MOLLER Main Detector Simulation & Prototype
- Progress · Status

Peiqing Wang & Michael Gericke
University of Manitoba

MOLLER Collaboration Meeting, June 2013
Section 1: Detector Simulation
Overview of Detector Simulation

Status at last collaboration meeting:

- Developed a detector simulation package
- Implemented detector array in simulation
- Completed the first iteration of detector design optimization.

Work has been done since then:

- Explored several different design ideas
- Studied the effects of using pre-radiator
- Integrated detector array in full MOLLER simulation environment
- Investigated background/interference issue
- Performed the geometry optimization
Recall: single detector model and simulation result at last collaboration meeting

- Single detector model: this model was selected for its simple geometry, small edge effects and high #PE yield

- Quartz radiator: 1.5 cm thick, two 45 deg cuts at bottom

- PMT: 3 inch, round, head-on, quartz window, with a radial location of 120 cm (from beam axis to photocathode)

- Reflector: 3.5 cm long, 19 deg opening angle

- Light guide length: 120 cm – radial location of the outer radius edge of quartz radiator (e.g. 15 cm for e-e ring detectors)

- Light guide reflectivity: assuming 93%, uniform over full spectrum and all incident angles

- #PE yield: ~ 30 for detectors on e-e ring, with an excess noise of ~ 3%
Exploring Several Design Ideas

<table>
<thead>
<tr>
<th></th>
<th>pros</th>
<th>cons</th>
<th>option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winston cone light guide</td>
<td>A little bit more #PE (< 5%) in e-e tail ring</td>
<td>complicated geometry</td>
<td>No</td>
</tr>
<tr>
<td>Squar window PMT</td>
<td>Matching light guide shape, large acceptance area, increasing #PE yield of 10-15%</td>
<td>Not popular</td>
<td>Yes or no, depending on cost if custom build is required</td>
</tr>
<tr>
<td>Vacuum core light guide (rough vacuum 100 – 1000 Pa)</td>
<td>Effectively reducing the background lights arising in light guide due to Cerenkov radiation in air</td>
<td>Engineering difficulties and higher cost</td>
<td>No</td>
</tr>
<tr>
<td>Pre-radiator</td>
<td>Blocking soft background, greatly increasing #PE</td>
<td>Shower background, large RMS width</td>
<td>Backup</td>
</tr>
</tbody>
</table>
Example: Pre-radiator

- An optional/backup design, to deal with the possibly large soft background.
- Higher #PE yield, but worse detector resolution
- Background due to shower in pre-radiator itself could be an issue.

Optimized pre-rad thickness: 4 – 5 radiation length
Implementation of Detector Rings in MOLLER Simulation Environment

- Beam focusing on detector rings with different Z was studied
- #PE yields in full simulation environment agree with the results in the independent detector simulation
- Background/interference issue was investigated

Implementation of detector ring in main Moller simulation

(https://jlabsvn.jlab.org/svnroot/moller12gev/mollersim/branches/peiqing_mollersim_gdml/)
Background/Crosstalk/Interference

1. Background/crosstalk/Interference complicate our interpretation of data

2. increase rms, and in turn the beam time to reach the required statistics

3. Example sources (a coarse classification):

 A: events hitting quartz detector (will not be discussed):
 - events originated from target windows, vacuum chamber windows, etc.
 - elastic e-p and inelastic e-p events which hit the e-e detectors
 - upstream shower events (e-/e+, gamma) from beamline, collimator, magnet etc.
 - shower events from surrounding materials, such as quartz, light guides, shielding, etc
 - any other room background, cosmics, low energy gamma, after-glow due to activation etc.

 B: events hitting light guide:
 Any events which hit light guide, and then generate effective photoelectrons in PMT

 C: events hitting PMT:
 Any events which hit PMT, and then generate effective photoelectrons in PMT
Type B&C Contributions

A typical background spectrum

(the PMT spectrum after cutting off events which hit the corresponding quartz)

Interference events (e+, e-, gamma, etc) cut off these events which hit the quartz

Type B events mostly contribute to low-end tail

Type C events mostly contribute to high-end tail

Three methods were used to verify and characterize these two types of background:

- checking the optical photon position and direction at the origin of generation
- changing the radial position of PMT to see if we can reduce the high-end tail
- changing the vacuum level of the air in light guide to see if we can reduce the low-end tail
Study Background Under Different Configurations

Config. 1:
using e-e generator, PMT window radial location $R = 120$ cm, standard air (0 degree, 1 atm) with refractive index $n = 1.00029$.

Config. 2:
Based on config. 1, but $R = 140$ cm
*
\textit{i.e. radial location of PMT was increased 20 cm}.

Config. 3:
Based on config. 2, but putting the light guide in a pure vacuum (the refractive index of air $n = 1.0$)
*
\textit{i.e, pure vacuum, Cerenkov in air was totally turned off}

Config. 4:
Based on config. 2, but putting the light guide in a rough vacuum (20 degree, 1000 Pa), refractive index varying with photon wavelength and $n < 1.0000027$.
*
\textit{i.e, effects of Cerenkov in air was reduced (not totally off)
Cerenkov Light Yield in Air

Reasoning for config. 3 & 4:
- to see if vacuum can effectively reduce the low-end tail,
- in turn to confirm the source of the low-end tail

From Frank-Tamm equation, Cerenkov light yield is approximately proportional to n when n is close to 1;

$dN/dE/dx = 0.22 /$eV/cm,
No Cerenkov light at $n=1$.

Refractive index of air is approximately proportional to air pressure under vacuum condition.

Normal condition (1 atm):
$n=1.0003$
Pure vacuum: $n=1$.

Cerenkov light yield is proportional to air pressure under vacuum condition.

At rough vacuum level: $P=1000 \text{ Pa}$, $n=1.000003$, $dN/dE/dx = 0.0022 \text{ /eV/cm}$

- We could also quantitatively understand how much the Cerenkov lights in air contribute to background.
Analysis Sample

- There are 84 detectors on e-e ring
- These detectors have sequenced ID numbers (#112 - #195) in the simulation
- We took Det#112 & Det#118 at as an example
- Det#112: located at high rate region
 Det#118: located at low rate region
Config. 1-3: Spectrum of Detector #112 & #118

Config. 1
Total #PE (signal+bkg) Spectrum for Det#112 - Det#112
- Entries: 4400
- Mean: 44.98
- RMS: 23.67

- Entries: 3730
- Mean: 51.48
- RMS: 12.56

- Entries: 862
- Mean: 16.63
- RMS: 36.12

Config. 2
Total #PE (signal+bkg) Spectrum for Det#112 - Det#112
- Entries: 5121
- Mean: 32.33
- RMS: 12.04

- Entries: 5567
- Mean: 34.91
- RMS: 10.1

- Entries: 914
- Mean: 12.15
- RMS: 17.1

Config. 3
Total #PE (signal+bkg) Spectrum for Det#112 - Det#112
- Entries: 4072
- Mean: 33.76
- RMS: 11.01

- Entries: 437
- Mean: 5.906
- RMS: 11.68

- Entries: 3961
- Mean: 34.46
- RMS: 10.06

Location of det#112
Location of det#118
Results Comparison for All Detectors on e-e Ring

<table>
<thead>
<tr>
<th>Configuration 1: R=120 cm, air (P=1 atm, t=0 °C, (n_{\text{air}} = 1.00029))</th>
<th>Configuration 2: R=140 cm, air (P=1 atm, t=0 °C, (n_{\text{air}} = 1.00029))</th>
<th>Configuration 3: R=140 cm, vacuum, (P=1 atm, t=0 °C, (n_{\text{air}} = 1.0), no Cerenkov in Air)</th>
<th>Configuration 4: R=140 cm, rough vacuum (P=1000 Pa, t=20 °C, (n_{\text{air}} < 1.000003), tiny Cerenkov effects in Air)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate ratio (bkg:signal:total)</td>
<td>1 : 2.3 : 3.3</td>
<td>1 : 5.5 : 6.5</td>
<td>1 : 11.3 : 12.4</td>
</tr>
<tr>
<td>Total #PE</td>
<td>35.9 +/- 25.7(RMS)</td>
<td>29.8 +/- 14.3(RMS)</td>
<td>31.2 +/- 13.2(RMS)</td>
</tr>
<tr>
<td>Signal #PE</td>
<td>49.2 +/- 13.5(RMS)</td>
<td>33.8 +/- 9.8(RMS)</td>
<td>33.7 +/- 10.0(RMS)</td>
</tr>
<tr>
<td>Bkg #PE</td>
<td>6.0 +/- 21.0(RMS)</td>
<td>8.2 +/- 15.5(RMS)</td>
<td>3.9 +/- 12.1(RMS)</td>
</tr>
<tr>
<td>Bkg/total charge</td>
<td>5.2%</td>
<td>4.2%</td>
<td>0.8%</td>
</tr>
<tr>
<td>Signal/total charge</td>
<td>94.8%</td>
<td>95.8%</td>
<td>99.2%</td>
</tr>
<tr>
<td>S/B (signal-to-bkg ratio)</td>
<td>18.4</td>
<td>22.6</td>
<td>126</td>
</tr>
<tr>
<td>Det. Resolution</td>
<td>0.714</td>
<td>0.479</td>
<td>0.423</td>
</tr>
<tr>
<td>Summary</td>
<td>big tails at both low-end and high-end</td>
<td>high-end tail was removed, but #PE shrunk a lot.</td>
<td>low-end tail was largely reduced</td>
</tr>
</tbody>
</table>

Note:
- The tabled values are averages over all 84 detectors of e-e ring.
- These results were obtained with Moller (e-e) event generator only. The S/B will be much worse if all types of events, such as e-p elastics, inelastics, were simultaneously simulated as well.
- The scintillation yield in air varying with air pressure/density has not been implemented in this simulation.
- The residual backgrounds are scintillation, as well as crosstalk due to leakage of light guide opening at quartz side.
Summary of Background Studies

• Major sources of the tails on #PE spectra:
 - Low-end tail: Cerenkov light in air-core light guide
 - High-end tail: Cerenkov in PMT window due to direct hit

• Low-end tail of the spectrum could be much bigger if events from other generators (e-p elastic, inelastic etc.) were also taken into account

• Methods for reducing tails:
 - High-end tail: increasing light-guide length (with side effects of less #PE), better shielding (especially, shield the beam and shower events from upstream)
 - Low-end tail: making vacuum in the light guide or changing geometry.

Note: the idea of making rough vacuum in the light guide was abandoned after a group discussion with KK et. al. It was proposed to study “geometry optimization” to reduce the low-end tail.
Alternative Detector Model

Bottom wedge cut:

- Allowing the Cerenkov light to escape easily from quartz with specific direction, and to reduce the loss due to bouncing in quartz

Tilting light guide towards beam:

- Matching the angle of escaping Cerenkov light from quartz (**green**), so as to minimize the loss due to bouncing on light guide inner surface

- Directing the Cerenkov light in air (**blue**) to the opposite side of PMT, so that these interferences can be reduced by bouncing in light guide
Spectrum of Detected Photons

Detection efficiency of optical photons is mainly affected by the reflectivity of light guide material and the quantum efficiency of PMT.

The number of Cerenkov photons emitted per cm is

$$\frac{dN}{d\lambda} = \frac{2\pi z^2 \alpha}{\lambda^2} \left(1 - \frac{1}{\beta^2 n(\lambda)^2}\right)$$

Cerenkov photons are mostly generated in deep UV.
Optimization of Acceptance Angle

Acceptance angle: the angle between light guide and quartz

<table>
<thead>
<tr>
<th>Wavelength [nm]</th>
<th>Refractive index n</th>
<th>Cerenkov angle Θ_C [degree]</th>
<th>Θ_{in} [degree]</th>
<th>Θ_{out} [degree]</th>
<th>Acceptance angle Θ_A [degree]</th>
</tr>
</thead>
<tbody>
<tr>
<td>180</td>
<td>1.575</td>
<td>50.6</td>
<td>5.6</td>
<td>8.3</td>
<td>36.7</td>
</tr>
<tr>
<td>250</td>
<td>1.507</td>
<td>48.4</td>
<td>3.4</td>
<td>5.2</td>
<td>39.8</td>
</tr>
<tr>
<td>300</td>
<td>1.485</td>
<td>47.7</td>
<td>2.7</td>
<td>4.0</td>
<td>41.0</td>
</tr>
<tr>
<td>700</td>
<td>1.455</td>
<td>46.5</td>
<td>1.5</td>
<td>2.4</td>
<td>42.6</td>
</tr>
</tbody>
</table>

Best acceptance angle:

From simulation, #PE yield is maximized at an acceptance angle of \sim41 deg, with a small tolerance (\sim1 deg).

Reasoning:

Optical photons at peak wavelength (300 nm) have the minimized number of bounces on the light guide surface.
Light Propagation without Light Guide

A bare quartz in simulation, to observe the Cerenkov photon propagation (without light guide).

TIR preserved inside quartz

electron

Cerenkov photons exit from the bottom wedge

with ~41 deg central angle

Destroy TIR to extract photons out
In order to maximize #pe yield:

- Keep acceptance angle (41 deg) unchanged
- Tilt quartz so that quartz tilt angle = scattered beam angle

- Tilting quartz properly could reduce the #PE loss of ~ 10 – 20%
- It is worth the effort to put more strict precision requirement on detector construction and installation.
Implementation

Implemented in the independent detector simulation package:

Configuration:

- Quartz thickness: 1.5 cm
- Quartz tilt angle: 4 deg
- Light guide acceptance angle: 41 deg
- Length of e-e ring light guide: 34 cm
- Light guide material: Anolux-UVS
- PMT: 3” round quartz window

#PE yield of e-e ring detector:

- ~37 PE
- rms: 8.7

To see the background/interference, an implementation in the full MOLLER simulation environment is underway.
Section 2: Detector Prototype
Prototypes for Beam Test

For beam test, we would like to construct prototypes based on 3 models:

Configurations:

- Varying beam incident position/angle on quartz and light guide
- Varying quartz and light guide tilt angles
- Switching light guide materials
Light Guide Material

• Light guide material should have excellent reflectivity in UV.

• Polished aluminium has super good reflectivity in deep UV.

• Concern: possible damage to interior finish of light guide due to: NOx + humidity + oxidation, etc.

• Polished Al needs dielectric protection coating, which usually degrade the reflectivity in deep UV.

• In addition, commercial products (low cost) are preferable.

Contact with ALANOD Aluminium- Veredlung GmbH & Co. KG (the major vendor):

Anolux-UVS could be a suitable choice.
Anolux-UVS from Anomet

Simulation Study:
- Implemented the spectrum in detector simulation
- OK if the actual products have the claimed responses

Actual reflectivity will be measured!

Average reflectivity at our band of interests (250 nm – 700 nm): ~83%
Prototyping Preparation

Material & Component:

<table>
<thead>
<tr>
<th></th>
<th>Required</th>
<th>On-hand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quartz</td>
<td>18 cm x 8 cm x 1.5 cm (optical grade polish)</td>
<td>8 cm x 6 cm x 2.5 cm (need cut and polish)</td>
</tr>
<tr>
<td>PMT</td>
<td>3” quartz window</td>
<td>Hamamatsu H1949-51, 2” Borosilicate glass window (available soon: Photonics XP2268, 2” quartz window)</td>
</tr>
<tr>
<td>Light guide</td>
<td>Anolux-UVS (~80% in UV 250 – 400 nm)</td>
<td>Alazk Miro-4 (cut-off at 380 nm) & Anolux-UVS</td>
</tr>
</tbody>
</table>

Variation:

- Using on-hand materials and components to build the prototypes (Hard to cut the 2.5 cm thick quartz to 1.5 cm thin, No 3” PMT available)
- Benchmark simulation against this variation is in progress
Raw Quartz Blocks

- Obtained 4 quartz blocks (Qweak’s leftover samples, thanks to Dave Mack)
 - Size: 120 x 60 x 25 mm³ (3 pieces)
 - Size: 80 x 60 x 25 mm³ (1 piece)
 - Required size for MOLLER prototype: 180 x 84 mm x 15 mm³

- Cutting and optical grade polishing are primary cost factors
- Too many difficulties to make it thinner
- Try cross cut and angle cut only
Quartz Radiators

- On-hand quartz blocks can only be cut to the shapes indicated by the green shades.
- OK to use shorter quartz for test purpose since length is not a dominated factor of light yield for such a small detector if the surface polishing is good.
Cutting Tools: Diamond Saw

- Quartz is one of the hardest materials
- Rough cut can be done with usual wet tile saw (cuting loss > 2 mm)
- Angle cut should be done with precision diamond saw (cuting loss ~ 0.5 mm)
Quartz Cutting

- Using precision diamond saw (ISOMET 1000)
- Jigs were made for angle and cross cuts
- Cutting loss due to blade thickness: < 1 mm
- Extended cutting time to avoid chipping
Quartz Radiator Samples After Cut

- 3 quartz samples were cut to desired shapes
- Polishing is in progress
First Detector Prototype

- The 1st detector prototype was constructed using Alazk light guide
- Construction of light guide using UVS sheet is underway
DAQ & Cosmic Test Setup at U. of Manitoba

- Dark box: containing the trigger scintillators & the prototype detector
- Amplifier, Discriminator, Logic Unit, Charge ADC & Flash ADC
- HV power supply

- Software: TRIUMF MIDAS framework, online(realtime) & offline analysis
- Able to do charge integration analysis and single event waveform analysis
“Preliminary” Test

<table>
<thead>
<tr>
<th>Current Test Configuration</th>
<th>“Future” Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unpolished raw quartz block</td>
<td>Polished quartz with wedge cut</td>
</tr>
<tr>
<td>Alazk light guide</td>
<td>Anolux-UVS light guide</td>
</tr>
<tr>
<td>Non-quartz window 2” PMT</td>
<td>Quartz window 2” or 3” PMT</td>
</tr>
</tbody>
</table>

- Basic functionality test for cosmic ray test stand, DAQ etc.
- \(\sim 5 – 8 \) PE (very preliminary, not carefully calibrated)
- Low #PE and broden distribution due to “non-ideal” configuration, but the signals could be clearly seen.
- Real prototype cosmic ray tests will be started SOON when the quartz polishing are completed

![Graph](https://via.placeholder.com/150)

Counts

<table>
<thead>
<tr>
<th>Channel number of charge integration ADC</th>
</tr>
</thead>
</table>
Add-on: Double-Shutter for Bkg Measurement

- Would like to have a double-shutter for each detector
- One shutter is at PMT side (shutter A), another is at quartz side (shutter B)
- Allowing us to measure background in light guide during experiment

Normal operation
Background in light guide & PMT
Background in PMT (dark noise)

Concept of Double-shutter System
Add-on: Diagnostic/Calibration LEDs

- Would also like to have diagnostic/calibration LEDs in light guide
- Two LEDs are mounted on side wall of light guide. To avoid radiation damage, they should be mounted near PMT.
- Operating in continuous mode or pulse mode
- Useful in checking electronics chain, measuring linearity and gain, calibrating SPE, and so on.
Summary

Simulation:
- Work done: single detector study, detector rings in full MOLLER simulation environment, background/interference study, optimization of detector geometry.
- Basic design (1.5 cm thick quartz, 3” PMT, air-core light guide) meets our requirements, but with potential issue of background/interference.
- Full simulation in MOLLER simulation environment with different models is underway to quantitatively understand the Bkg-to-signal ratio, and to evaluate the effects etc.

Prototyping:
- 3 detector models were selected for beam test
- A variation of required materials and components is obtained.
- Quartz radiators were cut and the first prototype is completed
- Cosmic ray test stand is set up and fully functioning.
- We are in rapid progress on the construction of several prototypes for the cosmic ray test and upcoming beam test.