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Abstract 

This paper deals with a linear errors-in-variables model where the dcpcndcnt variable IS 
censored. A two-step procedure is proposed to estimate the model and the corresponding 
asymptotic covariance matrices arc derived. The framework covers the usual (error-free) 
Tobit model as a special cast. It is shown that, under normality and a certain idcntiFying 
condition, this model can be uniquely reduced to an error-free censored regression modci 
and, hence, the existing estimators for the Tobit model can be used to obtain estimators 
for this model. In particular, the maximum-likelihood estimator is derived m this way. 
The small-sample behavior of the two estimators and their sensitivities to misspecified 
idcntif’ying information are studied through Monte-Carlo simulations. 0 I998 Elscvicr 
Scicncc H.V. All rights rcscrvod. 

The censored regression models (Tobit models) are widely used in econwnet- 
rics, biometrics and many other fields. See, e.g., Heckman and MaCurdy ( 1886), 

Killingsworth and Heckman ( 1986) and Pencavel ( 1986) for the applications of 
these models in labor econometrics. The statistical theories and methods for these 
models can be found in Amemiya ( 1984, 1985 ), Maddala ( 1985) and Grecnc 
( 1993). Usually, it is assumed in these models that the explanatory variables are 
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bounded constants and are exactly observed. Obviously, such assumptions 
are not always appropriate in many real problems and may result in inaccurate 
and inconsistent estimates. Recently, several authors have considered the cen- 
sored regression models or other limited dependent variable models with mea- 
surement errors. Hsiao ( 1991) studied a class of binary choice models where 
the explanatory variables are measured with errors. Weiss ( 1993) investigated 
the least absolute deviation estimators of a censored linear errors-in-variables 
model when certain instrumental variables are available. Whereas Colombi ( 1993) 
treated a more general class of latent variables models. For the censored regres- 
sion models with errors-in-variables, however, statistical theories of the most 
commonly used moment estimator and maximum-likelihood estimator are not 
yet available. The objective of the present paper is to fill in this 
gap* 

Specifically, we consider the following censored linear errors-in-variables 
model: 

tit = /j, -t /$& -t- ur, yl = max {ql.O} , x, = I, + rt, (1) 

08” are the unobserved variables, PI, /I1 the regression param- 
eters, J,, s, the observed variables and ar,, 19, the errors (here we use the word 
t~ttdwtwd also for partly unobserved variable). Furthermore, we assume that ut, 
$‘I and cl are indcpendcntly and normally distributed with means 0, 0, cc; and 
variances ql, X,>, 4X,, respectively. 

‘The major ditlirencc bctwccn madcl ( 1 ) and the ordinary (error-Ccc) Tobit 
model is tlrt~t some or all components of the sxplanatory variable {, we sub- 
ject to i~~~~~surei~~c~~~ errors, As is well-known, this fca1urc causes many dilli- 
cultics and complexities in con cting the statistical ntlalysis of‘ the mo&$ be- 
cause now the q’s are no loi r constants and, as ;I result, the dislributiotls 
of thu $S ontcr the likclihood function of Ihe model. In this paper WC show 
that, given the normality assumption and certain identifying information, model 
( 1 ) can bc uniquely reduced to an error-free censored regression model and, 
consequently, the estimators of this model can be derived through the existing 
estimators of the Tobit model, In particular, the maximum-likelihood estima- 
tor (MLE) is derived usin this approach, We also propose an alternative ap- 
ptuwh to derive the two-step moment estimators (TME) and their asymptotic 
covariance matrices. It is worth noting that, although the method of moments 
is widely applied in many estimation procedures, the asymptotic covariancc ma- 
trix of’ ihc moment estimator for the usual Tobit model is not yet available. To 
the best of aufhor’s k~~~~~vledg~, the only recent work dealing with this aspect 
in the econometric ~iter~lture is Greene ( 19$3), where only the asymptotic co- 
wrianc~ matrix of the moment estimator of Ehc slope parameter /jz is given. 
As a by-product, thercfbrc, the asymptotic results in Section 3 provide a com- 
plete 1brmuIa for the asymptotic covariance matrix of the moment estimator of 
all parameters in the Tobit model, which is considered as a special case of 



model (1) where the measurement errors have zero covariance matrix XV = 0. As 
for the a priori identifying condition, instead of assuming the existence of cer- 
tain instrumental variables we assume that the noise-to-signal ratio d = CT’ C, is 
known. 

The paper is organized as follows. Section 2 is concerned with the identifiability 
of model ( 1). Section 3 shows how model (1) can be uniquely reduced to an 
error-free model and how the estimators are derived in general. In Section 4 two- 
step moment estimators are proposed and their asymptotic covariance matrices are 
derived. The maximum-likelihood estimator is derived in Section 5. The small 
sample behavior of these two procedures and their sensitivities to the misspecified 
identifying information d are investigated through Monte-Carlo simulations in 
Section 6. The conclusions are in Section 7. 

It is well-known that the usual linear normal errors-in-variables model is not 
identifiable and hence the model cannot be estimated consistently. In this section, 
we examine the identifiability of model (1). 

For identifiability we adopt the definition of Hsiao ( 1983) or Fuller ( 1987 ), 
Section 1.1.3. Formally, denote the sample z = ( yf, x:, t = I, 2,. . . , T), where T is 
the sample size, and suppose the sample distribution function F(z IO) is known up 
to an unknown parameter 0 E R . P Let 0 C W’ denote the parameter space. Then 
the model is said to be identifiable, if for any (I,, 0: E Q, F(z 1 01 ) z F(:: 1 0~ ) 
implies 01 = (12. A parameter in the IIIOC~C~ (11 component of 0 E 0) is said to IX 
identified, ii’ it is uniquely determined by the sample distribution. 

Now in model ( 1 ) the sample distribution is a product of the distributions 
ot’ (,r,,s~) because the sample is i.i.d. From ( 1 ) the distribution of (_v,,x~) is 
completely determined by the distribution of ( Q,,I$ ), which is in turn completely 
determined by the first and second moments of (t),.x~) under normality. Further, 
the first and second moments of (rlt,s~) are related to the model parameters 
through the equations 

From (2) it is clear that there are more than one setc of values of parame- 
ters (/jr, /jz, (J,,, Xi, X,.) which arc compatible with the same set of values of the 
parameters on the left-hand side of (2) and, therefore, are compatible with the 
same sample distribution of ( _v,,s~), As a result, in general, model ( I ) is not 
identifiable. 

Next WC show that, except (/j,, /&. n,,, C,, C,.), all other parameters in the model 
are identified. Indeed, the identifiability of ~1: is clear. To see that /l,/. (T,/ and (T,,~ 



are also identified, let (5 = /+/fi. Then, by straightforward integration we have 

where @(*) and (b(s) are the standard normal distribution and density functions. 
It is apparent from (3) that j+, c,{ and c+ are uniquely determined by the 
moments of (,v,,x:) which appear in (3). 

It follows that the sample distribution of (_v+-~ ) and the first two moments 
of ( I~~,,Y~ ) are mutually uniquely determined. As a result, the identifiability of 
mot.21 ( 1) is equivalent to the unique determination of the model parameters 
by Eqs. (2), given its left-hand side. A simple counting process shows that (2) 
contains (k + 1 )( k + 4)/2 independent equations but (k + 1 )( k + 2) free parameters 
on the right-hand side. Thus, as in the case of usual linear errors-in-variables 
models, a priori restrictions on the model parameters (/I,, /&, q,, C;, C,.) are needed 
to ensure identifiability. 

In practical applications the a priori identifying information is usually provided 
in terms of at least k( k -I- 1)/2 linear restrictions on the parameters, e.g., that the 
variance ratio gr; ‘Z,. or the so-called reliability ratio h: = 2’,-‘& is known or may 
be determined previously. The latter is equivalent to the condition that the noisc- 

nal ratio A = L’~‘2Y$ is known because K = (I -I= 1(1 )-I. This information can 
be obtained in many situations when, c. validation data, panel data or repeated 

arc av0ilablc, For more discussions sc’c, c. Jacch ( 1985 ), Fuller ( 1 WV) 
r\nd C’rlcscr ( 199 ). In the rest of this paper* wc ass\ that A = ,I,‘;’ ’ X,. is known. 

9 

In this section we show that model ( 1) can be reduced to an error-free form. 
Indeed, let d = Xc Z,: I and h = (I - A )/I,,, then 

where c)~ = (I -_ A )(x, - /I.~ ) -- rt is independent of xf under normality. Substituting 
(4) into the first equation of ( 1) and combining it with the second equation of 
( 1 ) result in the Fiuniliar form of a censored regression model: 

where rr; = 1~ + /I$~, has distribution N(O, G,,. ) and is independent of sI. The 
relations between the new parameters (;q 1, ;*z, t-~,~~, p,, 2:, ) and the original ones 
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P 1 = ;‘I - p;.11;‘2, 112 = (1 + A)y2. o,, = c,,. - ;$&A;12, 

Z; = c,(I + A)-‘, 
(6) 

rcq = KY, 

where A = Z,’ Z,.. Clearly, the mapping (6) is one-to-one. Consequently, any 
estimator of model (5) implies a corresponding estimator of model ( 1). Using 
this approach it is also possible to derive the asymptotic bias of the estimator 
of modei ( 1) when the identifying information A is misspecified. For instance, 
if $=(1;,,?: , &)’ is a consistent estimator of model (5) and tj= (p,, F2, t-f,,,)’ is 
obtained via (6) where, instead of A, a wrong d is used. Then, the asymptotic 
bias of g is given by 

plim /5, = /I, + p;.(A - d)(/ + A)-‘/&, 

plim /iz = /$z - (A - &(I + A)-‘/&, (7) 

plim &, = (i,, + /&%$A - 6)(1 + A)- I/.&. 

From (7) we see that the estimation biases are of the same order as A - d and, 
hence, can be significant if the amount of misspecifkation A - 115 is not very small 
relative to I + A. Furthermore, the slope parameter /I2 tends to be underestimated 
by underspecified A and overestimated by overspecified A, whereas the converse 
is true for /II and u,,. 

Finally. we note that model (5) is difkrent from the ordinary Tobit model 
in that the x, in (5) is a random variable and is unbounded under normality, 
whcrcas in the Tobit model it is assumed to bc bounded constants. This fact 
should bc taken into account in deriving the asymptotic covariancc matrices 01 
the cstirm\tors. In Section 5 WC show how the tnaximunl-likclillood estimator fc~ 
model ( 1 ) can bc derived in the way described in this section. 

4. Two-step momenl 

In this section, we 
discussed in Section 

consider the moment estimator of model ( 1). As has been 
3, one way of deriving the moment estimator is to use 

(6) and the corresponding moment estimator of model (5). h technical dificulty 
with this approach, however, is that, in order to derive the asymptotic covari- 
ante matrix of the estimator, the corresponding asymptotic covariance matrix of 
the moment estimator of model (5) is needed, which is not yet available. To 
overcome this dil”ficulty we propose a two-step procedure based on the discus- 
sion in Section 2: first, the first and second moments of (q,,x: ) are estimated us- 
ing (3 ); and then, the other parameters are estimated by solving Eqs. (2) with the 
Icft-hand side substituted through the sample moments and the estimates obtained 
from the first step. 



Suppose the data (y,,xi), t = 1,2,..., T, are given, in which To yl’s are zero and 
T1 = T - To yr’s are positive. To avoid the trivial case we assume 0 < 7’0 c T. 
Further, denote the sample moments @,. = ( l/T) cf=, yr. & = ( 1 /T) cf=, xI and 

ZV = (l/T) c;,cx1 - -W=,=* - 2)‘. The conditional moments in (3) are denoted 
as IQ+, P+ + and I~.~~.+, which are consistently estimated by the corresponding 
sample moments using the positive _v~‘s and the corresponding x*‘s. These es- 
timators are denoted analogously as $_,.+, &+ and fi, ,.+. Then, by definition, 

_ &= Cp-‘(,i,./&.+) = @-‘(7+,/T) and from (3) we have 

Substituting Fx, & 
equations we obtain 

and (8) into the left-hand side of (2) and solving these 

Clearly, aII cstimstsrs iven by (8) and (9) are strongly consistent because they 
UT continuous functions of* the sample moments. To derive the asymptotic nor- 
malities of these two-step moment estimators, we denote G’/ = (I(,,, (t,,, a&. ,I,;., 0-i ) 

cmd 0 72 ( p, . pi, q,, 11; * Ig”; )‘, wkcrc 

*: =vecC;, vcc is the usual column vectorization operator and N is the 
Kronecker product. Correspondingly, we denote the first-step estimators by 6 TM =: 
(& ci,,, (ii,,, fi[-, 6:. )’ and the second-step estimators by (jTM = ($, 9 /%. t?,,, & 6: )‘. 

Then, as is shown in A~~e~di~ A, we have the foHowing expressiins: c 
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where $0 and 00 correspond to the true parameters of model ( I), 2 and 8 con- 
verge in probability to 

A= 

and 

(13) 

rcspcctivcly, 

=I zz (s, =- rl,( cs ), s, ( .\‘, -I ElJ I 19 %LW’, - jl,y t )‘, (x, - jl,)‘,(X, 1*2 A-, - jl,;.;, )‘)’ 

Since z1 are i.i.d., by a central limit theorem, 
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where 

and 

* 

* 

* 

* 

* 

~~j~~l(l~~ 1. The! two-step roccdure used in this section may be similarly applied 
to the cast‘ where instea of LI the variance ratio 0,;’ Z,. is known. The only 
difkrence is that the second-step estimators should be calculated similarly as 
in Fuller ( 1987). Section 1.3. The asymptotic results of the estimators may be 
established analogously to Theorem 1. Such results for a simple model with k = 1 

arc given by Theorem I 3.1 of Fuller ( 1 

~(j~~l(l~~ 2. If n = 0, then xc = 2-y and model ( I ) reduces to the usual error- 
obit model. Thus. the asymptotic covariance matrices given in Theorem 1 

apply fo the moment estimators cd the Tobit model as well. These formulae have 



not been given in the literature, though the moment estimators are widely used 
in estimation procedures. 

5. aximum-likelihood estimator ( 

In this section we derive the MLE of model ( I ) via the MLE of model (5). 
In particular, we show that the results of Olsen ( 1978) concerning the existence 
of the unique, global MLE for model (5) and the results of Amemiya ( 1973) 
concerning the asymptotic normality of the MLE can be used to obtain the cor- 
responding results of the MLE for model ( 1). 

Let the data be given as in Section 4. Without loss of generality, we assume 
that the first 7’0 .c)[‘s are zero and the last T, = T - To _v,‘s are positive. Then the 
log-likelihood function of model ( 1) is, up to a constant, 

T 
-- _Z log det C, - (15) 

where ( ;’ 1 , ;‘z, d,,*, /I\, X,) are given by (6). It is clear that the first part (the first 
lint) of ( 15) is just the conditional log-likelihood fimction of nwdel (5) and 
does not involve 11, and 2’,. As a result, the MLE of 11, and 
corresponding sample IWIIIYI~S nnd the MLE of’ p5 and 2‘; arc 
with the TME in (9). The MLE of (/ill /jz, tr,,) may bc obtained via (6) ad the 
MLL 01’ (;p I ;‘2, o,,! ) for model (5 ). Using the rcparamctori tion f = I / 6 ad 
3c = (t=;y , r;l: )‘, Olsa~ ( 1078 ) shows that the conditional I -1iklihood function 
(the first Gie of ( 15)) 

(W 

is globally concave in $ = (IX’, r )’ E V = R” + ’ x R ,_, where IR .+ = (0. -i-x; ), 
.& = ( 1, _u: )‘, Z = ( .+%‘I , - YI ), XI = (.Q, + 1, .<I;, ,z, . . . , .? 1’ )’ and YI = ( y,, t 1, y I;, ,?, . . . , 

_vl-)‘. The asymptotic normality of the MLE for the Tobit model is established 
by Amemiya ( 1973 ). Adapted to our situation where the x, is a random variable, 
the asymptotic covariance matrix of I,!&. obtained by maximizing L,( rl/ ) in 4 16) 
can be written as the inverse of 



and 2, = q3( ~‘2, )/@( --&XII ). The derivation is straightforward by using the stan- 
dard results of normal distribution. An alternative and direct derivation of the 
asymptotic covariance matrix Q is given by Wang ( 1994). Now, the MLE for 
0 = (/{I, /ji, n,, )’ is calculated according to 

Let O( I++) : Y I--+ @ denote the mapping ( 17) and (&,,rr_ = (I( 6 ML). Then the con- 
sistency of Ci Ml follows immediately from the continuity of (I($). To show the 
asymptotic normality of &rt., note that (I( tb ) is continuously differentiable and, 
hence, we have the first-order Taylor expansion 

Thus, we have the following rcsutts. 

~i~~~l~~~~~ 3. The maximization of L,($ ) may be carried out through standard 
numerical methods such as ewton-Raphson. The numerical calculation is 



straightforward as the first and second derivatives of L,( I++) are available: 

C’LW 4; i-0 
-= 

c?* ( > 7-l 15 
- z’z+ 
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~2Lcw = ( X,ln~X, 0 

(7*&y - 0 T1 /T2 1 - z’z, 

where XI,=(&,& ,...,_ f&J’, &=(i,,, I= I,2 ,..., To)‘, i.,=(b(z’x‘,)/@(-r’x’,) and 
/io is the diagonal matrix with the diagonal elements il,( i,, - &,), d = 1,2,. . . , To. 
Since L,(e) is globally concave, the iteration may start at any finite point. How- 
ever, a good starting point is important for rapid convergence. The TME of 
Section 4 may serve as initial values for the iterations. As is shown by the 
Monte-Carlo simulation study in the next section, for a simple model with k = 1 
the MLE procedures using the Newton-Raphson algorithm and the TME as start- 
ing values may achieve rather satisfactory convergence after four or five itera- 
tions. Furthermore, the estimators I.$, and Cj, obtained after one iteration in the 
Newton-Raphson procedure have the same asymptotic distributions as the MLE L 
ti M,_ and &,_, respcctivcly. 

6. 

1311th the TM!: and the MLE 01‘ model ( I ) dcrivcd in previous sections arc 
consistent and asymptotically normal under encral conditions. In this section WC 
study through Monte-Carlo simulations the behavior of the two procedures when 
the sample size is small or the a priori inl’ormation .A is misspccifkd. We con- 
sider a simple model with k = 1. In this case we use lower-case lcttcrs to denote 
all moments. The true values for the model arc /jI E= -6, /j:! = 0.6, cr,, = c,, = 18, 
11; = 20 and q = 180. Thus, the true noise-to-signal ratio is 1/1 = n,.,k, = 0.1. 
WC simulate the means and the mean absolute deviations 

MAD(&) = I$, - /I,[, i = 1,2,3 

t’or the estimators ti = ( fl,, /&, ri,, )‘. The TME arc calculated according to 
(8) --( 9), whcrcas the MLE arc calculated by ( 17) and by maximizing the function 
L, in ( 16) through the Newton-Raphson method. In each simulation N = 1000 
replications have been carried out. The average amount of censored observations 
in the sarnples is about 25% and the average number of iterations in calculating 
the MLE is / = 4 with convergence criterion I: = 10 ? 



Table 1 
TME and MLE for d = 0.1 and various sample sizes T 

T 20 30 40 50 

p, = -6 

TME -5.7304 -6.0763 -6.0413 -5.9857 
MAD 2.5710 2.1882 1.8461 1.6334 

MLE -6.1719 -6.2827 -6.1753 -6.0898 
MAD 2.2758 1.8426 1.55oc 1.3593 

- 

100 200 400 

-5.9937 -6.0078 -5.9979 
I .3374 0.9007 0.5833 

-6.0097 -6.0324 -6.0045 
0.9878 0.688 1 0.49 18 

p2 = 0.6 

TME 0.5799 0.5156 0.5969 0.5942 0.5963 0.5992 0.5996 
MAD 0.1026 0.0850 0.0722 0.0623 0.05 15 (i 0343 0.0227 

MLE 0.6075 0.6110 0.6069 0.6025 0.5986 0.60 13 0.6002 
MAD 0.0930 0.0728 0.0616 0.0532 0.0387 0.0272 0.0192 

TME 20.8168 20.0339 18.8528 18.3816 17.5777 I8.0802 17.9807 
MAD 9.6586 8.4361 7.6692 6.6087 4.2507 3.1007 2.5924 

MLE 15.3643 16.3107 16.467 1 16.9253 17.4719 17.728 1 17.8609 
MAD 7.1586 6.2665 5.2678 4.6483 3.3252 2.2616 1.5662 

6, I, TR/IE trrrd M LE *fiw I’61PiW.S Awpk sixs 
Tnblc 1 conlrains fhf2 sinwlWd ostimtcs fbr vrnriws snmplc sizes. Thex rcl’sults 

show thut the MLE tends Es ovcrestinlatc and the TME ton&3 to undcrestimatc 
the slvpc purtlrnstcr /Jo, whcrm this is convcrsc tk the intercept /& and the vnri- 

er satislhctory for the sample size T 
so does rhc MLE for MLE stems to underestimate rt,, significantly. 

timates of both procedures are rather satisfactory 
/31 and /& (except the MLE by T = 200, which 

is O,O324). For the sample size T 630, both procedures may have big bias for 
certain parameters, which is not surprising if we note that only about 23 obser- 
vations were used to estimate five parameters. Note also, in general, /dl and /III 
are more exactly es mated than tq,. Finally, the MLE has almost always sm 
MAD than the TM . However, this is a trade-off for the fact that the M 
computationally much more expensive. 

Table shows the results of simulations f’or various ‘s, whereas the true 
A = 0.1. For easier comparison the estimates for the true d = 0.1 are also included. 
Note that the case A = 0.00 1 approximates the error-free modeling, whereas the 
data are, in fact, generated from an errors-in-variables system. In order to reduce 
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Table 2 
TME and MLE for T = 200 and true d = 0. I 

A 0.00 i 0.01 0.05 0.1 0.15 0.2 0.3 

p,=-6 

TME -4.9198 
MAD 1.2381 

MLE -4.9203 
MAD 1.1530 

-4.9906 -5.4024 -6.0078 -6.5174 
1.1759 0.9568 0.9007 0.9418 

-5.0199 -5.4760 -6.0324 -6.535 1 
I .0787 0.8204 0.688 I 0.8294 

-7.093 1 
1.2862 

-7.1070 
I .2093 

-8.1172 
2.i372 

-8.1951 
2.2020 

TME 0.5443 0.5498 0.5689 0.5992 
MAD 0.0585 0.0538 0.0406 0.0343 

MLE 0.5453 0.5517 0.5723 0.60 I3 
MAD 0.0558 0.0502 0.0356 0.0272 

TME 23.7936 23.2596 20.825 1 18.0802 15.0082 12.5844 6.7985 
MAD 6.1017 5.688 I 4.1465 3.1007 4.3896 5.9605 11.2415 

MLE 23.5279 22.9713 20.6406 17.728 1 14.6589 12.0428 5.7226 
MAD 5.5572 4.9975 3.0457 2.2616 3.7282 6.0374 12.2774 

0.6254 0.6530 0.7050 
0.0390 0.058 1 0.1052 

0.6270 0.6549 0.7010 
0.0354 0.057 I 0.1090 

the sampling efkct, in each simulation T = 200 observations are generated. From 
Table 2 we see that, first of all, both the TME and the MLE are rather sensitive to 
changes of n and their sensitivities have a very clear systematic pattern described 
by (7) in Section 3. The MLE almost always overestimate the TME for 14 and 
undcrcstimate the TME for /Jo and 4,. Dilkront from Section 6.1, the MLE have 

than TME do for n 0.2 (except for cr,, and A = 0.2 ) and larger 
0.3. In general, the MLE seem to be more sensitive than the TM 

are. 

7. Conclusions 

We have shown that if the covariates in a censored regression model are 
measured with errors, then the problem of non-identifiability occurs as in the usual 
linear errors-in-variables models under normality. We proposed two-step moment 
estimators (TME) of the model and derived the asymptotic covariance matrices. 
The obtained formulae can be used for the moment estimator of the usual error- 
free Tobit model. We also demonstrated that, given the normality assumption 
and the identifying condition, this model can be uniquely reduced to an error- 
free Tobit model. As a result, estimators for the original model may be obtained 
via the estimators for the reduced model. III particular, the maximum-likelihood 



estimator (MLE) is derived in this way. The MLE may be calculated by standard 
numerical methods because of the uniqueness of the global maximum, whereas 
the TME have the practical advantage that the numerical calculation is very easy. 
The Monte-Carlo studies show that, in general, both procedures produce rather 
satisfactory estimates for sample size larger than 50 for a simple model with five 
unknown parameters. However, they are rather sensitive to the misspecification of 
the a priori information used. Thus, the specification of the a priori information 
is important in applications. In general, the TME is more stable and reliable than 
the MLE and also computationally cheaper. 

Appendix A Proof of (I@-( 13) 

For notational simpliciij. w denote @ = G(S), $ = $( is), i. = @D and, corre- 
spondingly, & = a(d), 4 = 4(d) and jr = &&. For various matrix operations and 
rules used in this paper we refer the reader to Magnus and Neudecker (1988) 
and Lfitkepohl ( 1991). 

First we show ( 10). y (3) and straightforward calculation, we have 

where A,,(d) = -j.(d)[s =+- &f)] is the derivative of i.(6) and 8 lies between 
d and S. By deIinition, we have 

It follows from (A. 1) and (8.2) that 

(A-2) 



Similarly, 

Furthermore, we have 

Ilsing relationships (3) it is straightforward to have 
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and 

- 2pqb 2a, plimd==T=- 
T--W Py+ ??

Finally, by definition, 

It follows that plim&_,, a = A which is given in ( 12). 
Next we show ( 11). Using (9) we have 



Then ( 11) follows with 

0 

Ik 

0 

399 

which converges in probability to the matrix B in ( 13). The proof is completed. 
CI 
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