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Abstract

This paper deals with a nonlinear errors-in-variables model where the error distributions are

nonparametric and a prediction equation for unobserved covariates is available. Consistent and

asymptotically normally distributed estimator is constructed using the combined approach of the

method of nonparametric estimation and the method of simulated moments (MSM) of McFadden

(1989) or Pakes and Pollard (1989). Necessary and sufficient conditions of identifiability of the

model are derived by using the Fourier deconvolution method.
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1 Introduction

Measurement errors occur frequently (e.g. Aigner et al (1984), Fuller (1987) and Hsiao (1992)).

If a model is linear in variables, the issues of random measurement errors can often be overcome

through the use of the instrumental variable method. If a model is nonlinear in variables, the

conventional instrumental variable method, in general, does not yield consistent estimator of the

unknown parameters when variables are subject to random measurement errors (e.g. Y. Amemiya

(1985) and Hsiao (1989)).

To obtain consistent estimators for nonlinear errors-in-variables models, two approaches have

been adopted. One is to assume that the variances of the measurement errors shrink towards zero

when sample size increases (e.g. Amemiya and Fuller (1988) and Wolter and Fuller (1982a, b)).

The other is to assume that sample observations are random draws from a common population (the
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so called structural errors-in-variables models, see, e.g., Kendall and Stuart (1977)). The former

approach may not be applicable to data sets often encountered by economists. The latter approach

will yield consistent estimators of the unknown parameters through the use of the maximum likeli-

hood or minimum distance principle only if the conditional distribution of the measurement errors

given the unobservables are known a priori. Unfortunately, the probability distribution of the

measurement errors typically is unknown to investigators unless validation data are available (e.g.

Carroll and Stefanski (1990), Sepanski and Carroll (1993)).

In this paper we propose an alternative approach to derive the consistent estimators for nonlin-

ear errors-in-variables models. We combine the nonparametric estimation method with the method

of Fourier deconvolution to separate the systematic part of the regression model and the probability

distribution of the unobservables. We demonstrate that, contrary to the common belief, instrumen-

tal variables do yield useful information with regard to identification and estimation of the unknown

parameters. To derive the estimators, we use a simulation based procedure. While the basic idea

of simulation is similar to the method of simulated moments (MSM) of McFadden (1989) or Pakes

and Pollard (1989), it is different in the sense that the knowledge of the true density function of the

unobservables is not required. Essentially, simulation generated from any arbitrary distribution is

capable of yielding consistent and asymptotically normally distributed estimators. The method is

also easier to implement than the semiparametric method recently proposed by Newey (1993).

In section 2 we set up the basic nonlinear errors-in-variables model under the assumption that

the instruments exist. Section 3 considers the identification condition. Section 4 proposes a simu-

lated semiparametric estimator which is consistent and asymptotically normally distributed. Con-

clusions are in section 5. The proofs of the theorems and lemmas are in appendices A and B.

2 The Model

Consider the regression model

y = g(x; θ0) + η, (2.1)

where y is the dependent variable, x is a k dimensional explanatory variable and θ0 is a p dimensional

vector of unknown parameters. The function g(x; θ0) is nonlinear in x. The explanatory variable x

is assumed to be related to the l dimensional instrumental variable w by

x = Γ0w + u, (2.2)

where Γ0 is a k× l matrix of unknown parameters and the error u is assumed to be independent of

w. Suppose x is unobservable. Instead we observe z, where

z = x+ ζ. (2.3)

In other words, we observe y, w and z, but not x. The η, ζ and u are unobserved errors which

we assume to satisfy E(η | w, u) = 0 and E(ζ | w, u, η) = 0. There is no assumption about the

functional form of the error distributions. Thus, the model is semiparametric. The primary interest

is to estimate the parameters θ0,Γ0 and the distribution of u, Fu(u).
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Hausman et al (1991) analyzed a special form of model (2.1) - (2.3) where g(x; θ0) is a polynomial

of x. Hausman, Newey and Powell (1995) considered the general regression model via polynomial

approximations. Newey (1993) proposed consistent estimators of model (2.1) - (2.3) based on the

following moment equations

E(y | w) =

∫
g(Γ0w + u; θ0)dFu(u),

E(zy | w) =

∫
(Γ0w + u)g(Γ0w + u; θ0)dFu(u), (2.4)

E(z | w) = Γ0w,

under the assumption that the parameters θ0,Γ0 and the distribution Fu(u) are simultaneously

identified by (2.4). Hausman et al (1991) showed that the polynomial model is identifiable. Newey

(1993) conjectured that the identifiability holds for more general models. Assuming the model

to be identifiable, Newey (1993) derived a consistent simulated moment estimator for the model

where Fu(u) belongs to a parametric family and a consistent semiparametric estimator when Fu(u)

is nonparametric but may be approximated by a parametric family.

3 Identification

Following Newey (1993) we consider the question of identifiability of the parameters θ0,Γ0 and the

distribution Fu(u) based on moment equations (2.4). That is, given the observed information (the

left-hand side of (2.4)), are θ0,Γ0 and Fu(u) uniquely determined by (2.4)? Thus, in this paper,

that (θ0,Γ0, Fu) are identified means that they are uniquely determined by (2.4).

Obviously the last equation of (2.4) is a usual linear regression equation and, therefore, Γ0 is

identified in geneRal. In the following we show how θ0 and Fu(u) are identified by the first two

equations of (2.4), given that Γ0 is identified. We assume that:

A 1. The distribution of w,Fw(·), is absolutely continuous with respect to Lebesgue measure and

has support IRl.

A 2. Γ0 has full rank k.

A 3. The functions g(x; θ0), xg(x; θ0) ∈ L1(IRk), the space of all absolutely integrable functions on

IRk.

Let m1(Γ0w) = E(y | w) and m2(Γ0w) = E(zy | w). Then, since the conditional expectations

in (2.4) depend on w only through v = Γ0w, the first two equations of (2.4) can be respectively

written as

m1(v) =

∫
g(v + u; θ0)dFu(u), (3.1)

m2(v) =

∫
(v + u)g(v + u; θ0)dFu(u). (3.2)
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In this paper, unless otherwise indicated explicitly, all integrals are taken to be over the space IRk.

Considered as functions of v ∈ IRk, m1(v) and m2(v) are well-defined by (3.1) and (3.2). Further-

more, condition A3 implies that m1(v),m2(v) ∈ L1(IRk) and the Fourier transforms g̃(λ; θ0), m̃1(λ)

and m̃2(λ) of g(x; θ0),m1(v) and m2(v) respectively exist, where, e.g.,

g̃(λ; θ0) =

∫
e−iλ

′xg(x; θ0)dx.

Then taking Fourier transformation on both sides of (3.1) and applying the Fubini Theorem we

have

m̃1(λ) =

∫
e−iλ

′v

∫
g(v + u; θ0)dFu(u)dv (3.3)

=

∫
[

∫
e−iλ

′(v+u)g(v + u; θ0)dv]eiλ
′udFu(u) (3.4)

=

∫
e−iλ

′xg(x; θ0)dx ·
∫
eiλ
′udFu(u) (3.5)

= g̃(λ; θ0)f̃u(λ), (3.6)

where f̃u(λ) =
∫
eiλ
′udFu(u) is the characteristic function of Fu(u). Likewise taking Fourier trans-

formation on both sides of (3.2) yields

m̃2(λ) = g̃λ(λ; θ0)f̃u(λ), (3.7)

where

g̃λ(λ; θ0) =

∫
e−iλ

′xxg(x; θ0)dx

= i
∂g̃(λ; θ0)

∂λ
.

Now, if g̃(λ; θ0) 6= 0, then (3.3) is equivalent to

f̃u(λ) =
m̃1(λ)

g̃(λ; θ0)
. (3.8)

It is apparent now that f̃u(λ), hence the distribution Fu(u), is uniquely determined by θ0 through

(3.5). In order to derive the condition under which θ0 is identified, we substitute (3.5) into (3.4)

and obtain

g̃(λ; θ0)m̃2(λ) = g̃λ(λ; θ0)m̃1(λ). (3.9)

It follows from the Uniqueness Theorem of Fourier transformation, that∫
g(ξ − v; θ0)m2(v)dv =

∫
(ξ − v)g(ξ − v; θ0)m1(v)dv (3.10)

holds almost everywhere on IRk (with respect to Lebesgue measure). In fact, from equations (3.1)

and (3.2) it is easy to verify directly that (3.7) holds for all ξ ∈ IRk. As a result, we have

G(ξ; θ0) =

∫
g(ξ − v; θ0) [(ξ − v)m1(v)−m2(v)] dv ≡ 0. (3.11)

Let Θ ⊆ IRp denote the parameter space. Then we have the following results.
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Theorem 3.1. (Pointwise Identification). Suppose A1 - A3 hold for model (2.1) - (2.3) and

g̃(λ; θ0) 6= 0, ∀λ ∈ IRk. Then

1. if there exists a point ξ0 ∈ IRk, such that G(ξ0; θ0) = 0 has unique solution θ0 ∈ Θ, then

(θ0, Fu) is identified (by (2.4));

2. (θ0, Fu) is identified if and only if θ0 is the unique point in Θ satisfying (3.8).

Since (3.8) contains k equations, from Theorem 3.1 we have immediately the following identifi-

cation conditions.

Corollary 3.1. Under the condition of Theorem 3.1,

1. a necessary condition for θ0 to be identified by (3.8) is that k ≥ p;

2. if k ≥ p and the function G(ξ; θ) in (3.8) is differentiable at θ0, then a sufficient condition

for identification is that there exists ξ0 ∈ IRk, such that

rank(
∂G(ξ0; θ0)

∂θ′
) = p.

Remark 3.1. Assumptions A1 and A2 are made to ensure that the conditional moments m1(v)

and m2(v) are fully observed. It is easily seen that technically the derivation of the results in this

section still goes through even without assumptions A1 and A2, because m1(v) and m2(v) are well-

defined functions by the right-hand sides of (3.1) and (3.2). In this sense m1(v) and m2(v) may be

viewed as extensions of the conditional expectations E(y | w) and E(zy | w) respectively. However,

m1(v) and m2(v) may not be observed at every point v ∈ IRk without A1 or A2. In applications

point of view neither is the assumption A3 as restrictive as it appears, because the relation g(x; θ0)

can be considered as holding in a sufficiently large compact subset of IRk and outside this compact

subset it can be redefined such that A3 is satisfied.

Remark 3.2. The condition in Theorem 3.1 that g̃(λ; θ0) 6= 0, for all λ ∈ IRk may be replaced

by the condition that g̃(λ; θ0) 6= 0 at λ = 0 and the characteristic function f̃Wu(λ) is analytic.

This is easy to see because g̃(λ; θ0) is a continuous function of λ and, hence, g̃(0; θ0) 6= 0 implies

g̃(λ; θ0) 6= 0 in a neighborhood of zero, which in turn implies that (3.5) holds in a neighborhood of

zero. Since now f̃u(λ) is analytic, (3.5) must hold for all λ ∈ IRk.

The Fourier transformation turns out to be a useful tool for solving the problem of identifiability,

because the convolution of two functions can be transformed into the product of the corresponding

Fourier counterparts. In order to get more insight about the structure of model (2.1) - (2.3), we

proceed to find the solution g̃(λ; θ0) of the differential equation (3.6). As is shown in Appendix A,

the solution is given by

g̃(λ; θ0) = g̃(0; θ0)eh(λ), (3.12)

where

h(λ) =

∫ λj

0

m̃2j(λ)

im̃1(λ)
dλj
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and λj and m̃2j(λ) are the j-th component of λ and m̃2(λ) respectively. By (3.5)

f̃u(λ) =
m̃1(λ)e−h(λ)

g̃(0; θ0)
. (3.13)

Equations (3.9) and (3.10) suggest that the Fourier transform g̃(λ; θ0) and the characteristic func-

tion f̃u(λ) can be respectively decomposed as a known function of θ0 multiplied by a known function

of observed information. Furthermore, if the left-hand sides of (3.9) and (3.10) are absolutely inte-

grable on IRk, then applying the Fourier inversion formula to them yields

g(x; θ0) =
g̃(0; θ0)

(2π)k

∫
eiλ
′x+h(λ)dλ (3.14)

and

fu(u) =
1

g̃(0; θ0)(2π)k

∫
e−iλ

′u−h(λ)m̃1(λ)dλ. (3.15)

To summarize, we have the following results with regard to the structure of the model.

Theorem 3.2. Under the conditions of Theorem 3.1,

1. the Fourier transform g̃(λ; θ0) has representation (3.9);

2. the characteristic function f̃u(λ) has representation (3.10);

3. if g̃(λ; θ0) ∈ L1(IRk), then the regression function g(x; θ0) has representation (3.11);

4. the density function of u, if exists, has representation (3.12).

To illustrate the results of this section, we consider a simple example.

Example 3.1. Consider a simple case of model (2.1) - (2.3) where all variables are scalars, the

regression function g(x; θ0) = e−θ0x
2

with θ0 > 0 and Γ0 = 1. Suppose the true distribution Fu(u)

of u is the standard normal distribution N(0, 1). Then by (3.1) and (3.2) it is straightforward to

calculate

m1(v) = (1 + 2θ0)−1/2 exp(− θ0v
2

1 + 2θ0
),

m2(v) = (1 + 2θ0)−3/2v exp(− θ0v
2

1 + 2θ0
).

To see that (3.8) identifies θ0, we calculate, for any θ > 0,

G(ξ; θ) =

√
π(θ − θ0)

(1 + 2θ0)(θ + θ0 + 2θθ0)3/2
exp(− θθ0ξ

2

θ + θ0 + 2θθ0
)

which equals zero if and only if θ = θ0. To see the decompositions (3.9) - (3.12), we calculate

further the Fourier transforms

m̃1(λ) =

√
π

θ0
exp(−(1 + 2θ0)λ2

4θ0
),
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m̃2(λ) = − iλ

2θ0

√
π

θ0
exp(−(1 + 2θ0)λ2

4θ0
).

It follows that
m̃2(λ)

im̃1(λ)
= − λ

2θ0

and hence

h(λ) = −
∫ λ

0

λ

2θ0
dλ = − λ2

4θ0
.

Therefore, the Fourier transform of g(x; θ),

g̃(λ; θ0) =

√
π

θ0
exp(− λ2

4θ0
) = g̃(0; θ0)eh(λ)

and , by (3.5), the characteristic function is given by

f̃u(λ) =
m̃1(λ)

g̃(λ; θ0)
= e−λ

2/2

which is easily seen to satisfy (3.10). The decompositions (3.11) and (2.12) can be verified analo-

gously.

4 Estimation

In this section we consider estimation of model (2.1) - (2.3). Let the data (yt, zt, wt), t = 1, 2, ..., T

be given with sample size T . First we note that, if we have a consistent estimator of θ0, say θ̂, then

the distribution of u can be estimated through (3.5) as

ˆ̃
fu(λ) =

˜̂m1(λ)

g̃(λ; θ̂)
, (4.1)

where ˜̂m1(λ) is the Fourier transform of m̂1 which is a consistent nonparametric estimator of m1.

The estimator (4.1) is pointwise consistent under certain regularity conditions. Therefore, our focus

will be on deriving consistent estimator of θ0. For ease of reading, we will only state the conditions

and results. The proofs are given in Appendix B.

The identification condition (3.8) also suggests a method to estimate θ0. Since it is not known

generally, at which point of ξ ∈ IRk is the θ0 uniquely determined by (3.8), to make use of condition

(3.8), we propose a stochastic version of Theorem 3.1. Let fξ(ξ) be a function on IRk. Then a

necessary condition for (3.8) is ∫
G(ξ; θ0)fξ(ξ)dξ = 0. (4.2)

However, (4.2) is not sufficient for (3.8). A necessary and sufficient condition for (3.8) is∫
‖G(ξ; θ0)‖2 fξ(ξ)dξ = 0, (4.3)

where ‖·‖ denotes the Euclidean norm and fξ(ξ) is positive on IRk.
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Theorem 4.1. (Integrated Identification). Let fξ(ξ) be a function on IRk. Then under the condi-

tions of Theorem 3.1,

1. if (4.2) has a unique solution θ0 ∈ Θ, then (θ0, Fu) is identified;

2. if fξ(ξ) > 0,∀ξ ∈ IRk, then (θ0, Fu) is identified if and only if θ0 ∈ Θ is the unique solution

of (4.3).

4.1 A Simulation Estimator (SE)

Equation (4.2) provides k orthogonality conditions which may be used to estimate the parameter

θ0 ∈ Θ ⊂ IRp by a method similar to the generalized method of moments (GMM) of Hansen (1982)

or the method of simulated moments (MSM) of McFadden (1989) or Pakes and Pollard (1989),

i.e., an estimator of θ0 can be constructed by making the sample analog of (4.2) as close to zero as

possible. This estimation procedure however may not always yield unique estimate even when the

θ0 is identified.

To derive a more general estimation procedure, we use the condition (4.3) directly. Specifically,

define

Q̃(θ) =

∫
‖G(ξ; θ)‖2 fξ(ξ)dξ, (4.4)

where

G(ξ; θ) =

∫
g(ξ − v; θ) [(ξ − v)m1(v)−m2(v)] dv. (4.5)

Then an estimator of θ0 may be obtained by minimizing the function Q̃(θ). However, Q̃(θ) is a

multiple integral which often causes complications and difficulties in numerical computation. To

make the idea operational, we ”discretize” the integral (4.4) by

Q(θ) =
1

S

S∑
s=1

‖G(ξs; θ)‖2 , (4.6)

where ξ1, ξ2, ..., ξS are randomly generated from an arbitrary density function fξ(ξ) having support

IRk and S is large enough such that ∂2Q(θ0)/∂θ∂θ′ is nonsingular (see assumption A16 below).

It is clear that under some mild conditions Q(θ) converges in probability to Q̃(θ) uniformly in a

neighborhood of θ0 ∈ Θ.

Thus we propose the following procedure of estimation:

Step 1. From the third equation of (2.4) estimate Γ0 by the LS estimator

Γ̂ = (

T∑
t=1

ztw
′
t)(

T∑
t=1

wtw
′
t)
−1. (4.7)

Then let vt = Γ̂wt, t = 1, 2, ..., T and estimate the density function fv(v) of v = Γ0w, the conditional

mean functions m1(v) = E(y | v) and m2(v) = E(zy | v) by kernel method as

f̂v(v) =
1

ThkT

T∑
t=1

K(
v − vt
hT

), (4.8)
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m̂1(v) =
1

ThkT

T∑
t=1

ytK(
v − vt
hT

)/f̂v(v) (4.9)

and

m̂2(v) =
1

ThkT

T∑
t=1

ztytK(
v − vt
hT

)/f̂v(v), (4.10)

where K(·) is the kernel function and hT is the bandwidth.

Step 2. Approximate the integral (4.5) by

ĜT (ξ; θ) =
1

T

T∑
t=1

I(|f̂v(vt)| ≥ bT )g(ξ − vt; θ)
f̂v(vt)

[(ξ − vt)m̂1(vt)− m̂2(vt)] , (4.11)

where I(·) is the indicator function and bT are positive constants satisfying bT → 0 as T →∞.

Step 3. Construct the sample analog of (4.6) as

QT (θ) =
1

S

S∑
s=1

‖ĜT (ξs; θ)‖2 (4.12)

where each term ĜT (ξs; θ) is computed according to (4.11).

Step 4. The simulation estimator (SE) θ̂T is defined as the measurable function satisfying

QT (θ̂T ) = inf
θ∈Θ

QT (θ). (4.13)

The asymptotic properties of the estimator θ̂T are derived in the next subsection.

Remark 4.1. It should be noted here that there are several ways to proceed to construct consistent

estimators for θ0, depending on the definition of the optimality criterion. McFadden (1989) defines

the MSM estimators θ̂ which satisfy

QT (θ̂) ≤ inf
θ∈Θ

QT (θ) +Op(1). (4.14)

This definition is similar to that of the estimators considered by Pakes and Pollard (1989) in which

Op(1) is replaced by op(1). One advantage of criterion (4.14) is that the estimators thus defined

always exist, even if the infimum in (4.13) is not attained. The later can be avoided when the

parameter space Θ is subject to certain restrictions, e.g., when Θ is compact. Clearly any estimator

satisfying (4.13) satisfies (4.14) too. The estimators defined by (4.13) and (4.14) are global optima.

In general, to compute the global minimum can be a burdensome task. In such case it is more

convenient to define the estimators as the roots of the score equation

∂QT (θ)

∂θ
=

2

S

S∑
s=1

∂Ĝ′T (ξs; θ)

∂θ
ĜT (ξs; θ) = 0. (4.15)

The asymptotic properties of the estimators under these criteria are discussed in the next two

subsections.
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4.2 Consistency

The consistency of the SE θ̂T may be derived following the traditional fashion by establishing the

uniform convergence of QT (θ) to Q(θ) which has unique minimizer θ0 ∈ Θ and Θ is compact. From

(4.5) - (4.6) and (4.11) - (4.12) it is easily seen that the convergence of QT (θ) to Q(θ) requires the

consistencies of the LS and nonparametric estimators (4.7) - (4.10) in the first step of the estimation

procedure. In fact, even the uniform convergence of the first stage estimators are desired. There is

large amount of papers in the literature dealing with convergence of nonparametric estimators. One

of the most recent one is Andrews (1995), which gives results on the rate of uniform convergence

of nonparametric estimators of density functions and conditional mean functions under general

conditions.

Definition 4.1. Let Dq, q ≥ 1, be the class of all real functions f(·) on IRk such that all partial

derivatives of order 0 through q are continuous and uniformly bounded.

To use the results of Andrews (1995), we assume that

A 4. (yt, zt, wt), t = 1, 2, ..., T are independent and identically distributed.

A 5. Ey2 <∞, E ‖yz‖2 <∞, E ‖w‖4 <∞, Eww′ is nonsingular and l = k.

A 6. For some q ≥ 1, the functions fv(v),m1(v),m2(v) ∈ Dq.

A 7. For the q ≥ 1 in A6, the kernel function K(v) is bounded on IRk and satisfies:

(1)
∫
K(v)dv = 1 and

∫
vq11 v

q2
2 · · · v

qk
k K(v)dv = 0, for qj ≥ 0 and 1 ≤

∑k
j=1 qj ≤ q − 1;

(2)
∫
‖v‖j |K(v)| dv <∞, for j = 0 or q;

(3) supv∈IRk ‖∂K(v)/∂v‖ (‖v‖+ 1) <∞;

(4)
∫
eiλ
′vK(v)dv ∈ L1(IRk).

A 8. As T →∞, hT → 0, bT → 0, Th2k
T b

6
T →∞ and hqT b

3
T → 0, where q ≥ 1 is as in A6.

To derive the consistency of the SE θ̂T defined by (4.13), we assume further that

A 9. The function g(x; θ) satisfies that, for each ξ ∈ IRk,

(1) supθ∈Θ ‖∂g(x; θ)/∂x‖ and supθ∈Θ ‖∂xg(x; θ)/∂x‖ are uniformly bounded;

(2) E supθ∈Θ ‖g(ξ − v; θ)‖ <∞ and E supθ∈Θ ‖(ξ − v)g(ξ − v; θ)‖ <∞;

(3) E supθ∈Θ ‖g(ξ − v; θ) [(ξ − v)m1(v)−m2(v)] /fv(v)‖2 <∞.

A 10. Θ ⊂ IRp is compact.

A 11. θ0 is the unique point in Θ for which Q(θ0) = 0.

Then the consistency of θ̂T is given in the following theorem.

Theorem 4.2. Under A1 – A11, θ̂T
P→θ0, as T →∞.
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4.3 Asymptotic Normality

Similar to the consistency, the asymptotic normality of θ̂T also may be obtained in the traditional

way by first Taylor expanding the derivative of QT (θ) at θ0 and then showing that the Hessian

∂2QT /∂θ∂θ
′ converges to a nonsingular matrix and the gradian ∂QT /∂θ times

√
T has an asymp-

totic normal distribution. However, as in the case of Robinson (1988), the derivation becomes much

more complicated because of the presence of nonparametric estimators in function QT (θ), which

have the convergence rate lower than
√
T . To achieve the

√
T -consistency of his semiParametric

estimator, Robinson (1988) used higher order kernels combined with certain smoothness conditions

for the density and conditional mean functions. Essentially, he assumed the density and conditional

mean functions belong to Gαµ , α > 0, µ > 0, which is defined as a class of functions f : IRk → IR

satisfying: (1) f(·) is (q − 1)-times partially differentiable, q − 1 < µ ≤ q; (2) for some ρ > 0,

sup‖u−v‖<ρ |f(u)− f(v)− F (u, v)| / ‖u− v‖µ ≤ γ(v) for all v, where F = 0, when q = 1; and F is

a (q − 1)-th degree homogenous polynomial in u − v with coefficients the partial derivatives of f

at v of orders 1 through (q − 1), when q > 1; and (3) The function γ(·), f(·) and all its partial

derivatives of order q − 1 and less have finite α-th moments. It is easy to see that every function

in Dq belongs to Gαq and, thus, Dq ⊆ Gαq .

Following Robinson (1988), to obtain the
√
T -consistency, we use the product kernel K(v) =∏k

j=1 κ(vj) in the nonparametric estimators (4.8) - (4.10), where κ(·) is a univariate kernel and vj

is the j-th component of v ∈ IRk. However, to adapt to our consistency assumptions A7, we use a

modification of his definition for the class of kernel functions.

Definition 4.2. Let Kq, q ≥ 1, be the class of all even functions κ(·) : IR→ IR satisfying

(1)
∫
IR r

jκ(r)dr = δ0j , j = 0, 1, ..., q − 1, where δij is Kronecker’s delta;

(2) κ(r) = O((1 + |r|q+1+ε)−1), for some ε > 0;

(3) supr∈IR |∂κ(r)/∂r| (|r|+ 1) <∞ and supr∈IR
∣∣∂2κ(r)/∂r2

∣∣ <∞;

(4) Tdinteiµrκ(r)dr ∈ L1(IR).

Thus, we make the following assumption.

A 12. For the q ≥ 1 in A6, the kernel function K(v) =
∏k
j=1 κ(vj) with κ(·) ∈ K2q−1.

A 13. As T →∞, Th4k+2
T b6T →∞ and Th4q

T b
−4
T → 0, where q ≥ 1 is as in A6.

It is easily seen that every kernel function K(v) satisfying A12 satisfies A7 too. The following

discussion and result apply not only to the estimator defined by (4.13) but also to those satisfying

(4.15), though we will continue to use the notation θ̂T . The estimators defined as the roots of the

score equation (4.15) are local optima. As far as the local optima are concerned, only the local

analogs of A9 - A11 are needed.

A 14. θ0 is an interior point of Θ.
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A 15. In addition to A9, the function g(x; θ) satisfies

(1! g(x; θ0), xg(x; θ0) ∈ D2;

(2) There is an open neighborhood of θ0 in which ∂g(x; θ)/∂θ and ∂2g(x; θ)′∂θ∂θ′ exist and have

the same property as A9 for the function g(x; θ).

A 16. For each ξ ∈ IRk,

E‖m1(v)

fv(v)

∂g(ξ − v; θ0)(ξ − v)

∂(vecΓ)′
− m2(v)

fv(v)

∂g(ξ − v; θ0)

∂(vecΓ)′
‖2 <∞,

E‖g(ξ − v; θ0)[(ξ − v)
∂ [m1(v)/fv(v)]

∂(vecΓ)′
− ∂ [m2(v)/fv(v)]

∂(vecΓ)′
]‖2 <∞.

where vec is the column vector operator.

A 17. The matrix H = 1
S

∑S
s=1D(ξs; θ0)D(ξs; θ0)′ is nonsingular, where

D(ξ; θ0) =

∫
∂g(ξ − v; θ0)/∂θ [(ξ − v)m1(v)−m2(v)]′ dv. (4.16)

A 18. For each ξ ∈ IRk, V (ξ; θ0) = limT→∞ETĜT (ξ; θ0)ĜT (ξ; θ0)′ exists.

Then we have the following result.

Theorem 4.3. Under A1 - A18, for any estimator θ̂T satisfying (4.15),
√
T (θ̂T−θ0)

L→N(0, H−1V H−1),

where V = 1
S

∑S
s=1D(ξs; θ0)V (ξs; θ0)D(ξs; θ0)′.

5 Conclusion

In this paper we combine the nonparametric estimation of conditional moments and the Fourier

deconvolution method to separate the systematic part of the regression model from the errors. We

demonstrate that, contrary to the common belief, instrumental variables do yield useful information

with regard to the identification and estimation of the unknown parameters and the probability

distribution of the errors in nonlinear errors-in-variables models. We propose a simulated method

of moment estimator. However, this simulation based estimator is different from the conventional

simulated moments estimators in the sense that there is no need to perform the simulation based

on the probability distribution of the unobservables. In fact, simulation generated by any arbitrary

distribution is capable of yielding consistent and asymptotically normally distributed estimators

and the rate of convergence is
√
T . This remarkable result is achieved through the combined use

of nonparametric estimation and the Fourier deconvolution method. Although in this paper we

have confined the application of this approach to analyze the nonlinear errors-in-variables models,

it appears that this novel approach should have wider applicability.
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Appendices

A Proof of (3.9)

The result (3.9) follows from the following lemma.

Lemma A.1. Suppose p(x, y), q(x, y) ∈ C1(IR2) and f(x, y) satisfies the differential equations

∂f(x, y)

∂x
= f(x, y)p(x, y), (A.1)

∂f(x, y)

∂y
= f(x, y)q(x, y). (A.2)

Then the solution to (A.1)-(A.2) is given by

f(x, y) = e
∫
p(x,y)dx+c1 = e

∫
q(x,y)dy+c2 ,

where c1 and c2 are constants.

Proof: Considering the solution to each equation of (A.1)-(A.2) we have

f(x, y) = e
∫
p(x,y)dx+p1(y) = e

∫
q(x,y)dy+q1(x)

which implies ∫
p(x, y)dx+ p1(y) =

∫
q(x, y)dy + q1(x). (A.3)

Furthermore, (A.1)-(A.2) and equality ∂2f/∂x∂y = ∂2f/∂y∂x imply that ∂p/∂y = ∂q/∂x. Then

differentiating both sides of equation (A.3) about x yields

p(x, y) =

∫
∂q(x, y)

∂x
dy +

∂q1(x)

∂x

= p(x, y) +
∂q1(x)

∂x
.

It follows that ∂q1(x)/∂x ≡ 0 and, hence, q1(x) is a constant. Similarly p1(y) can be shown to be

a constant too. �

B Proofs of Results in Section 4

Throughout the Appendix B we will maintain the following convention and notations.

1. For the sake of notational simplicity, when it does not cause confusion we will omit the

arguments of some functions and denote, e.g., ĝt = g(ξ − Γ̂wt; θ), f̂t = f̂v(Γ̂wt), m̂it = m̂i(Γ̂wt),

r̂it = m̂itf̂t, Jt = I(|f̂t| ≥ bT ) and

ĜT =
1

T

T∑
t=1

Jtĝt(ξ − Γ̂wT )m̂1t/f̂t −
1

T

T∑
t=1

Jtĝtm̂2t/f̂t

= Ĝ1T − Ĝ2T .
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2. Define f̄v(v) and m̄i(v), i = 1, 2 as the analog of f̂v(v) and m̂i(v) respectively where Γ̂ is

replaced by Γ0 (see (4.8) – (4.10)). Further, denote gt = g(ξ − Γ0wt; θ), f̄t = f̄v(Γ0wt), m̄it =

m̄i(Γ0wt), r̄it = m̄itf̄t and

ḠT =
1

T

T∑
t=1

Jtgt(ξ − Γ0wt)m̄1t/f̄t −
1

T

T∑
t=1

Jtgtm̄2t/f̄t

= Ḡ1T − Ḡ2T .

3. Similarly, let ft = fv(Γ0wt), mit = mi(Γ0wt), rit = mitft and

G̃T =
1

T

∑
t=1

NTJtgt(ξ − Γ0wt)m1t/ft −
1

T

T∑
t=1

Jtgtm2t/ft

= G̃1T − G̃2T .

Further, let

GT =
1

T

T∑
t=1

gT (ξ − Γ0wt)m1t/ft −
1

T

T∑
t=1

gtm2t/ft

= G1T −G2T .

4. If F (A) is a matrix function of a matrix argument A, then the partial derivative is denoted

as ∂F/∂A = ∂vecF/∂(vecA)′ (Magnus and Neudecker (1988)).

5. The phrase ”with probability converging to one” is denoted as w.p.→ 1.

6. C always denotes a generic constant.

The proofs of Theorem 4.2 and Theorem 4.3 are based on the following Lemmas.

Lemma B.1. Under A1 – A8,

sup
v∈IRk

∣∣∣f̂v(v)− fv(v)
∣∣∣ = Op(T

−1/2h−kT + hqT ), (B.1)

sup
|f̂v(v)|≥bT

‖m̂i(v)−mi(v)‖ = Op(T
−1/2h−kT b−2

T + hqT b
−2
T ), (B.2)

sup
v∈IRk

∣∣f̄v(v)− fv(v)
∣∣ = Op(T

−1/2h−kT + hqT ), (B.3)

sup
|f̄v(v)|≥bT

‖m̄i(v)−mi(v)‖ = Op(T
−1/2h−kT b−2

T + hqT b
−2
T ). (B.4)

Proof: It is easy to check that all conditions of Theorem 1 of Andrews (1995) are implied by A1

– A8 and, therefore, the results follow immediately from that theorem. �

Lemma B.2. Under A1 – A8,

sup
w∈IRk

∣∣∣f̂v(Γ̂w)− f̄v(Γ0w)
∣∣∣ = Op(T

−1/2h−kT ), (B.5)

sup
|f̂v(Γ̂w)|≥bT

∥∥∥m̂i(Γ̂w)− m̄i(Γ0w)
∥∥∥ = Op(T

−1/2h−kT b−1
T ). (B.6)
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Proof: For any w ∈ IRk, by the Mean-value Theorem we have

f̂v(Γ̂w)− f̄v(Γ0w)5
1

ThkT

T∑
j=1

∂K(ṽj)

∂v′
(Γ̂− Γ0)(w − wj)

h
,

where ṽj lies between Γ̂(w − wj)/h and Γ0(w − wj)/h. It follows from A7,
√
T‖Γ̂ − Γ0‖ = Op(1)

and supw ‖(w − wj)/h‖ /(‖ṽj‖+ 1) = Op(1), that

∣∣∣f̂v(Γ̂w)− f̄v(Γ0w)
∣∣∣ ≤ ‖Γ̂− Γ0‖

ThkT

T∑
j=1

‖∂K(ṽj)

∂v
‖‖w − wj

h
‖ = Op(T

−1/2h−kT ),

which implies (B.5). Analogous it can be shown that, for i = 1, 2,

sup
w∈IRk

∥∥∥r̂i(Γ̂w)− r̄i(Γ0w)
∥∥∥ = Op(T

−1/2h−kT ). (B.7)

Further, because of (B.5) and A8,

lim
T→∞

P ( inf
|f̂v(Γ̂w)|≥bT

∣∣f̄v(Γ0w)
∣∣ ≥ bT

2
) = 1. (B.8)

Hence, by (B.4) and A6, we have, w.p.→ 1,

sup
|f̂v|≥bT

‖m̄i(Γ0w)‖ ≤ sup
|f̂v|≥bT

‖m̄i(Γ0w)−mi(Γ0w)‖+ ‖mi(Γ0w)‖ = Op(1). (B.9)

(B.6) follows then from

‖m̂i(Γ̂w)− m̄i(Γ0w)‖ ≤ ‖r̂i(Γ̂w)− r̄i(Γ0w)‖∣∣∣f̂v(Γ̂w)
∣∣∣ +

‖m̄i(Γ0w)‖‖f̂v(Γ̂w)− f̄v(Γ0w)‖∣∣∣f̂v(Γ̂w)
∣∣∣ ,

(B.1), (B.7) and (B.9). �

Lemma B.3. Under A1 – A9, for any ξ ∈ IRk, supθ∈Θ

∥∥∥ĜT (ξ; θ)−G(ξ; θ)
∥∥∥ = op(1).

Proof: For any ξ ∈ IRk, first we show that

sup
θ∈Θ
‖ĜT − G̃T ‖ ≤ sup

θ∈Θ
‖Ĝ1T − G̃1T ‖+ sup

θ∈Θ
‖Ĝ2T − G̃2T ‖ = op(1). (B.10)

For any θ ∈ Θ, we have

‖Ĝ2T − G̃2T ‖ ≤
1

T

T∑
t=1

Jt‖ĝt − gt‖‖
m̂2t

f̂t
‖+

1

T

T∑
t=1

Jt ‖gt‖ ‖
m̂2t

f̂t
− m2t

ft
‖

= A1 +A2. (B.11)

Now since the first derivative ∂g(x; θ)/∂x is bounded by A9(1) and

Jt ‖m̂2t‖ ≤ Jt ‖m̂2t −m2t‖+ ‖m2t‖ = Op(1)
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by (B.2) and A6, it follows from the mean-value theorem that

A1 ≤
C‖Γ̂− Γ0‖

TbT

T∑
t=1

Jt ‖wt‖ ‖m̂2t‖ = Op(T
−1/2b−1

T ). (B.12)

Further, because of (B.1)

lim
T→∞

P ( inf
|f̂v(Γ̂w)|≥bT

|fv(Γ0w)| ≥ bT
2

) = 1. (B.13)

It follows from Lemma B.1 and A9(2) that, w.p.→ 1,

A2 ≤
1

T

T∑
t=1

Jt ‖gt‖ (‖m̂2t −m2t

f̂t
‖+ ‖m2t(f̂t − ft)

f̂tft
‖)

≤ Op(T−1/2h−kT b−3
T + hqT b

−3
T ). (B.14)

Thus, ‖Ĝ2T − G̃2T ‖ = op(1) by (B.11) - (B.14) and A8. Furthermore, since only the functions

g(x; θ) and ∂g(x; θ)/∂x involve the parameter θ, it is easily seen by A9 that (B12) and (B.14)

hold uniformly in θ ∈ Θ, which together with (B.11) and A8 implies supθ∈Θ ‖Ĝ2T − G̃2T ‖ = op(1).

Completely analogous it can be shown that supθ∈Θ ‖Ĝ1T − G̃1T ‖ = op(1), which implies (B.10).

Next we show that supθ∈Θ ‖G̃T −G‖ = op(1). First by Cauchy-Schwarz inequality

E sup
θ∈Θ
‖G̃T −GT ‖ ≤ E sup

θ∈Θ
‖(1− Jt)gt [(ξ − Γ0wt)m1t −m2t] /ft‖

≤ [P (
∣∣∣f̂t∣∣∣ < bT )E sup

θ∈Θ
‖gt [(ξ − Γ0wt)m1t −m2t] /ft‖2]1/2

= o(1),

where the last equation follows from A9(3) and the fact

P (
∣∣∣f̂t∣∣∣ < bT ) ≤ P (|ft| < bT +

∣∣∣f̂t − ft∣∣∣)
= o(1).

Finally, by A9(3) and Theorem 4.2.1 of Amemiya (1985), supθ∈Θ ‖GT −G‖ = op(1), which com-

pletes the proof. �

Proof of Theorem 4.2: First, since S is finite and fixed and the Euclidean norm ‖·‖ is a continuous

function, Lemma B.3 implies that QT (θ) converges to Q(θ) in probability uniformly in θ ∈ Θ. Then

the consistency of the estimator θ̂T follows from A10, A11 and Theorem 4.1.1 of Amemiya (1985).

�

Lemma B.4. For any ξ ∈ IRk,

ĜT (ξ; θ0) = ḠT (ξ; θ0) + (AT +BT )vec(Γ̂− Γ0) + op(T
−1/2), (B.15)
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where

AT =
1

T

T∑
t=1

Jt
f̄t

[m̄1t
∂g(ξ − Γ0wt; θ0)(ξ − Γ0wt)

∂Γ
− m̄2t

∂g(ξ − Γ0wt; θ0)

∂Γ
],

BT =
1

T

T∑
t=1

Jtg(ξ − Γ0wt; θ0)[(ξ − Γ0wt)
∂(m̄1t/f̄t)

∂Γ
− ∂(m̄2t/f̄t)

∂Γ
],

∂g(ξ − Γ0wt; θ0)

∂Γ
= −∂g(ξ − Γ0wt; θ0)

∂x′
(wt ⊗ Ik)′,

∂(m̄it/F̄t)

∂Γ
=

1

f̄2
t Th

k+1

T∑
j=1

(zjyj − 2m̄at)
∂

∂v′
K(

Γ0wt − Γ0wj
h

)(wt − wj)′ ⊗ Ik,

and where ⊗ is the Kronecker product and Ik is the k × k identity matrix.

Proof: First we consider the decomposition of Ĝ2T . By A15(1) the function ĝt has the second

order Taylor expansion at Γ0:

g(ξ − Γ̂wt; θ0) = g(ξ − Γ0wt; θ0) +
∂g(ξ − Γ0wt; θ0)

∂Γ
vec(Γ̂− Γ0) + rt, (B.16)

where

rt = vec(Γ̂− Γ0)′(wWt⊗ Ik)
∂2g(ξ − Γ̃wt; θ0)

∂x∂x′
(wt ⊗ Ik)′vec(Γ̂− Γ0)

and where Γ̃ lies on the line segment connecting Γ̂ and Γ0. Similarly, by A12 the second order

Taylor expansion of m̂2t/f̂t at Γ0 is

m̂2t

f̂t
=
m̄2t

f̄t
+
∂(m̄2t/f̄t)

∂Γ
vec(Γ̂− Γ0) +Rt, (B.17)

where

Rt = vec(Γ̂− Γ0)′
∂2(m̃it/f̃t)

∂Γ2
vec(Γ̂− Γ0),

f̃t and m̃it are defined as f̄t and m̄it with Γ0 replaced by Γ̃, and ∂2(m̃it/f̃t)/∂Γ2 is given by

1

f̃2
t Th

k+2

T∑
j=1

[(wt − wj)⊗ Ik ⊗ (zjyj − 2m̃it)]
∂2K(ṽj)

∂v∂v′
(wt − wj)′ ⊗ Ik

− 2

f̃3
t T

2h2(k+1)

T∑
j=1

[(wt − wj)⊗ Ik ⊗ (zjyj − 3m̃it)]
∂K(ṽj)

∂v
·
T∑
j=1

∂K(ṽj)

∂v′
(wt − wj)′ ⊗ Ik

− 2

f̃3
t T

2h2(k+1)

T∑
j=1

[(wt − wj)⊗ Ik]
∂K(ṽj)

∂v
⊗ Ik ·

T∑
j=1

zjyj
∂K(ṽj)

∂v′
(wt − wj)′ ⊗ Ik

and where ṽj = Γ̃(wt − wj)/h. It is easy to verify by A15(1) that

rt = ‖wt‖2Op(T−1)

and by A5–A8 and A12 that

Rt = (‖wt‖+ 1)2Op(T
−1h−k−2

T b−2
T ) +Op(T

−1h−2k
T b−3

T ).
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Substituting the right-hand side of (B.16) and (B.17) into Ĝ2T yields

Ĝ2T =
1

T

T∑
t=1

Jtgtm̄2t/f̄t +
1

T

T∑
t=1

(Jtm̄2t/f̄t)
∂gt
∂Γ

vec(Γ̂− Γ0)

+
1

T

T∑
t=1

Jtgt
∂(m̄2t/f̄t)

∂Γ
vec(Γ̂− Γ0) + op(T

−1/2), (B.18)

where the last term is op(T
−1/2) because of A13. The analog of (B.18) for Ĝ1T can be derived in

the same way, which, combined with (B.18), leads to (B.15). �

Lemma B.5. For any ξ ∈ IRk,

AT
P→A = E[

m1(v)

fv(v)

∂g(Ξ− v; θ0)(ξ − v)

∂Γ
− m2(v)

fv(v)

∂g(ξ − v; θ0)

∂Γ
], (B.19)

BT
P→B = Eg(ξ − v; θ0)[(ξ − v)

∂ [m1(v)/fv(v)]

∂Γ
− ∂ [m2(v)/fv(v)]

∂Γ
]. (B.20)

Proof: Analogous to the decomposition of ĜT , we denote

AT =
1

T

T∑
t=1

Jtm̄1t

f̄t

∂(ξ − Γ0wt)gt
∂Γ

− 1

T

T∑
t=1

JT m̄2t

f̄t

∂gt
∂Γ

= A1T −A2T

and

ÃT =
1

T

T∑
t=1

Jtm1t

ft

∂(ξ − Γ0wt)gt
∂Γ

− 1

T

T∑
t=1

Jtm2t

ft

∂gt
∂Γ

= Ã1T − Ã2T .

Then by A9(1)

‖A2T − Ã2T ‖ ≤
1

T

T∑
t=1

Jt‖(
m̄2t

f̄t
− m2t

ft
)
∂gt
∂x′

(wt ⊗ Ik)′‖

≤ C

T

T∑
t=1

Jt‖wt‖(‖
m̄2t −m2t

f̄t
‖+ ‖m2t(f̄t − ft)

f̄tft
‖). (B.21)

It follows from (B.8), (B.13), Lemma B.1 and A8 that, w.p.→ 1,∥∥∥A2T − Ã2T

∥∥∥ ≤ Op(T−1/2h−kT b−3
T + hqT b

−3
T ) = op(1).

Analogous we have A1T = Ã1T + op(1) and, hence, AT = ÃT + op(1). Further, by Cauchy-Schwarz

inequality and A16

E‖ÃT −
1

T

T∑
t=1

[
m1t

ft

∂gt(ξ − Γ0wt)

∂Γ
− m2t

ft

∂gt
∂Γ

]‖

≤ {P (
∣∣∣f̂t∣∣∣ < bT )E‖m1t

ft

∂(ξ − Γ0wt)gt
∂Γ

− m2t

ft

∂gt
∂Γ
‖2}1/2

= o(1).
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It follows that

AT =
1

T

T∑
t=1

[
m1t

ft

∂gt(ξ − Γ0wt)

∂Γ
− m2t

ft

∂gt
∂Γ

] + op(1),

which implies (B.19) by the Markov law of large numbers (LLN). (B.20) may be proved analogously.

�

Lemma B.6. For any ξ ∈ IRk, ḠT (ξ; θ0) = GT (ξ; θ0) + op(T
−1/2).

Proof: As the proof of Lemma B.5, we first show that ḠT = G̃T + op(T
−1/2). Write

Ḡ2T − G̃2T =
1

T

T∑
t=1

Jtgt
m̄2t −m2t

f̄t
− 1

T

T∑
t=1

Jtgt
m2t(f̄t − ft)

f̄tft

= A1 +A2.

Then

E ‖A1‖2 =
1

T 2
E
∑
t,s

JtgtJsgs
f̄tf̄s

(m̄2t −m2t)
′(m̄2s −m2s)

=
1

T
E
J1g

2
1

f̄2
1

‖m̄21 −m21‖2 +
2(T − 1)

T
E
J1g1tJ2g2

f̄1f̄2
(m̄21 −m21)′(m̄22 −m22)

= B1 +B2.

Now

B1 =
1

T
E
J1g

2
1

f̄2
1

‖ 1

F̄1ThkT

T∑
j=1

yjzjK1j −m21‖2

≤ 1

T 3h2k
T b

4
T

Eg2
1‖

T∑
j=1

(yjzj −m21)K1j‖2

≤ 2

T 3h2k
T b

4
T

Eg2
1 ‖(y1z1 −m21)K(0)‖2 +

2

T 3h2k
T b

4
T

Eg2
1‖

T∑
j=2

(yjzj −m21)K1j‖2,

where

Ktj = K(
vt − vj
hT

).

By A5 and A15(1),

2

T 3h2k
T b

4
T

Eg2
1 ‖(y1z1 −m21)K(0)‖2 = O(T−3h−2k

T b−4
T ).

It follows that

B1 ≤ O(T−3h−2k
T b−4

T ) +
2(T − 1)

T 3h2k
T b

4
T

Eg2
1 ‖(y2z2 −m21)K12‖2

+
2(T − 1)(T − 2)

T 3h2k
T b

4
T

Eg2
1K

2
12K

2
13(y2z2 −m21)′(y3z3 −m21)

≤ O(T−2h−2k
T b−4

T ) +
2

Th2k
T b

4
T

Eg2
1K

2
12K

2
13(y2z2 −m21)′(y3z3 −m21)

≤ O(T−2h−2k
T b−4

T ) +
2

Th2k
T b

4
T

[
E ‖g1E1K12(m22 −m21)‖2E ‖g1E1K13(m23 −m21)‖2

]1/2
,



Wang and Hsiao (1995): A simulated semiparametric estimation 20

where the second inequality follows from A5 and A15(1) and the last follows from Cauchy-Schwarz

inequality and E1 = E(· | v1). By Lemma 5 of Robinson (1988)

E ‖g1E1K12(m2j −m21)‖2 = h
2(k+q)
T , j = 2, 3.

It follows that

B1 ≤ Op(T−2h−2k
T b−4

T ) +Op(T
−1h4q

T b
−4
T ) = op(T

−1)

by A13. Similarly it can be shown that B2 = op(T
−1), which implies that A1 = op(T

−1/2).

Analogous we have A2 = op(T
−1/2). The Lemma follows then from

G̃T −GT =
1

T

T∑
t=1

(1− Jt)gt [(ξ − Γ0wt)m1t −m2t] /ft

= op(T
−1/2).

�

Lemma B.7. For any ξ ∈ IRk, the random vectors
√
TGT (ξ; θ0) and

√
T vec(Γ̂− Γ0) jointly have

the asymptotic normal distribution with Zero mean.

Proof: By definition (4.7)

Γ̂ = Γ0 + (

T∑
t=1

(zt − Γ0wt)w
′
t)(

T∑
t=1

wtw
′
t)
−1

and hence

vec(Γ̂− Γ0) = [(
T∑
t=1

wtw
′
t)
−1 ⊗ Ik](

T∑
t=1

(wt ⊗ Ik)(zt − Γ0wt)).

Let

DT =

(
Ik 0

0 ( 1
T

∑T
t=1wtw

′
t)
−1 ⊗ Ik

)
.

Then
√
T

(
GT (ξ; θ0)

vec(Γ̂− Γ0)

)
=
DT√
T

T∑
t=1

(
gt [(ξ − Γ0wt)m1t −m2t] /ft

(wt ⊗ Ik)(zt − Γ0wt)

)
which converges to normal distribution with zero mean by the Lindeberg-Levy central limit theorem

(CLT) and the Slutsky’s theorem (Amemiya (1985)). �

Proof of Theorem 4.3: By A12 the first derivative ∂QT (θ)/∂θ exists and hAs the first order

Taylor expansion in A neighborhood of θ0. Since ∂QT (θ̂T )/∂θ = 0 and θ̂T
P→θ0, for sufficiently large

T , we have

0 =
∂QT (θ0)

∂θ
+
∂2QT (θ̃)

∂θ∂θ′
(θ̂T − θ0), (B.22)

where θ̃ lies between θ̂T and θ0. The first and second derivatives in (B.22) are given by

∂QT (θ0)

∂θ
=

2

S

S∑
s=1

∂Ĝ′T (ξs; θ0)

∂θ
ĜT (ξs; θ0) (B.23)
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and

2

S

S∑
s=1

[
∂Ĝ′T (ξs; θ̃)

∂θ

∂ĜT (ξs; θ̃)

∂θ′
+ (ĜT (ξs; θ̃)⊗ Ip)

∂vec(∂Ĝ′T (ξs; θ̃)/∂θ)

∂θ′
]

respectively. Since in ĜT (ξ; θ) only g(ξ; θ) involves θ, analogous to the proof of Lemma B.3 it can be

shown by A1 that the second derivative ∂2QT (θ)/∂θ∂θ′ converges in probability to ∂2Q(θ)/∂θ∂θ′

uniformly in the neighborhood of θ0. It follows that

∂2Q(θ̃)

∂θ∂θ′
P→∂2Q(θ0)

∂θ∂θ′
=

2

S

S∑
s=1

D(ξs; θ0)D(ξs; θ0)′, (B.24)

where the last equation follows from G(ξs; θ0) = 0. Furthermore, analogous to the proof of Lemma

B.3 it is easy to show
∂ĜT (ξs; θ0)

∂θ′
P→D(ξs; θ0). (B.25)

By Lemma B.4 - B.7,

√
TĜT (ξs; θ0) =

√
TGT (ξs; θ0) + (A+B)

√
Tvec(Γ̂− Γ0) + op(1)

L→N(0, V (ξ; θ0)), (B.26)

where V (ξ; θ0) is given as in A16. The theorem follows then from (B.22) – (B.26). �
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