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Abstract

This paper deals with a lincar errors-in-variables model where the dependent variable 1s
censored. A two-step procedurc is proposed to estimate the model and the corresponding
asymptotic covariance matrices are derived. The framework covers the usual {error-free)
Tobit model as a special case. It is shown that, under normality and a certain identifying
condition, this model can be uniquely reduced to an error-free censored regression modci
and, hence, the existing cstimators for the Tobit model can be used to obtain estimators
for this model. In particular, the maximum-likelihood estimator is derived in this way.
The small-sample behavior of the two estimators and their sensitivities to misspecified
identifying information are studied through Monte-Carlo simulations. © 1998 Elsevier
Science B.V. All rights reserved.

Keywords: Tobit model; Measurement crrors; Limited dependent variable: Moment
estimation; Maximum likelihood: Identification
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1. Introduction

The censored regression models (Tobit models) are widely used in economet-
rics, biometrics and many other fields. See, e.g.. Heckman and MaCurdy (1986),
Killingsworth and Heckman (1986) and Pencavel (1986) for the applications of
these models in labor econometrics. The statistical theories and methods for these
models can be found in Amemiya (1984, 1985), Maddala (1985) and Greene
(1993). Usually, it is assumed in these models that the explanatory variables are
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bounded constants and are exactly observed. Obviously, such assumptions
are not always appropriate in many real problems and may result in inaccurate
and inconsistent estimates. Recently, several authors have considered the cen-
sored regression models or other limited dependent variable models with mea-
surement errors. Hsiao (1991) studied a class of binary choice models where
the explanatory variables are measured with errors. Weiss (1993) investigated
the least absolute deviation estimators of a censored linear errors-in-variables
model when certain instrumental variables are available. Whereas Colombi (1993)
treated a more general class of latent variables models. For the censored regres-
sion models with errors-in-variables, however, statistical theories of the most
commonly used moment estimator and maximum-likelihood estimator are not
yet available. The objective of the present paper is to fill in this
gap.

Specifically, we consider the following censored linear errors-in-variables
model:

ne=p+ /;Sél + U, yr=max {n.0}, x, =&+, (1)

where 1, € R, & € R* are the unobserved variables, 3, f, the regression param-
cters, Vi, X, the observed variables and u«,, v, the errors (here we use the word
unobserved also for partly unobscrved variable). Furthermore, we assume that u,,
v, and ¢, are independently and normally distributed with means 0, 0, u: and
variances a,, X,, X, respectively.

The major diflference between model (1) and the ordinary (error-frec) Tobit
model is that some or all components of the explanatory variable &, are sub-
ject to measurement errors. As is well-known, this feature causes many difli-
culties and complexities in conducting the statistical analysis of the model, be-
cause now the x;'s are no longer constants and, as a result, the distributions
of the x,"s enter the likelihood function of the model. In this paper we show
that, given the normality assumption and certain identifying information, model
(1) can be uniquely reduced to an error-free censored regression model and,
consequently, the estimators of this model can be derived through the existing
cstimators of the Tobit model. In particular, the maximum-likelihood estima-
tor (MLE) is derived using this approach. We also propose an alternative ap-
proach to derive the two-step moment estimators (TME) and their asymptotic
covariance matrices. It is worth noting that, although the method of moments
is widely applied in many estimation procedures, the asymptotic covariance ma-
trix of the moment estimator for the usual Tobit model is not yet available. To
the best of author’s knowledge. the only recent work dealing with this aspect
in the cconometric literature is Greene (1983), where only the asymptotic co-
variance matrix of the moment estimator of the slope parameter fi, is given.
As a by-product, therefore, the asymptotic results in Section 3 provide a com-
plete formula for the asymptotic covariance matrix of the moment estimator of
all parameters in the Tobit model, which is considered as a special case of
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model (1) where the measurement errors have zero covariance matrix X, =0. As
for the a priori identifying condition, instead of assuming the existence of cer-
tain instrumental variables we assume that the noise-to-signal ratio 4 = Z;’Er is
known. )

The paper is organized as follows. Section 2 is concerned with the identifiability
of model (1). Section 3 shows how model (1) can be uniquely reduced to an
error-free model and how the estimators are derived in general. In Section 4 two-
step moment estimators are proposed and their asymptotic covariance matrices are
derived. The maximum-likelihcod estimator is derived in Section 5. The small
sample behavior of these two procedures and their sensitivities to the misspecified
identifying information A are investigated through Monte-Carlo simulations in
Section 6. The conclusions are in Section 7.

2. ldentifiability

It is well-known that the usual linear normal errors-in-variables model is not
identifiable and hence the model cannot be estimated consistently. In this section,
we examine the identifiability of model (1).

For identifiability we adopt the definition of Hsiao (1983) or Fuller (1987),
Section 1.1.3. Formally, dencte the sample z = (y,, x;, 1 =1.2,...,T), where T is
the sample size, and suppose the sample distribution function F(z | 0) is known up
to an unknown parameter (0 € R”. Let @ CR” denote the parameter space. Then
the model is said to be identifiable, if for any 0y, €0, F(z|0))=F(z|)
implies () = (. A parameter in the model (a component of () € @) is said to be
identified, if it is uniquely determined by the sample distribution.

Now in model (1) the sample distribution is a product of the distributions
of (v.x]) because the sample is i.i.d. From (1) the distribution of (v,,x;) is
completely determined by the distribution of (#,,x;), which is in turn completely
determined by the first and second moments of (#,,x;) under normality. Further,
the first and second moments of (x,.x;) are related to the model parameters
through the equations

Hy = B+ /iél‘éa =W Oy = IfSZ;I;Z + Oy,
G’_\A,, = X;/f:. Z\. = Z\ -+ Z,-.

(2)

From (2) it is clear that there are more than one sets of values of parame-
ters (1, f2.0,.2:,2,) which are compatible with the same set of values of the
parameters on the left-hand side of (2) and, therefore, are compatible with the
same sample distribution of (y,,x;). As a result, in general, model (1) is not
identifiable.

Next we show that, except (31, f2.0,. 2, Z,), all other parameters in the model
are identified. Indeed, the identifiability of y.: is clear. To see that u,. g, and ay,
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are also identified, let 0 = p,/,/6,. Then, by straightforward integration we have

E(y;) = P(3)E(» | yr > 0),
E(v |y > 0)=p, + /3,¢(8)/P(9), 3)
E(x, v |y > 0)=0y, + E(y: |y > 0),

where @(-) and ¢(-) are the standard normal distribution and density functions.
It is apparent from (3) that p,, ¢, and oy, are uniquely determined by the
moments of (v,,x,) which appear in (3).

It follows that the sample distribution of (y;,x;) and the first two moments
of (#,,x;) are mutually uniquely determined. As a result, the identifiability of
moc.2l (1) is equivalent to the unique determination of the model parameters
by Egs. (2), given its left-hand side. A simple counting process shows that (2)
contains (k + 1)(k +4)/2 independent equations but (k + 1)(k+2) free parameters
on the right-hand side. Thus, as in the case of usual linear errors-in-variables
models, a priori restrictions on the model parameters (B4, f2,0,,Z:,Z,) are needed
to ensure identifiability.

In practical applications the a priori identifying information is usually provided
in terms of at least k(k + 1)/2 linear restrictions on the parameters, e.g., that the
variance ratio ;' Z, or the so-called reliability ratio k = X7 'Z: is known or may
be determined previously. The latter is equivalent to the condition that the noise-
to-signal ratio 4 = Xj"Z,. is known because x = (I + 4)~'. This information can
be obtained in many situations when, ¢.g.. validation data, panel data or repeated
sampling are available. For more discussions sce, ¢.g.. Jacch (1985), Fuller (1987)
and Gileser (1992). In the rest of this paper we assume that 4 = 2.‘3“2.. is known.

3. Model reduction and estimation

In this section we show that model (1) can be reduced to an error-free form.
Indeed, let A=2:2" and b= (I - A)u,, then

s.f, ::Ax; + b+ (T (4)

where ¢; = (I ~ 4)(x; — ;) - v, is independent of x, under normality. Substituting
(4) into the first equation of (1) and combining it with the second equation of
(1) result in the familiar form of a censored regression model:

4
Ne = 70+ 70X+ wy

5
vo= max {n,. 0}, ©)

where w, =1, + ffi¢, has distribution N(0,a,) and is independent of x,. The
relations between the new parameters (71,726, 2,) and the original ones
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(Br. B2, Gys 11, 2, X)) are given by
Bi=n =147, Pr=U+ Dy 6,=0, — 3247,

6
pe=p, Ze=X(l+4)7, ©)

where 4 =25"2,.. Clearly, the mapping (6) is one-to-one. Consequently, any
estimator of model (5) implies a corresponding estimator of model (1). Using
this approach it is also possible to derive the asymptotic bias of the estimator
of modei (1) when the identifying information 4 is misspecified. For instance,
if ;/1—(,,.,2,0,.) is a consistent estimator of model (5) and ()—(ﬂl,ﬁz,o',,) is
obtained via (6) where, instead of 4, a wrong 4 is used. Then, the asymptotic
bias of 0 is given by

plim 3, = fi + 1(4 — ) + 4)"' B,
plim f, = 2 — (4 — A1 + 4)"' fa, (7)
plimd, = o, + pyZ:(4 — AW + 4) ' pa.

From (7) we see that the estimation biases are of the same order as 4 — A4 and,
hence, can be significant if the amount of misspecification 4 — 4 is not very small
relative to / + A. Furthermore, the slope parameter f§; tends to be underestimated
by underspecified 4 and overestimated by overspecified 4, whereas the converse
is true for f and a,.

Finally, we note that model (5) is diflerent from the ordinary Tobit model
in that the x, in (5) is a random variable and is unbounded under normality,
whereas in the Tobit model it is assumed to be bounded constants. This fact
should be taken into account in deriving the asymptotic covariance matrices of
the estimators. In Section 5 we show how the maximum-likelihood estimator for
model (1) can be derived in the way described in this section.

4. Two-step moment estimators (TME)

In this section, we consider the moment estimator of model (1). As has been
discussed in Section 3, one way of deriving the moment estimator is to use
(6) and the corresponding moment estimator of model (5). A technical difficulty
with this approach, however, is that, in order to derive the asymptotic covari-
ance matrix of the estimator, the corresponding asymptotic covariance matrix of
the moment estimator of model (5) is needed, which is not yet available. To
overcome this difficulty we propose a two-step procedure based on the discus-
sion in Section 2: first, the first and second moments of (#,,x;) are estimated us-
ing (3); and then, the other parameters are estimated by solving Eqgs. (2) with the
left-hand side substituted through the sample moments and the estimates obtained
from the first step.
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Suppose the data (y;,x;), t =1,2,..., T, are given, in which Ty v,’s are zero and
T\=T — Ty y,’s are positive. To avoid the trivial case we assume 0 < Ty < T.
Further, denote the sample moments i, = (1 /T)Z:T:l Ves H,=(1/ T)erzlx, and
So=(1 /T)erzl(x, — X)(x; — X)’. The conditional moments in (3) are denoted
as fty4+, fiy24 and gy, which are consistently estimated by the corresponding
sample moments using the positive y,’s and the corresponding x,’s. These es-
timators are denoted analogously as fi,,, fi,:, and fi . Then, by definition,

5= &~ '(ji,/ft,,)=®~(T\/T) and from (3) we have
fl, =0, /(0 + GNP, 6y = (4, /00 Guy = fivyy — fisfiye  (8)

Substituting ., f,, and (8) into the left-hand side of (2) and solving these
equations we obtain

s el 5.
Br=2: by, Bi=i, - ﬁ’.“

. . A . (9)
Ty =0y — /;'26',\':” ﬁ; ‘_‘ﬁp z; =2l + A)”l-

Clearly, all estimators given by (8) and (9) are strongly consistent because they
are continuous functions of the sample moments. To derive the asymptotic. nor-
malities of these two- slep moment estimators, we denote ¥ = (1, 3, 05, lt;. 0, )
and 0= (fiy, B3 0, ', 0 ). where

0;\' = VeC 21\« S “\';,3‘ = ﬂ\ N I‘\q

o;=vecd;, vec is the usual column vectorization operator and  is the
Kronecker product. Correspondingly, we denote the ﬁrst-step estimators by ¥ ™ =
(A, 6.6 ,,,.u\.n )’ and the second-step estimators by iy —([f, /f«,(i,,.ﬁl;.&< ).
Then, as is shown in Appendix A, we have the following expressions:

- ~ 0
Y —Yo=dA /T, (10)
t=1
and

= O = B 1 — W), (1)
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where Yy and 6y correspond to the true parameters of model (1), A and B con-
verge in probability to

My oy Hy
- —1_ 90 0 0 )
( Hy 1, P(0)
My y 1 ) 20y,
26, | ==~ — —— . 0 0 0
’ (I‘m“_r 0¢(0) Hy+ P(0)
A= Uy 1
L SR A A 0
0 o) @) My
0 0 0 I 0
\ 0 0 0 =l @ py — e QI lk}
(12)
and
(v 0 -u: Y | A = T Y
o o x! 0 -0, wz!
B=10 1 =2 0 a2 wpy |, (13)
0 0 0 I 0
\0 0 0 0 sxV el )

respectively,
. ' LTV 'y
o= (8 = PO), (v — B s Se(Xe Ve = flay Yo (X = gt ) 5 (X &0 = Hyeon)')

and

1, v >0.
8=
O. ,vl =V

Since z, are i.i.d., by a central limit theorem,

S BN (14)

T

ﬂ

- i
=\
with

3. =Ezz = MO En L),
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where
/ 1 — @) * ® \
0 g v+ *
z 1= 0 Heyry — Hy+ Pyt va\'+
s = Moyt = Mot fys [y Ty T
\ﬂr:‘i:.\'+ = Meax Hasors — oec ey Resox’y+ — l‘.\'ﬂ.r+l‘;y+ }
and
( * <)
* *
2.‘3 = * *
2./ P(0) *

\(Hn:-:m’ . I‘r:-:\ll: )/ (o) zx:-:r/"’(o‘)}

The following results follow then trom (10), (11), (14) and Slutsky Theorem
(Amemiya, 1985).

Theorem 1. Suppose X:>0 and A= 2.‘;‘).’, is known. Then,
(1) all estimators given by (8) (9) are strongly consistent,

(2) VT 1y = o) 2 NOAZ.A'), where A is given by (12);
(3) VT(lm — 0y) LR N(O,BAZ.A'B'), where B is given by (13).

Remark 1. The two-step procedure used in this section may be similarly applied
to the case where instead of 4 the variance ratio o, 'Z, is known. The only
difference is that the second-step estimators should be calculated similarly as
in Fuller (1987), Section 1.3. The asymptotic results of the estimators may be
established analogously to Theorem 1. Such results for a simple model with & =1
are given by Theorem 1.3.1 of Fuller (1987).

Remark 2. If A=0, then 2:=2, and model (1) reduces to the usual error-
free Tobit model. Thus, the asymptotic covariance matrices given in Theorem 1|
apply to the moment estimators of the Tobit model as well. These formulae have
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not been given in the literature, though the moment estimators are widely used
in estimation procedures.

5. Maximum-likelihood estimator (MLE)

In this section we derive the MLE of model (1) via the MLE of model (5).
In particular, we show that the results of Olsen (1978) concerning the existence
of the unique, global MLE for model (5) and the results of Amemiya (1973)
concerning the asymptotic normality of the MLE can be used to obtain the cor-
responding results of the MLE for model (1).

Let the data be given as in Section 4. Without loss of generality, we assume
that the first Ty v,’s are zero and the last 7\ =T — Ty y,’s are positive. Then the
log-likelihood function of model (1) is, up to a constant,

& T+ X TI 1 I 5
L=S logp | -T2 log 6, — —— Y — =)
’z"':‘ o ( VO 2 g 20, I:]Z}wl(}[ 1 2\1)

T 1 J
-~ logdetX, — = 5" (x, - ;q)z — Ity), (15)
2 21-_:]

where (71,52, Gus iy, X ) are given by (6). It is clear that the first part (the firsi
line) of (15) is just the conditional log-likelihood function of model (5) and
does not involve i, and X,. As a result, the MLE of g, and X, are given by the
corresponding sample moments and the MLE of p: and 2 are, therefore, identical
wnh th TML in (9) Thc MLE of (/ﬁ,/)' «r,‘) may bc obl.umd via (6) and tlu,

x:":(r,l r,z)’ Olaun (1978) ahows that lhc. wndmonal log, llkLllh()Od 1unctlon
(the first line of (15))

ll)
L(t//)-leog(b( 1r,)+Tl|05r—-—t// Z'Zy (16)

is globally concave in Y =(a,1)€ Y =R xR,, where R, =(0,+).
S=(La)). Z=(X, =Y, Xi = Ea8n00,080) and Y= (07,00 V02,
vr). The asymptotic normality of the MLE for the Tobit model is established
by Amemiya (1973). Adapted to our situation where the x, is a random variable,
the asympiotic covariance matrix of lj/Ml obtained by maximizing L.(y) in (16)
can be written as the inverse of

- phm - | L)

= Q= Q, + P(0)Q,,
plim & =7 0 (0)
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where 0 = p,/,/5),

(p( —(S)E[;.I(;q - Ilf, ).f;.f; | ’h SO] O
0 <1>(<)')/‘t2 ’

H

0

E(le’: | v, >0) —E(X; ¥, | »>0)
—E(y% | y:>0)  E(? |y >0)

and /4, = ¢(2'%,)/P(—o'%,). The derivation is straightforward by using the stan-

dard results of normal distribution. An alternative and direct derivation of the

asymptotic covariance matrix Q is given by Wang (1994). Now, the MLE for
0=(p,p50,) is calculated according to

B =(x — i 4x)/,
B2 = + A)xa/7, (17)
o, =(1 - 2521412 )//Tz-
Let 0(1): ¥ — O denote the mapping (17) and . = 0(4) ). Then the con-
sistency of Oy follows immediately from the continuity of ((ys). To show the

asymptotic normality of (., note that 0(y) is continuously differentiable and,
hence, we have the first-order Taylor expansion

. o) -
On = Oy = ""“’i‘m’( Y, = Yo

oy’
where 1 lies between iy and . The derivative 00/0y’ is obviously a contin-
uous function of v and, therefore, converges in probability to the matrix
I —uA -
C=\o, |0 I+4 - . (18)
0 =22 -2a,

Thus. we have the following results.

Theorem 2. Suppose 6, >0, X:>0 and A =2~ '3, is given. Then.
(1) the log-likelihood function L in (15) has a unique, finite, global maxinuon
in the parameter space @ = R3*AtHHAG=D2 o péet
» p . .
(2) tha — On. where Oy ix the true parameter of model (1),
e L wwro | s . .
(3) V(O = Oy) = NO.CR'C"), where C is given by (18).

Remark 3. The maximization of L.(/) may be carried out through standard
numerical methods such as Newton-Raphson. The numerical calculation is
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straightforward as the first and second derivatives of L.(y/) are available:

eLe) _ (_x(;;.0> _Zw

and

L) XoAoXo 0 ,
<AL , | —Z'Z,
(-"// (‘I// 0 T} /‘E“

where Xy = (X1, X2,....57,), Ao=(An 1= 1,2,...,Ty), 4 = P(2'%,)/P(—2'%,) and
Ay is the diagonal matrix with the diagonal elements 4,(4, —a %), t=1,2,....To.
Since Lc(y) is globally concave, the iteration may start at any finite point. How-
ever, a good starting point is important for rapid convergence. The TME of
Section 4 may serve as initial values for the iterations. As is shown by the
Monte-Carlo simulation study in the next section, for a simple model with £ =1
the MLE procedures using the Newton—Raphson algorithm and the TME as start-
ing values may achieve rather satisfactory convergence after four or five itera-
tions. Furthermore, the estimators i, and (), obtained after one iteration in the
Newton-Raphson procedure have the same asymptotic distributions as the MLE
Yame and Ome, respectively.

6. Monte-Carlo simulations

Both the TME and the MLE of model (1) derived in previous sections are
consistent and asymptotically normal under general conditions. In this section we
study through Monte-Carlo simulations the behavior of the two procedures when
the sample size is small or the a priori information 4 is misspecified. We con-
sider a simple model with k = 1. In this case we use lower-case letters to denote
all moments. The true values for the model are f5) = -6, > =0.6, g, =0, =18,
1: =20 and o:=180. Thus, the true noise-to-signal ratio is 4-==a,/6;=0.1.
We simulate the means and the mean absolute deviations

MAD(0,)=E|0, - 0,], i=1,2.3

for the estimators 0= ( /;,./33.6,, Y. The TME arc calculated according to
(8)-(9), whereas the MLE are calculated by (17) and by maximizing the function
L. in (16) through the Newton-Raphson method. In each simulation N = 1000
replications have been carried out. The average amount of censored observations
in the samples is about 25% and the average number of iterations in calculating
the MLE is / =4 with convergence criterion ¢ = 1077,
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Table 1

TME and MLE for 4 =0.1 and various sample sizes T

T 20 30 40 50 100 200 400

B =—6

TME —5.7304 —6.0763 —6.0413 —5.9857 —5.9937 —6.0078 —-5.9979
MAD 2.5710 2.1882 1.8461 1.6334 1.3374 0.9007 0.5833
MLE -6.1719 —6.2827 —6.1753 —6.0898 -6.0097 -6.0324 —6.0045
MAD 2.2758 1.8426 1.550i 1.3593 0.9878 0.6881 0.4918
f2 =06

TME 0.5799 0.5156 0.5969 0.5942 0.5963 0.5992 0.5996
MAD 0.1026 0.0850 0.0722 0.0623 0.0515 60343 0.0227
MLE 0.6075 0.6110 0.6069 0.6025 0.5986 0.6013 0.6002
MAD 0.0930 0.0728 0.0616 0.0532 0.0387 0.0272 0.0192
oy = 18

TME 20.8168 20.0339 18.8528 18.3816 17.5777 18.0802 17.9807
MAD 9.6586 8.4361 7.6692 6.6087 4.2507 3.1007 2.5924
MLE 15.3643 16.3107 16.4671 16.9253 17.4719 17.7281 17.8609
MAD 7.1586 6.2665 5.2678 4.6483 3.3252 2.2616 1.5662

6.1, TME and MLE for various sample sizes

Table | contains the simulated estimates for various sample sizes. These results
show that the MLE tends t¢ overestimate and the TME tends to underestimate
the slope parameter fiy, whereas this is converse for the intercept f§; and the vari-
ance a,. The TME performs rather satisfactory for the sample size 7'>40 and
so does the MLE for 72 50. The MLE scems to underestimate 4, significantly.
However, for 72100 the estimates of both procedures are rather satisfactory
with the precision 0.0097 for 8, and f5 (except the MLE by 7 =200, which
is 0.0324). For the sample size 7 <30, both procedures may have big bias for
certain parameters, which is not surprising if we note that only about 23 obser-
vations were used to estimate five parameters. Note also, in general, ff; and f5;
are more exactly estimated than a,. Finally, the MLE has almost always smaller
MAD than the TME. However, this is a trade-off for the fact that the MLE is
computationally much more expensive.

6.2. Seacitivities of TME and MLE to misspecified A

Table 2 shows the results of simulations for various 4's, whercas the true
4 =0.1. For easier comparison the estimates for the true 4 = 0.1 are also included.
Note that the case 4 =0.001 approximates the error-free modeling, whereas the
data are, in fact, generated from an errors-in-variables system. In order to reduce
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Table 2
TME and MLE for T =200 and true 4 =0.1
A 0.001 0.01 0.05 0.1 0.15 0.2 03
fr=-6
TME -4.9198 —4.9906 —5.4024 —6.0078 —-6.5174 —7.0931 —8.1172
MAD 1.2381 1.1759 0.9568 0.9007 0.9418 1.2862 2.i1372
MLE —4.9203 -5.0199 —5.4760 —6.0324 —6.5351 -7.1070 —8.1951
MAD 1.1530 1.0787 0.8204 0.6881 0.8294 1.2093 2.2020
[2=06
TME 0.5443 0.5498 0.5689 0.5992 0.6254 0.6530 0.7050
MAD 0.0585 0.0538 0.0406 0.0343 0.0390 0.0581 0.1052
MLE 0.5453 0.5517 0.5723 0.6013 0.6270 0.6549 0.7010
MAD 0.0558 0.0502 0.0356 0.0272 0.0354 0.0571 0.1090
o, =18
TME 23.7936 23.2596 20.8251 18.0802 15.0082 12.5844 6.7985
MAD 6.1017 5.6881 4.1465 3.1007 4.3896 5.9605 11.2415
MLE 23.5279 229712 20.6406 17.7281 14.6589 12.0428 5.7226
MAD 5.5572 49975 3.0457 2.2616 3.7282 6.0374 12.2774

the sampling effect, in each simulation 7' =200 observations are generated. From
Table 2 we see that, first of all, both the TME and the MLE are rather sensitive to
changes of 4 and their sensitivities have a very clear systematic pattern described
by (7) in Scction 3. The MLE almost always overestimate the TME for fi; and
underestimate the TME for f§; and a,. Different from Section 6.1, the MLE have
smaller MAD than TME do for 4<0.2 (except for g, and 4=0.2) and larger
MAD for 4=0.3. In general, the MLE seem to be more sensitive than the TME
are.

7. Conclusions

We have shown that if the covariates in a censored regression model are
measured with errors, then the problem of non-identifiability occurs as in the usual
linear errors-in-variables models under normality. We proposed two-step moment
estimators (TME) of the model and derived the asymptotic covariance matrices.
The obtained formulae can be used for the moment estimator of the usual error-
free Tobit model. We also demonstrated that, given the normality assumption
and the identifying condition, this model can be uniquely reduced to an error-
free Tobit model. As a result, estimators for the original model may be obtained
via the estimators for the reduced model. In particular, the maximum-likelihood
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estimator (MLE) is derived in this way. The MLE may be calculated by standard
numerical methods because of the uniqueness of the global maximum, whereas
the TME have the practical advantage that the numerical calculation is very easy.
The Monte-Carlo studies show that, in general, both procedures produce rather
satisfactory estimates for sample size larger than 50 for a simple model with five
unknown parameters. However, they are rather sensitive to the misspecification of
the a priori information used. Thus, the specification of the a priori information
is important in applications. In general, the TME is more stable and reliable than
the MLE and also computationally cheaper.

Appendix A Proof of (10)-(13)

For notational simplicity, we denote @ = @(3), ¢ =@ (d), 4= ¢/P and, corre-
spondingly, = <D(r>) d) (f)(()) and 4= ¢>,d> For various matrix operations and
rules used in this paper we refer the reader to Magnus and Neudecker (1988)
and Liitkepohl (1991).

First we show (10). By (3) and straightforward calculation, we have

q, =ty = o ’i.w o,y
" " (): -l- ,;: (s ‘+‘ ;.

Ol = 1ty LM [4( = ) — &4 — 4)]
O+ 4 O+ )0+ 4)

) S, - ) el o/,,(o)](omo) A
0=+=/ ((H/)(«H/)

where /l,;((f):—rl(¢)’)[($+/l(<§)] is the derivative of A(d) and O lies between
o and o. By definition, we have

d-d= ! < -f;l— - ¢
(/) (0) \ K Vet

1 1 L )
= e [ =) 5, =D A2
b(9) (TZ. ' (A-2)
It follows from (A.l) and (A.2) that

tyls = 04s(0 I i, .
fy =y = Qd‘*w‘( L ( 28— ‘-'})+ iy = )
O(() + 4 )(/)(()) =1 My '

=@~ )+ b, , - 10 ).
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Similarly,
a2 2
a ’l l’ lln
O —0="73"%
o

H,+ u,(b +0) .
L —(f, — ty) — —5—— (5~ 3)
S 5252

(Hq +.l }])

_ [(;i,, + pty)d a,,(o+o)
5 5 (3)
=¢(§—-D)+ aﬂV(,li.‘.+ — i)

Furthermore, we have
&.t)] — Oy = (li_r_;-+ — Hyy+ )— lix(/jvw ~Myy) — lv‘y+(ﬂix - My)

T
( T ) }:s,(y, =y ) = My (L~ )
=1

T
(T) "r(xl,\’t = M)

Ay = 0y = (Hyy = o) = U 02 g+ g 0 BOGE = o)

and

Putting these cquations into matrix form we obtain (10) with

a (T/T)b 0 0 0
¢ (T/T)d 0 0 0
A= 10 —(Tym)HE, (T ~tty i 0
0 0 0 I 0
0 0 0 A Pl (Y A

Using relationships (3) it is straightforward to have

plim d tylh+ 040+ 24)] [l +0(0+4)]
1 = — ~ . — . ;
;'«x 00+ £)¢(0) 3D+ 2)D

Tl LT L L

1"y ty

]( - o)+ i,
0

= Hyy)

397



398 L. Wang/!Journal of Econometrics 84 (1998) 383-400

plim b= —”i,
T—oo Hy+

lim & = 218 _ 2% —20(”—""+ _ L )
pIme=75r " 560 "y, 05605

and

Finally, by definiticn,

. Tl . ."2‘
lim (_.>= lim — = .
?‘-’00 \ T 7p—”>c #.y-*-

It follows that plim;_ . A =A which is given in (12).
Next we show (11). Using (9) we have

-1

/}2 -pr= Z; 6',\"1 - 2{'0},,
S a=l 2 -
= z;’ (Oxy — Ocy) — z,; (2y = 2y)2, lofn;

a1, PR -l
= 2'; (G = 6y) = (‘7\‘,,2,\ ) -)- Way - ay),

A

a al N 'y
By = Bo= iy, = 1) = Byals = pe) = (B2 = B2) 1
- A =1,
= (Il., - l‘u) - ﬂz(.‘l,r - ﬂx) - I‘,’tz': ((’_\'n - Ofw)

+ u.,\‘(ott'uz;l 8 Z‘\: = 1)(d, - ay),

~ ~ .’ - D
Gy — Oy = (03, - 001) - /’2(0'.\'01 - qn') - (/}2 - lfl‘ )'an)
o 5 a=1
=(ay, —ay) - (/‘2 + 0:., Z\ (T (T,n,)
. =1l .

IE:‘ —H= Ii.\’ = Hy
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and
G:—0: = vec(fg - 2¢)
=vec[(Z, — Z ) + 4)7']

=[Z:Z7' ® L](6x — ay).
Then (11) follows with

(l 0 —;t;fgl —ﬁ; 01, 27 @ WX -1

00 b 0 —d, oL
B=lo 1 —f-a, 5" o o/, 57 @, 57

0 0 0 I 0

\0 0 0 0 SE oL )

which converges in probability to the matrix B in (13). The proof is completed.
' 0
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