k

n−
j=1

∂ρ ′

j,2S

∂θ
Aj

S−
s=1

x̃jsgjs
hjs

n−
ℓ=1

∫
Cn

e−it ′ujs

g̃(t; θ0)

×

∫
e−it ′vηℓ

fV (v)
dvdt + op(

√
n)

= −
1

nS(2π)k

n−
j=1

n−
ℓ=1

∂ρ ′

j,2S

∂θ
Aj

S−
s=1

x̃jsgjs
hjs

∫
Cn

e−it ′ujs

g̃(t; θ0)

×

∫
e−it ′vηℓ

fV (v)
dvdt + op(

√
n)

= nUn + op(
√
n),

where Un is a so-called U-Statistic of degree two. By Theorem 1
of Section 3.2.1 of Lee (1990, pp. 76), nUn =

∑n
j=1 ξ2j + op(

√
n).

Further, note that in ρ̄j,2S and ρj,2S only x̃jsgjs and g̃(t; θ0) involve
θ , completely analogously it can be shown that the third term on
the right-hand side of (7.31) equals

∑n
j=1 ξ3j + op(

√
n). Finally, it

is obvious that the fourth term is op(
√
n). It follows that

n−
j=1

∂ρ̄ ′

j,S(θ0)

∂θ
Ajρ̄j,2S(θ0) =

n−
j=1

(ξ2j + ξ2j + ξ3j)+ op(
√
n),

where ξ1j, ξ2j, ξ3j are given in (4.12)–(4.14). Then we can rewrite
(7.30) as

∂Qn,S(θ0)

∂θ
= 2Dn,S

n−
j=1

ξj + op(
√
n),

where

Dn,S =

Ip, Ip, Ip,
1
n
∂2Qn,S(θ0)

∂θ∂γ ′

1
n

n−
j=1

WjW ′

j

−1

⊗ Ik


P
−→ D.
Since E[Wj ⊗ (Zj − Γ0Wj)] = 0, Eηj(v) = 0 and E

∂ρ′

j,2S
∂θ

Ajρj,S


=

0, we have Eξj = 0. Furthermore, by model assumption,
Assumption 13, the covariancematrix C = Eξjξ ′

j is finite. It follows
by Lindeberg–Levy CLT and the Slutsky Theorem,

1
2
√
n
∂Qn,S(θ0)

∂θ

L
−→ N(0,DCD′), (7.33)

where D and C are as in Theorem 5.2. The theorem follows then
from (7.28), (7.29), (7.33) and Assumption 16.

7.6. Proof of Theorem 5.2

Let FW and FX respectively denote the distribution function of
W and X . Then by (4.1) and the Fubini Theorem,

EW |m1,n(Γ0W )− E(Y |W )|

=

∫
|m1,n(Γ0w)− E(Y |w)|dFW (w)

=

∫ ∫ g(Γ0w + u; θ0)1(‖Γ0w + u‖ ≥ Tn)dFU(u)
 dFW (w)

≤

∫∫
|g(Γ0w + u; θ0)|1(‖Γ0w + u‖ ≥ Tn)dFU(u)dFW (w)

=

∫∫
|g(x; θ0)|1(‖x‖ ≥ Tn)dFU(x − Γ0w)dFW (w)

=

∫
|g(x; θ0)|1(‖x‖ ≥ Tn)dFX (x),

where the last equality follows from (1.3). Since E|g(X; θ0)| < ∞,
the right-hand side of the last equation tends to zero as Tn → ∞,
which implies (5.5). The proof of (5.6) is analogous.
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