THE UNIVERSITY OF MANITOBA

FINAL EXAMINATION

TIME: 2_HOURS

EXAMINERS: Various

PAGE 1 of 8

DATE: April 14, 2003

PAPER NO: 131

DEPARTMENT & COURSE NO: 136.130

EXAMINATION: <u>Vector Geometry &</u> <u>Linear Algebra</u>

Values

[10] 1. Let
$$A = \begin{pmatrix} 1 & 0 & 2 \\ 2 & 1 & 1 \\ 1 & 1 & 2 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$, $C = \begin{pmatrix} 1 & 3 \\ -2 & -1 \\ 1 & 2 \end{pmatrix}$.

Either evaluate each of the following expressions or give a reason why it is not defined.

- $2B 3C^{T}$ (a)
- (b) CAB
- A(C+B)(c)
- (d) tr(BC) tr(CB)

г**л** т

$$x + 2y = b$$
$$2x + (3 + b2)y = 3b + 1$$

- (a) has no solutions;
- (b) has infinitely many solutions;
- (c) has a unique solution.

[10] 3. Express the matrix
$$M = \begin{pmatrix} 6 & -2 \\ -5 & 2 \end{pmatrix}$$
 as a product of elementary matrices.

[12] Let A be the coefficient matrix of the following system of equations. 4.

$$2x + 6y - 2z = 1$$
$$y - z = 2$$
$$x + 4y - z = 3$$

- Write the system in the form of a matrix equation. (a)
- Find the cofactor C_{21} for the matrix A. (b)
- Find A^{-1} . (c)
- Solve the system using part 4(d) above. (d)

5. . Although the entries of the second column are unknown, we Let $M = \begin{bmatrix} 1 & b & 3 \end{bmatrix}$ $(0 \ c \ 2)$

are given that $|\mathbf{M}| = 12$.

 $(2 \ a \ -1)$

(a) Solve the system
$$M\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2 \\ -2 \\ 0 \end{pmatrix}$$
 FOR y ONLY, using Cramer's rule.

(b) Find the value of the determinant (using the given information about (a))

$$\begin{vmatrix} 2c + a & 2 & 3 \\ 2c & 0 & 4 \\ 3a + b & 7 & 0 \end{vmatrix}$$

(c) Find the adjoint of $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$

THE UNIVERSITY OF MANITOBA

DATE: April 14, 2003

PAPER NO: <u>131</u>

DEPARTMENT & COURSE NO: 136.130

EXAMINATION: <u>Vector Geometry &</u> <u>Linear Algebra</u>

Values

[20]	6.	Let $\mathbf{u} = (1,1,1)$, $\mathbf{v} = (-1,-2,3)$ and $\mathbf{w} = (2,2,0)$. Find:
		 (a) 2u-3v . (b) the area of the triangle with vertices at A(1,1,1,), B(-1,-2,3), C(2,2,0). (c) the volume of the parallelepiped, determined by u, v and w. (d) show that two of u, v and w are orthogonal. (e) find the projection of w onto u.
[8]	7.	Consider the vectors \mathbf{u} , \mathbf{v} , where $\ \mathbf{u}\ = 2$, $\ \mathbf{v}\ = 3$, and the angle between \mathbf{u}
		and v is $\theta = \frac{\pi}{3}$ radians (= 60°). Find
[10]	0	(a) $\mathbf{u} \cdot \mathbf{v}$. (b) $\ \mathbf{u} \times \mathbf{v}\ $.
[12]	8.	Let P be the plane whose equation is $x + 3y - z = 2$. Define the points A(5,0,3), B(2,-1,3), C(1,1,2) and D(0,0,1).
		 (a) Find a vector normal to the plane. (b) Show that A and C are on the plane P but B and D are not. (c) Find parametric equations for the line orthogonal to P and passing through A.
[10]	9.	Consider the vector space $P_2 = \{a + bx + cx^2 \mid a, b, c \in \mathbf{R}\}$ and the subsets
		$S = \{f(x) \in P_2 \mid f(2) = 0\}$ and $T = \{a + bx + cx^2 \in P_2 \mid a, b, c \ge -1\}.$
		 (a) Use the subspace test to show that S is a subspace of P₂. (b) Show that T is not a subspace of P₂, by giving a specific case for which part of the subspace test fails.
[5]	10.	Define "linearly independent set".
[12]	11.	Let $A = \begin{pmatrix} 1 & 2 & 3 & 1 \\ 1 & 2 & 3 & 2 \\ 2 & 4 & 6 & 0 \\ 1 & 2 & 2 & 1 \end{pmatrix}$.
		$\begin{pmatrix} 1 & 2 & 1 \end{pmatrix}$

- Find a basis for, and dimension of, the row space of A. (a)
- (b)
- Find a basis for, and dimension of, the column space of A. Find a basis for, and dimension of, the solution space of the system Ax = 0. (c)

FINAL EXAMINATION PAGE 2 of 8 TIME: 2_HOURS EXAMINERS: Various