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a b s t r a c t

Recently, Li and Wang (2012a,b) and Wang (2007) have proposed a simulation-based
estimator for generalized linear and nonlinear mixed models with complete longitudinal
data. This estimator is constructed using the simulation-by-parts technique which leads
to the unique feature that it is consistent even using finite number of simulated random
points. This paper extends the methodology to deal with incomplete longitudinal data by
applying the inverse probability weighting method for the monotone missing-at-random
response data. The finite sample performance of this estimator is investigated through
simulation studies and compared with the multiple imputation approach.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In biomedical, environmental and social sciences research, longitudinal data analysis is widely used and constitutes the
fundamental statistical research methodologies. Generalized linear mixed models (GLMM) have been widely used in the
modeling of longitudinal data. Li and Wang (2012a) proposed a simulation-based estimator (SBE) for GLMM based on the
first two marginal moments of the response variables, which does not rely on the normality distribution assumption for
random effects. Li and Wang (2012b) extended the SBE to the GLMM where some covariates are measured with error. This
approach was originally studied by Wang (2007) for nonlinear mixed effects models. The SBE is constructed using a novel
simulation-by-parts technique to ensure its consistency by using finite number of simulated random points. This is the
key difference from many other simulation-based estimators proposed in the literature, where they require the number of
simulated random points go to infinity to achieve consistency. So far, the SBE is only studied under complete data settings
although incomplete or missing data are common in longitudinal studies. For example, in clinical trials, missing data are
almost inevitable because subjects may decide to withdraw from the study at anytime prior to completion or subjects are
not compliant to protocol for scheduled assessments. Problems arise if the mechanism leading to the missing data depends
on the response process. It is known that ignoring missing data and using naive methods may introduce bias, reduce the
power of inference and lead to misleading conclusions (Little and Rubin, 2002).

The extension of the SBE to account for incomplete longitudinal data is non-trivial and needs to be addressed to allow this
estimator used inmore general settings. In this paper, we discuss the validity of SBE under differentmissing datamechanism
and modify it for the data missing at random (MAR) with monotone missingness through the inverse probability weighting
(IPW) method. The IPW is a general methodology for constructing parameter estimators in semi-parametric models with
complete as well as missing data (Robins et al., 1995; Yi and Cook, 2002). Another popular approach to deal with missing
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data is the multiple imputation (Rubin, 1987; Schafer, 1997). We also investigate the performance of the SBE using this
strategy.

The structure of the paper is as follows. In Section 2, we introduce and review the missing data mechanism, pattern and
estimation. Section 3 provides details on the proposed weighted simulation-based estimator, and addresses some practical
computational issues. In particular, Section 3.2 handles the data missing completely at random (MCAR), while Section 3.3
focuses on the data MAR. Some simulation studies are conducted in Section 4 to examine the finite sample performance of
the proposed estimator, and concluding remarks are given in Section 5.

2. Missing data framework and notation

2.1. Missing data mechanism

To obtain valid inferences, it is essential to consider the reason for missingness. Let Yij be the jth response for the ith
subject, Ri = (ri1, ri2, . . . , rin)′ be the vector of missing data indicators for Yi = (yi1, . . . , yin)′, such that rij = 1 if response
yij is observed, and 0 otherwise. We partition Yi into YO

i and YM
i , where YO

i contains those yij for which rij = 1 and YM
i

contains the remaining components. Assuming Xi = (xi1, . . . , xin)′ to be a vector of covariates always observed, Little and
Rubin (2002) classified missing data mechanism into three types: (1) MCAR, where the missingness is unrelated to the
responses so that P(Ri|Yi, Xi) = P(Ri|Xi). (2) MAR, where the missingness depends only on the observed responses so that
P(Ri|Yi, Xi) = P(Ri|YO

i , Xi). This is a weaker and more plausible assumption than MCAR. (3) MNAR, where the missingness
depends on both observed and unobserved responses.

2.2. Missing data patterns

There are two broad classes of missing data patterns: intermittent missing and dropout. Intermittent missing pattern
refers to the scenario that a subject completes the study but skips a few occasions in themiddle of the study period. Dropout
(attrition, lost of follow-up) is a particular example of monotone pattern of missingness, which means if one observation
is missing, then all subsequent observations are unobserved. Intermittent missing is often easier to deal with because the
subject is still participating in the study and the reason of missing values can be ascertained. Dropout is more serious be-
cause the subject is no longer available and it is not certain whether the dropout is related to the observed or unobserved
outcome. MARmechanisms are commonly assumedwhen the interest lies on the parameter estimation (Robins et al., 1995;
Lindsey, 2000).

2.3. Estimation of missing data process

Let λij = P(rij = 1|ri,j−1 = 1, Xi, YO
i ) be the conditional probability that subject i is observed at time j, given that the

subject is present at time j−1; andπij = P(rij = 1|Xi, YO
i ) be themarginal probability that subject i is present at time j. Then

πij =
j

t=2 λit . Generally it is assumed that all individuals are observed on the first occasion so that ri1 = λi1 = 1. Further,
let πijk = P(rij = 1, rik = 1|Xi, YO

i ) be the probability of observing both yij and yik given the response history and covariates.
Usually λij is estimated using a logistic regression model logitλij = A′

ijα, where Aij is a vector consisting of information on Xi
and response history, and α is the vector of parameters (Diggle and Kenward, 1994; Fitzmaurice et al., 1996; Molenberghs
et al., 1997; Yi and Cook, 2002).

3. Weighted simulation-based estimator

3.1. GLMM formulation

Suppose subject i is measured repeatedly on ni occasions. In a GLMM it is assumed that, given the covariates and random
effects bi ∈ Rq, the responses yij are conditionally independent and have distribution from the exponential family

f (yij|bi, Xi, Zi) = exp

ωijyij − a(ωij)

φ
+ c(yij, φ)


, i = 1, . . . ,N, j = 1, . . . , ni, (3.1)

where φ is a dispersion parameter, ωij is the canonical parameter and a(·) and c(·) are known functions. The conditional
mean and variance

µc
ij = E(yij|bi, Xi, Zi) = a(1)(ωij) (3.2)

vcij = Var(yij|bi, Xi, Zi) = φa(2)(ωij) (3.3)
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satisfy g−1
{µc

ij} = x′

ijβ + z ′

ijbi and v
c
ij = φν(µc

ij), where a(d) denotes the dth derivative against ωij, g−1(·) and ν(·) are known
link and variance functions, respectively. The random effects are assumed to have mean zero and distribution fb(u; θ)with
unknown parameters θ ∈ Rr .

Our approach is motivated by the fact that all the model parameters of interest can be identified and consistently
estimated using the first two marginal moments

E(yij|Xi, Zi) =


g(x′

ijβ + z ′

iju)fb(u; θ)du, (3.4)

E(yijyik|Xi, Zi) =


g(x′

ijβ + z ′

iju)g(x
′

ikβ + z ′

iku)fb(u; θ)du + δjkφ


ν(g(x′

ijβ + z ′

iju))fb(u; θ)du j ≤ k, (3.5)

where δjk = 1 if j = k and 0 otherwise. For example, in a linear model yij = x′

ijβ + z ′

ijbi + ϵij with bi ∼ N(0,D(θ)), the
first two marginal moments are E(yij|Xi, Zi) = x′

ijβ and E(yijyik|Xi, Zi) = (x′

ijβ)(x
′

ikβ) + z ′

ijD(θ)zik + δjkφ. Another example
is a logistic model logitP(yij = 1|bi) = x′

ijβ + z ′

ijbi, where the moments are given in (3.4)–(3.5) with logit link function
g(w) = (1 + e−w)−1.

In general the integrals on the right-hand sides of (3.4)–(3.5) are intractable but can be approximated using the Monte
Carlo simulation techniques such as importance sampling.

3.2. Simulation-based estimator for the data MCAR

Li and Wang (2012a,b) and Wang (2007) used a simulation-by-parts technique to construct two sets of simulated
moments which are unbiased estimates of the true moments. First, a known density h(u) is chosen such that its support
covers that of the integrands in (3.4)–(3.5). Second, a set of random points uis, s = 1, 2, . . . , 2S are generated from h(u)
which are used to construct the simulated moments as

µij,1(ψ) =
1
S

S
s=1

g(x′

ijβ + z ′

ijuis)fb(uis; θ)

h(uis)
, (3.6)

ηijk,1(ψ) =
1
S

S
s=1

g(x′

ijβ + z ′

ijuis)g(x′

ikβ + z ′

ikuis)fb(uis; θ)

h(uis)
+
δjkφ

S

S
s=1

ν(g(x′

ijβ + z ′

ijuis))fb(uis; θ)

h(uis)
(3.7)

and µij,2(ψ) and ηijk,2(ψ) are constructed similarly using the second half of the points uis, s = S + 1, S + 2, . . . , 2S. Finally
the SBE for ψ = (β ′, θ ′, φ)′ is obtained by minimizing

QN,S(ψ) =

N
i=1

ρ ′

i,1(ψ)Wiρi,2(ψ) (3.8)

within a compact parameter space Ψ , where ρi,t(ψ) = (yij − µij,t(ψ), 1 ≤ j ≤ ni, yijyik − ηijk,t(ψ), 1 ≤ j ≤ k ≤ ni)
′,

t = 1, 2, andWi = W (Xi, Zi) is a nonnegative definite weight matrix. As is shown in Li and Wang (2012a,b) that in the case
of complete data the SBE is consistent and asymptotically normal as N → ∞ for any finite S. Their simulation studies and
real data applications have also shown that the SBE works well in the finite sample situations with moderately large S.

Now for the case of data MCAR, we define the SBE ψ̂N,S as the solution of the score equation

N
i=1

∂ρ ′

i,1(ψ)

∂ψ
Wi∆iρi,2(ψ) = 0, (3.9)

where ∆i = diag(rij, 1 ≤ i ≤ ni, rijrik, 1 ≤ j ≤ k ≤ ni). It is easy to see that (3.9) is an unbiased estimating equation
because under MCAR∆i does not depend on Yi and therefore

E

∂ρ ′

i,1(ψ0)

∂ψ
Wi∆iρi,2(ψ0)


= E


∂ρ ′

i,1(ψ0)

∂ψ
Wi∆iE(ρi,2(ψ0)|Xi, Zi)


= 0,

where ψ0 = (β ′

0, θ
′

0, φ0)
′ denotes the true parameter value. Moreover, following Li and Wang (2012a) it is straightforward

to show that for a finite S,
√
N(ψ̂N,S − ψ0)

L
→ N(0, B−1CB−1), where

B = E

∂ρ ′

i,1(ψ0)

∂ψ
Wi∆i

∂ρi,2(ψ0)

∂ψ ′


(3.10)

and

C = E

∂ρ ′

i,1(ψ0)

∂ψ
Wi∆iρ

′

i,2(ψ0)ρi,2(ψ0)∆iWi
∂ρi,1(ψ0)

∂ψ ′


. (3.11)
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An approximately optimal choice ofWi as derived in Li and Wang (2012a) is given by

A(ψ̂N1) =
1
N

N
i=1

ρi,1(ψ̂N1)∆iρ
′

i,2(ψ̂N1), (3.12)

where ψ̂N1 is an initial consistent estimator of ψ .

3.3. Weighted simulation-based estimator for the data MAR

Nowwemodify the SBE to handle the dataMARbyusing the IPWmethod. The idea is toweight each subject’s contribution
in the estimation by the inverse probability that the subject drops out at the time of dropping out (Robins et al., 1995). The
weights are obtained based on models for the missing data process as specified in Section 2.3.

Specifically, let ∆̃i = diag(rij/πij, 1 ≤ j ≤ ni, rijrik/πijk, 1 ≤ j ≤ k ≤ ni) be the weight matrix accommodating
missingness. Then we define the weighted SBE (WSBE) ψ̃N,S as the solution of

N
i=1

∂ρ ′

i,1(ψ)

∂ψ
Wi∆̃iρi,2(ψ) = 0. (3.13)

This is an unbiased estimating equation because under MAR E[∆̃i|Xi, Zi, Yi] is an identity matrix and therefore by the law of
iterated expectation we have

E

∂ρ ′

i,1(ψ0)

∂ψ
Wi∆̃iρi,2(ψ0)


= E


∂ρ ′

i,1(ψ0)

∂ψ
WiE[∆̃i|Xi, Zi, Yi]ρi,2(ψ0)


= E


∂ρ ′

i,1(ψ0)

∂ψ
Wiρi,2(ψ0)


= 0.

It follows that ψ̃N,S is consistent and asymptotically normally distributedwith asymptotic covariancematrix B−1CB−1, where
B and C are given by (3.10) and (3.11) respectively with ∆i replaced by ∆̃i. Similarly, the approximately optimal weight Ãi
is calculated as in (3.12) with∆i replaced by ∆̃i.

For the computation of Ai or Ãi, the moment estimator described in Li and Wang (2012a) needs to be modified
because the length of ρ̃i(ψ) is different across subjects. The second-order marginal moments can be calculated using
(3.7), and the third- and fourth-order moments can be calculated using the same simulation method by constructing the
conditional moments first. For all j, k, l, t, cov(yij, yikyil|bi, Xi, Zi) = E(yijyikyil|bi, Xi, Zi) − E(yij|bi, Xi, Zi)E(yikyil|bi, Xi, Zi),
and cov(yijyik, yilyit |bi, Xi, Zi) = E(yijyikyilyit |bi, Xi, Zi) − E(yijyik|bi, Xi, Zi)E(yilyit |bi, Xi, Zi). Alternatively, one can adopt the
idea of working variance matrix (Prentice and Zhao, 1991; Vonesh et al., 2002) to construct Ãi. For example, assuming yi
is multivariate normal, then cov(yij, yikyil|bi, Xi, Zi) = µc

ilσijk + µc
ikσijl, and cov(yijyik, yilyit |bi, Xi, Zi) = σijlσikt + σijtσikl +

µc
ikµ

c
ilσijt + µc

ijµ
c
ilσikt + µc

ikµ
c
itσijl + µc

ijµitσ
c
ikl, where σijk = E[(yij − uij)(yik − uik)|bi, Xi, Zi]. Thus, both third and fourth

moments can be obtained through the first two moments. We can also assume independence among the elements of yi, in
which case the third and fourth moments of yi are respectively given by

cov(yij, yikyil|bi, Xi, Zi) =


E[(yij − uc

ij)
3
] + 2µc

ijσijj − 2(µc
ij)

3 if j = k = l,
σijjµ

c
ik if j = l ≠ k,

σijjµ
c
il if j = k ≠ l,

0 otherwise

and

cov(yijyik, yilyit |bi, Xi, Zi) =


E[y4ij] − (µc

ij)
2
− σijj if j = k = l = t,

E[(yij − uc
ij)

3
]µit + 2µc

ijµ
c
itσijj if j = k = l ≠ t,

E[(yij − uij)
3
]µc

il + 2µc
ijµ

c
ilσijj if j = k = t ≠ l,

0 otherwise.

If we further assume that the distribution of yi is symmetric, then we have E[(yij − uc
ij)

3
] = 0.

4. Monte Carlo simulation studies

In this section we conduct simulation studies to assess the finite sample performance of the proposed WSBE under the
MCAR andMAR scenarioswith various amount ofmissing data.We consider twomodels for two types of response variables.
In particular, we consider a linearmixedmodel for the continuous response yij = β0+β1xij+bi+ϵij with ϵij ∼ N(0, 1), and a
mixed Poissonmodel for the count data log E(yij|bi) = β0+β1xij+bi. In bothmodelswe setβ ′

= (1, 1) and bi ∼ N(0, θ)with
θ = 0.25. The covariate xij is generated from normal distribution N(1, 1) in the linear model and N(0.5, 1) in the Poisson
model. Themissing indicator rij is generated from the logisticmodel logitλij = α0+α1yi,j−1, withα′

= (2, 0), (2, 0.5), (2, 1)
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Table 1
Simulation results for the linear regression model.

Missingness N SBE WSBE MI-SBE
Bias RMSE Bias RMSE Bias RMSE

(2, 0) 50 β0 −0.085 0.208 −0.088 0.217 0.133 0.203
β1 0.035 0.123 0.036 0.126 −0.136 0.170
θ 0.203 0.372 0.209 0.391 −0.020 0.143
φ −0.101 0.267 −0.104 0.271 0.159 0.271

100 β0 −0.047 0.151 −0.050 0.154 0.137 0.171
β1 0.020 0.085 0.021 0.086 −0.144 0.160
θ 0.120 0.277 0.127 0.290 −0.006 0.113
φ −0.056 0.195 −0.059 0.198 0.228 0.281

200 β0 −0.023 0.107 −0.022 0.107 0.133 0.153
β1 0.009 0.064 0.008 0.063 −0.142 0.151
θ 0.066 0.200 0.067 0.204 0.007 0.082
φ −0.035 0.142 −0.036 0.143 0.247 0.270

500 β0 −0.009 0.070 −0.010 0.072 0.132 0.140
β1 0.002 0.038 0.003 0.039 −0.140 0.144
θ 0.021 0.131 0.023 0.138 0.017 0.061
φ −0.005 0.086 −0.004 0.084 0.257 0.268

(2, 0.5) 50 β0 −0.068 0.186 −0.113 0.205 0.056 0.146
β1 0.031 0.114 0.038 0.113 −0.062 0.115
θ 0.243 0.387 0.151 0.326 −0.023 0.132
φ −0.158 0.266 −0.022 0.226 0.052 0.212

100 β0 −0.040 0.139 −0.083 0.156 0.066 0.118
β1 0.021 0.078 0.028 0.079 −0.074 0.101
θ 0.182 0.307 0.097 0.255 −0.015 0.105
φ −0.120 0.207 0.014 0.178 0.111 0.186

200 β0 −0.004 0.099 −0.046 0.107 0.073 0.101
β1 0.016 0.080 0.012 0.060 −0.073 0.085
θ 0.118 0.218 0.024 0.172 −0.002 0.076
φ −0.099 0.158 0.037 0.134 0.121 0.160

500 β0 0.011 0.063 −0.031 0.070 0.070 0.082
β1 −0.011 0.085 0.006 0.036 −0.071 0.078
θ 0.070 0.139 −0.028 0.123 0.002 0.048
φ −0.076 0.107 0.065 0.102 0.127 0.142

(2, 1) 50 β0 −0.059 0.182 −0.134 0.237 0.053 0.149
β1 0.029 0.110 0.049 0.120 −0.051 0.104
θ 0.266 0.402 0.160 0.333 −0.027 0.136
φ −0.173 0.263 −0.029 0.229 0.023 0.200

100 β0 −0.029 0.133 −0.108 0.196 0.051 0.103
β1 0.015 0.075 0.037 0.092 −0.054 0.086
θ 0.181 0.309 0.090 0.282 −0.028 0.104
φ −0.120 0.203 0.027 0.194 0.070 0.170

200 β0 0.022 0.138 −0.084 0.146 0.054 0.088
β1 0.010 0.079 0.025 0.069 −0.052 0.071
θ 0.136 0.230 0.042 0.194 −0.017 0.076
φ −0.109 0.162 0.046 0.147 0.085 0.136

500 β0 0.019 0.064 −0.059 0.091 0.053 0.069
β1 −0.004 0.076 0.006 0.041 −0.050 0.058
θ 0.083 0.147 −0.030 0.132 −0.008 0.050
φ −0.087 0.114 0.084 0.098 0.092 0.115

for the linear model and α′
= (3, 0), (0.5, 0.1), (0.5, 0.5) for the Poisson model respectively. Note that α1 = 0 represents

the scenario of data MCAR, while α1 ≠ 0 represents data MAR. For a given α0, the smaller α1 results in higher percentage of
missing data. The combined choice of α0 and α1 leads to about 10%–40% drop-out, spread over time points 2–4. Therefore,
these parameter setups not only lead to different missing data mechanism but also different percentage of missing data.

For comparisons, we also calculate the naive SBE that ignores themissing data and the SBE based on themultiple imputed
data. The multiple imputation is done using the R package MICEwith predictive mean matching method and iteration time
as the seed for random number generation (Horton and Lipsitz, 2001). Further, we set the number of multiple imputations
to be 5 which is generally sufficient to yield efficient results (Rubin, 1987). The sample sizes are N = 50, 100, 200, 500 and
the number of observations per subject is ni = 4. In each simulation we generateM = 500 datasets and report the average
biases (1/M)

M
i=1 ψ̂i − ψ0 and the root mean square errors (RMSE) (

M
i=1(ψ̂i − ψ0)

2/M)−1/2.
Tables 1 and 2 contain the numerical results for two models respectively. These results show that in the case of MCAR

(α1 = 0), the SBE and WSBE perform similarly, which is consistent with theory. However, in linear model the MI-SBE has
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Table 2
Simulation results for the Poisson regression model.

Missingness N SBE WSBE MI-SBE
Bias RMSE Bias RMSE Bias RMSE

(3, 0) 50 β0 −0.155 0.526 −0.156 0.507 0.089 0.166
β1 −0.042 0.392 −0.046 0.379 −0.129 0.277
θ 0.148 0.494 0.153 0.478 −0.169 0.203

100 β0 −0.143 0.389 −0.153 0.403 0.041 0.090
β1 −0.015 0.252 −0.016 0.247 −0.081 0.150
θ 0.137 0.339 0.148 0.350 −0.041 0.080

200 β0 −0.090 0.283 −0.087 0.276 0.034 0.069
β1 −0.026 0.194 −0.025 0.195 −0.076 0.123
θ 0.089 0.251 0.084 0.241 −0.027 0.060

500 β0 −0.087 0.254 −0.083 0.264 0.045 0.049
β1 −0.029 0.218 −0.030 0.216 −0.032 0.081
θ 0.080 0.237 0.077 0.232 −0.037 0.056

(0.5, 0.1) 50 β0 −0.275 0.555 −0.208 0.726 0.185 0.239
β1 −0.054 0.395 0.076 0.464 −0.299 0.382
θ 0.407 0.620 0.079 0.536 −0.210 0.243

100 β0 −0.299 0.504 −0.145 0.410 0.026 0.086
β1 −0.034 0.255 0.023 0.280 −0.149 0.202
θ 0.362 0.532 0.068 0.328 0.036 0.081

200 β0 −0.275 0.465 −0.093 0.333 0.016 0.061
β1 −0.044 0.256 0.008 0.228 −0.141 0.177
θ 0.337 0.486 0.017 0.258 0.049 0.071

500 β0 −0.284 0.434 −0.043 0.247 0.018 0.032
β1 −0.081 0.225 0.003 0.127 −0.027 0.122
θ 0.405 0.517 −0.110 0.209 0.026 0.067

(0.5, 0.5) 50 β0 −0.182 0.460 −0.189 0.645 0.164 0.222
β1 −0.095 0.343 0.034 0.388 −0.214 0.316
θ 0.310 0.519 0.050 0.527 −0.189 0.216

100 β0 −0.262 0.488 −0.150 0.518 0.014 0.087
β1 −0.034 0.246 0.042 0.277 −0.075 0.164
θ 0.337 0.494 0.043 0.404 −0.025 0.065

200 β0 −0.205 0.392 −0.078 0.273 0.008 0.061
β1 −0.044 0.292 0.018 0.198 −0.071 0.130
θ 0.285 0.421 −0.015 0.220 −0.003 0.047

500 β0 −0.160 0.344 −0.060 0.207 0.005 0.060
β1 −0.055 0.227 0.009 0.106 −0.009 0.100
θ 0.261 0.369 −0.008 0.124 −0.003 0.042

larger bias and RMSE than the other two estimators except for the variance parameter θ due to the relatively high percentage
ofmissing data.Whenwe repeat the simulationwith lower percentage ofmissing data, theMI-SBE performs actually slightly
better than the SBE and WSBE. Moreover, the RMSE of all estimators reduce when the sample size increases. In the case of
MAR (α1 ≠ 0), the WSBE has smaller bias and RMSE than the SBE for variance parameters. For the regression parameters,
the WSBE performs similarly as the SBE for small sample sizes, but improves fast and is significantly better for large sample
sizes. In general, MI-SBE clearly outperforms theWSBE and SBE, especially in the Poisson model. This is not surprising since
it is documented in the literature that MI is generally more efficient than the IPWmethod (Robins et al., 1995). More general
discussions about the IPW andMImethods can be found in e.g., Carpenter et al. (2006) and Seaman et al. (2012). To improve
efficiency, one may consider applying augmented inverse probability weight method (Robins et al., 1995). Furthermore, we
notice that the numerical computation of the MI-SBE is more stable. We have repeated our simulations with various values
of (α0, α1) and observed similar patterns as discussed above.

5. Concluding remarks

Incomplete longitudinal data are common in practical applications. For a valid analysis, a study of themissingmechanism
is necessary. Although comprehensive theoretical work and application of the SBE for GLMMwere discussed in Li andWang
(2012a,b), there is still a strong need to examine this approach when missing data are present. In this paper, we show that
the SBE based on observed data is only valid for dataMCAR, and hencewe adopt the inverse probabilityweightingmethod to
construct theWSBE for dataMAR.We also investigate the performance of SBE for incomplete longitudinal data by themeans
of multiple imputation. Our simulation studies demonstrate that the proposed WSBE is feasible to compute, performs well
under finite sample sizes, and is comparable to the multiple imputation approach in many cases. Furthermore, this paper
suggests a fewways to compute the optimal weightmatrix under the incomplete longitudinal data setting. Since theweight
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matrix contains the third and fourth moments, the computation can be cumbersome even using simulated moments. In our
experience, diagonal weight works quite well and can reduce the computational burden substantially.

The proposed WSBE is formulated under the GLMM framework, however, it can be easily extended to nonlinear mixed
effectsmodels. In principle, theWSBE andMI-SBE can also be used for datawith intermittentmissing pattern or longitudinal
data with unequally spaced repeated measures. Missing data and measurement error often arise simultaneously in a real
world problem, so it would be valuable to develop the proposed methodology to cope with these situations. Another future
research is to further extend the SBE to deal with the non-ignorable missing data problems.
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