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1.[8] State whether each of the following statements is true or false .

(a) A system whose augmented matrix is

[
1 0 6

0 5k k − 3

]
has a unique solution for

all values of k.

(a)

(b) A homogeneous system of 4 equations with 6 variables has infinitely many solutions.

(b)

(c) The product of two elementary matrices is also an elementary matrix.

(c)

(d) For two matrices A, B, if AB = 0, then A = 0 or B = 0.

(d)

(e) Every square matrix is invertible.

(e)

(f) If det(A) = 0, then the homogeneous system Ax = 0 has infinitely many solutions.

(f)

(g) Every matrix has a unique reduced row-echelon form.

(g)

(h) If A, B are upper-triangular matrices, then AB is upper-triangular.

(h)
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2.[9] Consider the linear system of equation

x1 +2x3 +x4 = 10

−x1 +x2 +x3 −x4 = −5

x1 +x2 +5x3 +2x4 = 21

x2 +3x3 = 5

(a) Find the reduced row-echelon form of the augmented matrix. Clearly describe your

row operations using proper notation.

(b) Using part (a), find all solutions of the above system.
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3.[10] Let

A =

[
1 0

2 1

]
B =

[
2 1

0 −1

]
C =

 1 4

−1 0

2 0

 D =

[
0 1 −1

0 2 1

]

Evaluate each of the following expressions or explain why it is not defined.

(a) ACT − 2D.

(b) CD + AB.

(c) det(2A) + det(B3).
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4.[9] Let

A =

[
−1 0

2 1

]
(a) Find a sequence E1, E2 of elementary matrices such that E2E1A = I.

(b) Compute E−1
1 , E−1

2 .

(c) Express A as a product of elementary matrices.
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5.[6] Let

A =


1 3 0 0

−6 5 2 7

−1 4 0 0

2 5 0 1


(a) Compute det(A).

(b) Is AT invertible? (Why?).
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6.[10] Let

A =

1 −1 1

0 −2 k

0 1 1


(a) For which values of k does A have an inverse?

(b) If k = 2 and A =

1 −1 1

0 −2 2

0 1 1

, find A−1.

(c) Use part (b) to solve the linear system

x −y +z = 3

−2y +2z = 4

+y +z = 4
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7. (a)[8] Let A =

2 0 3

4 1 5

3 −1 7

. Find the cofactors C23 and C22 of A.

(b) If B−1 =

[
1
4
−1

1
8

1
2

]
, first find det(B), and then find adj(B).


