THE UNIVERSITY OF MANITOBA

DATE: April 14, 2003 FINAL EXAMINATION

PAGE 1 of 8 PAPER NO: 131

DEPARTMENT & COURSE NO: 136.130 TIME: 2 HOURS

EXAMINATION: Vector Geometry & Linear Algebra **EXAMINERS:** Various

Values

[10] 1. Let
$$A = \begin{pmatrix} 1 & 0 & 2 \\ 2 & 1 & 1 \\ 1 & 1 & 2 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$, $C = \begin{pmatrix} 1 & 3 \\ -2 & -1 \\ 1 & 2 \end{pmatrix}$.

Either evaluate each of the following expressions or give a reason why it is not defined.

- $2B-3C^{T}$ (a)
- (b) CAB
- A(C+B)(c)
- tr(BC)-tr(CB)
- [9] 2. Find all the values of b for which the following system of equations:

$$x + 2y = b$$
$$2x + (3 + b2)y = 3b + 1$$

- (a) has no solutions;
- (b) has infinitely many solutions;
- (c) has a unique solution.
- Express the matrix $M = \begin{pmatrix} 6 & -2 \\ -5 & 2 \end{pmatrix}$ as a product of elementary matrices. [10]
- Let A be the coefficient matrix of the following system of equations. [12] 4.

$$2x+6y-2z=1$$
$$y-z=2$$
$$x+4y-z=3$$

- Write the system in the form of a matrix equation. (a) (b) Find the cofactor C_{21} for the matrix A.
- Find A^{-1} . (c)
- Solve the system using part 4(d) above.
- Let $M = \begin{bmatrix} 1 & b & 3 \end{bmatrix}$. Although the entries of the second column are unknown, we [12] 0 c 2

are given that M=12.

- Solve the system $M \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2 \\ -2 \\ 0 \end{pmatrix}$ FOR y ONLY, using Cramer's rule.
- Find the value of the determinant (using the given information about (a)) (b)

$$\begin{vmatrix} 2c + a & 2 & 3 \\ 2c & 0 & 4 \\ 3a + b & 7 & 0 \end{vmatrix}.$$

(c) Find the adjoint of $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$

THE UNIVERSITY OF MANITOBA

DATE: April 14, 2003 FINAL EXAMINATION

PAPER NO: <u>131</u> PAGE 2 of 8

DEPARTMENT & COURSE NO: 136.130 TIME: 2 HOURS

EXAMINATION: <u>Vector Geometry & EXAMINERS: Various</u>

Linear Algebra

Values

[20] 6. Let $\mathbf{u} = (1,1,1)$, $\mathbf{v} = (-1,-2,3)$ and $\mathbf{w} = (2,2,0)$. Find:

- (a) $\|2u 3v\|$.
- (b) the area of the triangle with vertices at A(1,1,1), B(-1,-2,3), C(2,2,0).
- (c) the volume of the parallelepiped, determined by \mathbf{u} , \mathbf{v} and \mathbf{w} .
- (d) show that two of \mathbf{u} , \mathbf{v} and \mathbf{w} are orthogonal.
- (e) find the projection of w onto u.

[8] 7. Consider the vectors \mathbf{u} , \mathbf{v} , where $\|\mathbf{u}\| = 2$, $\|\mathbf{v}\| = 3$, and the angle between \mathbf{u} and \mathbf{v} is $\theta = \frac{\pi}{3}$ radians $(=60^{\circ})$. Find

- (a) $\mathbf{u} \cdot \mathbf{v}$.
- (b) $\|\mathbf{u} \times \mathbf{v}\|$.

[12] 8. Let P be the plane whose equation is x + 3y - z = 2. Define the points A(5,0,3), B(2,-1,3), C(1,1,2) and D(0,0,1).

- (a) Find a vector normal to the plane.
- (b) Show that A and C are on the plane P but B and D are not.

(c) Find parametric equations for the line orthogonal to P and passing through A.

[10] 9. Consider the vector space $P_2 = \{a + bx + cx^2 \mid a, b, c \in \mathbf{R}\}$ and the subsets $S = \{f(x) \in P_2 \mid f(2) = 0\}$ and $T = \{a + bx + cx^2 \in P_2 \mid a, b, c \ge -1\}$.

- (a) Use the subspace test to show that S is a subspace of P_2 .
- (b) Show that T is not a subspace of P₂, by giving a specific case for which part of the subspace test fails.

[5] 10. Define "linearly independent set".

[12] 11. Let $A = \begin{bmatrix} 1 & 2 & 3 & 1 \\ 1 & 2 & 3 & 2 \\ 2 & 4 & 6 & 0 \\ 1 & 2 & 2 & 1 \end{bmatrix}$

- (a) Find a basis for, and dimension of, the row space of A.
- (b) Find a basis for, and dimension of, the column space of A.
- (c) Find a basis for, and dimension of, the solution space of the system Ax = 0.