MATH 1300 Mid-Term Solutions for February 22, 2010

1.

$$
\left.\begin{array}{l}
{\left[\begin{array}{ccccc}
1 & 1 & -1 & 3 & 2 \\
0 & 2 & 4 & -6 & 3 \\
2 & 4 & -2 & 6 & 4
\end{array}\right] \xrightarrow{R 3-2 R_{2}}\left[\begin{array}{ccccc}
1 & 1 & -1 & 3 & 2 \\
0 & 2 & 4 & -6 & 3 \\
0 & 2 & 0 & 0 & 0
\end{array}\right] \xrightarrow{R_{2} \leftrightarrow R_{3}}\left[\begin{array}{cccc}
1 & 1 & -1 & 3 \\
0 & 2 & 0 & 0
\end{array}\right)} \\
R_{2} \times \frac{1}{2} \\
0
\end{array} 2 \begin{array}{ccccc}
1 & 1 & -1 & 3 & 2 \\
0 & 1 & 0 & 0 & 0 \\
0 & 2 & 4 & -6 & 3
\end{array}\right] \xrightarrow{\substack{R_{1}-R_{2} \\
R_{3}-2 R_{2}}}\left[\begin{array}{cccc}
1 & 0 & -1 & 3 \\
0 & 1 & 0 & 0 \\
0 \\
0 & 0 & 4 & -6
\end{array}\right]
$$

Set $x_{4}=t$, free. Then $x_{1}=\frac{11}{4}-\frac{3}{2} t, x_{2}=0$, and $x_{3}=\frac{3}{4}+\frac{2}{3} t$.
2. (a) $a=0$ and $4-3 b \neq 0$, so b is any number except $4 / 3$.
(b) $a=0$ and $b=4 / 3$.
(c) $a \neq 0$ and b any number. Then $x=-2+2 b$ and $a y=4-3 b$, so the solution is $x=-2+2 b, y=\frac{4-3 b}{a}$.
3. (a) DNE ${ }^{1}$, because $2 A B$ will be a 3×2 matrix but C is 2×3. Cannot subtract.
(b) $C D^{T}=\left[\begin{array}{ccc}0 & 1 & 2 \\ 1 & 0 & -3\end{array}\right]\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]=\left[\begin{array}{cc}8 & 4 \\ -8 & 0\end{array}\right]$, so $C D^{T}+E=\left[\begin{array}{cc}9 & 5 \\ -7 & 1\end{array}\right]$.
(c) $\left[\begin{array}{lll}-1 & 0 & 1\end{array}\right]\left[\begin{array}{cc}2 & 3 \\ 1 & -2 \\ 7 & 0\end{array}\right]=\left[\begin{array}{ll}5 & -3\end{array}\right]$.
(d) DNE. $C B$ is a 2×2 matrix, so has no third column.
(e) DNE. B is not square, so B^{3} is not defined.
4. (a) A is invertible if and only if $A \rightarrow I$, so the RREF is $\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$.
(b) $\mathbf{x}=\mathbf{0}$ is the unique solution.
(c) $\operatorname{det}\left(A^{2}\right)=(\operatorname{det}(A))^{2}$, so $\operatorname{det}(A)^{2}=3 \operatorname{det}(A)$. But also, A is invertible, so $\operatorname{det}(A) \neq 0$. Therefore we are allowed to cancel, giving $\operatorname{det}(A)=3$.

[^0]5. (a) FALSE. $(A B)^{T}=B^{T} A^{T}$.
(b) FALSE. If $A B=A C$ and A is invertible, then $B=C$.
(c) FALSE. It is true for any $a \neq 0, b \neq 0$, and $c \neq 0$.
(d) FALSE. It's $A \xrightarrow{R_{2}+3 R_{4}} A^{\prime}$.
6. (a) $\operatorname{det}(2 A B)=2^{5} \operatorname{det}(A) \operatorname{det}(B)=(32)\left(-\frac{1}{3}\right)(6)=-64$.
(b) $\operatorname{det}(A) \operatorname{det}(B) \operatorname{det}\left(A^{T}\right)=\operatorname{det}(A) \operatorname{det}(B) \operatorname{det}(A)=\frac{2}{3}$.
(c) $\operatorname{det}(A) \operatorname{det}(B) \operatorname{det}\left(A^{-1}\right)=\operatorname{det}(A) \operatorname{det}(B)(\operatorname{det}(A))^{-1}=\operatorname{det}(B)=6$.

(d) $A(\operatorname{adj}(A))=\operatorname{det}(A) I=-\frac{1}{3} I_{5}=\left[\begin{array}{ccccc}-\frac{1}{3} & 0 & 0 & 0 & 0 \\ 0 & -\frac{1}{3} & 0 & 0 & 0 \\ 0 & 0 & -\frac{1}{3} & 0 & 0 \\ 0 & 0 & 0 & -\frac{1}{3} & 0 \\ 0 & 0 & 0 & 0 & -\frac{1}{3}\end{array}\right]$
7. (a) By expansion down third column, -(1) $\left|\begin{array}{lll}2 & 4 & 1 \\ 0 & 8 & 2 \\ 0 & 3 & 5\end{array}\right|=-(2)\left|\begin{array}{ll}8 & 2 \\ 3 & 5\end{array}\right|=-68$.
(b) Row 2 is a multiple of row 1 , so the determinant is zero.
(c) This is a diagonal matrix, so the determinant is $(-20)(2)(-5)(10)(2)(-1)=-4000$.
8. (a) $a=C_{12}=-\left|\begin{array}{cc}-3 & 0 \\ 3 & 1\end{array}\right|=3, b=C_{13}=+\left|\begin{array}{cc}-3 & \\ 3 & 3\end{array}\right|=-24$
(b) $\operatorname{adj}(A)=\operatorname{cof}(A)^{T}=\left[\begin{array}{ccc}5 & -1 & 0 \\ 3 & 2 & 0 \\ -24 & -3 & 13\end{array}\right]$, so
$A^{-1}=\frac{1}{\operatorname{det}(A)} \operatorname{adj}(A)=\frac{1}{13}\left[\begin{array}{ccc}5 & -1 & 0 \\ 3 & 2 & 0 \\ -24 & -3 & 13\end{array}\right]=\left[\begin{array}{ccc}\frac{5}{13} & -\frac{1}{13} & 0 \\ \frac{3}{13} & \frac{2}{13} & 0 \\ -\frac{24}{13} & -\frac{3}{13} & 1\end{array}\right]$.

[^0]: 1 "Does Not Exist"

