DA	FE: <u>April</u>	<u>118, 2005</u>		FINAL EXAMINATION								
PAF	PER NO:	<u>300</u>	TITLE PAGE									
DEF	PARTME	ENT & COURSE		TIME: 2_HOURS								
EXA	MINAT	EXAMINERS:	<u>Various</u>									
GIVEN NAME: (Print in ink)												
STU	JDENT N	UMBER:										
SEAT NUMBER												
SIGNATURE: (in ink)(I understand that cheating is a serious offense)												
	se mark TION	your section nu	mber. <u>TIME</u>	INSTRUCT	<u>OR</u>							
	<u>L05</u>	Tues., Thurs.	10:00 - 11:20	V. Charette								
	<u>L06</u>	M,W,F	1:30 - 2:20	N. Zorboska	I							

□ <u>L07</u> M,W,F 1:30 – 2:20 **K. Doerksen**

□ <u>L08</u> M,W,F 2:30 − 3:20 **R. Thomas**

L<u>109</u> Tues. eve 7:00 - 9:45 **J. Sichler**

- **L**<u>192</u> **Challenge for credit**
- Deferral

INSTRUCTIONS TO STUDENTS:

This is a 2 hour exam. **Please show your work clearly**. Please justify your answers unless otherwise stated.

No calculators or cell phones are permitted.

This exam has a title page, 9 pages of questions and 2 blank pages for rough work. Please check that you have all the pages.

The value of each question is indicated in the left-hand margin beside the statement of the question. The total value of all questions is 120.

Answer all questions on the exam paper in the space provided

DATE: <u>April 18, 2005</u> PAPER NO: <u>300</u> DEPARTMENT & COURSE #: <u>136.130</u> EXAMINATION: <u>Vector Geom. &</u> <u>Linear Algebra</u> FINAL EXAMINATION PAGE 2<u>of 8</u> TIME:<u>2</u>HOURS EXAMINERS: <u>Various</u>

[11] 1. The augmented matrix of a system of linear equations has been reduced to the matrix

$$\begin{bmatrix} 1 & 0 & a-1 & | & 2 \\ 0 & 1 & 0 & | & 3 \\ 0 & 0 & a^2 - 2a & | & a-2 \end{bmatrix}$$

- (a) Determine the values of *a* such that the system has:
 - (i) No solutions

(ii) Infinitely many solutions

(iii) A unique solution

DATE: April 18, 2005 PAPER NO: 300 DEPARTMENT & COURSE #: 136.130 EXAMINATION: Vector Geom. & Linear Algebra $\begin{bmatrix} 1 & 2 & 1 \\ -1 & -1 & 1 \\ 2 & k+1 & k \end{bmatrix}$ FINAL EXAMINATION PAGE 3 of 8 TIME: _ 2 _ HOURS EXAMINERS: Various

(a) For which values of k does A fail to be invertible?

(b) Find A^{-1} for k=1.

THE UNIVERSITY OF MANITOBA

DATE: April 18, 2005FINAL EXAMINATIONPAPER NO: 300PAGE 4 of 8DEPARTMENT & COURSE #: 136.130TIME: _ 2 _ HOURSEXAMINATION: Vector Geom. &
Linear AlgebraEXAMINERS: Various

THE UNIVERSITY OF MANITOBA

[8] 3. Use cofactor expansion along column two to calculate the determinant

$$\begin{vmatrix} 1 & -1 & 5 & 0 \\ 0 & 2 & 0 & 1 \\ 1 & 0 & -3 & 2 \\ -2 & 0 & 0 & 1 \end{vmatrix}$$

(No marks will be given for any other method.)

[8] 4. Let A and B be 4×4 matrices such that det(A) = 3 and det(B) = 2. Calculate:

(a)
$$det(AB^2)$$

(b)
$$det(2A^TB^{-1})$$

PAPER NO: <u>300</u>

DEPARTMENT & COURSE #: <u>136.130</u>

EXAMINATION: <u>Vector Geom. &</u> <u>Linear Algebra</u> FINAL EXAMINATION PAGE 5<u>of 8</u> TIME: <u>2</u>HOURS

EXAMINERS: Various

[8] 5. Use Cramer's Rule to solve for y only:

(No marks will be given for any other method.)

[16] 6. Given the lines $L_1: (x, y, z) = (5, 4, 3) + s (2, 10)$ and $L_2: (x, y, z) = (0, 2, 4) + t (1, 0 - 1)$

(a) Find their point of intersection P.

(b) Find parametric equations of the line L through P from (a), perpendicular to both L_1 and L_2 .

DATE: <u>April 18, 2005</u> PAPER NO: <u>300</u> DEPARTMENT & COURSE #: <u>136.130</u> EXAMINATION: <u>Vector Geom. &</u> <u>Linear Algebra</u> FINAL EXAMINATION PAGE 6<u>of 8</u> TIME: <u>2</u>HOURS EXAMINERS: Various

- [13] 7. Let **a** and **b** be two nonzero vectors in the 3-space \mathbb{R}^3 and let $\mathbf{v} = 2\mathbf{a} 3\mathbf{b}$.
 - (a) Find $\mathbf{b} \times \mathbf{v}$ in terms of \mathbf{a} and \mathbf{b} .

(b) Find $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{v})$.

(c) Find the volume of the parallelepiped determined by **a**, **b**, and **v**.

DATE: <u>April 18, 2005</u> PAPER NO: <u>300</u> DEPARTMENT & COURSE #: <u>136.130</u> EXAMINATION: <u>Vector Geom. &</u> <u>Linear Algebra</u>

FINAL EXAMINATION PAGE 7<u>of 8</u> TIME:<u>2</u>HOURS EXAMINERS: <u>Various</u>

- [11] 8. Let $\mathbf{u} = (0, 0, 2, -1)$, $\mathbf{v} = (1, 0, 1, 2)$ and $\mathbf{w} = (1, -1, 0, 0)$ be vectors in \mathbb{R}^4 .
 - (a) Check if **u** and **v** are orthogonal or not.

(b) Check if **u**, **v** and **w** are linearly independent or not.

DATE: April 18, 2005

PAPER NO: 300

DEPARTMENT & COURSE #: 136.130

EXAMINATION: Vector Geom. & Linear Algebra

FINAL EXAMINATION

PAGE 8 <u>of 8</u>

TIME: <u>2</u> HOURS

EXAMINERS: Various

9. Let $V = M_{22}$ and let $A = \begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix}$. [13]

> (a) Let $U = \{B \text{ in } M_{22} \text{ such that } AB = BA \}$. Check if U is a subspace of V.

(b) Let $W = \{B \text{ in } M_{22} \text{ such that } B = A + a I, a \text{ in } R \}$. Check if W is a subspace of V.

DATE: April 18, 2005

PAPER NO: <u>300</u>

DEPARTMENT & COURSE #: 136.130

EXAMINATION: <u>Vector Geom. &</u> <u>Linear Algebra</u> FINAL EXAMINATION PAGE 9 <u>of 8</u> TIME: <u>2</u> HOURS EXAMINERS: <u>Various</u>

[16] 10. Given that the reduced row echelon form of the matrix

Λ_	3	-3	0	21	-6	is R=	1	-1	0	7	-2
	1	-1	1	2	1		0	0	1	-5	3
A=	2	-2	0	14	_4		0	0	0	0	0
	_2	2	0	-14	4		0	0	0	0	0

(a) Find a basis of the column space of A.

(b) Find a basis of the row space of A.

(c) Find a basis of the null space of A.