DATE: December 22, 2004	FINAL EXAMINATION					
PAPER NO580	PAGE <u>1 of 9</u>					
DEPARTMENT & COURSE NO: <u>136.130</u>	TIME: <u>2 hours</u>					
EXAMINATION: Vector Geometry & Linear Algebra	EXAMINERS: Various					

Values

[9] 1. (a) Suppose A is a 4×4 matrix with det A=3. Find det(2A).

(b) Suppose in addition that B is a 4×4 matrix with det B = 7. Find det (A^TB) .

(c) Find $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$.

(d) Let
$$\frac{1}{2}B^{-1} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
. Find B.

DATE: December 22, 2004	FINAL EXAMINATION					
PAPER NO580	PAGE <u>2 of 9</u>					
DEPARTMENT & COURSE NO: <u>136.130</u>	TIME: <u>2 hours</u>					
EXAMINATION: Vector Geometry & Linear Algebra	EXAMINERS: Various					

Values

[16] 2. (a) Find all values of the number *a* such that $A = \begin{bmatrix} 2 & 2 & 0 \\ 2 & 0 & 2 \\ -2 & a & 2 \end{bmatrix}$ does not have an inverse.

In (b), (c) and (d), consider the matrix A as in part (a) and let a=2

(b) The adjoint of A is partially computed as shown. Fill in the three missing numbers in the boxes.

$$\operatorname{Adj}(A) = \begin{bmatrix} -4 & \Box & 4 \\ -8 & 4 & \Box \\ \Box & -8 & -4 \end{bmatrix}$$

(c) Find det A.

(d) Find A^{-1} .

DATE: December 22, 2004	FINAL EXAMINATION					
PAPER NO580	PAGE <u>3 of 9</u>					
DEPARTMENT & COURSE NO: <u>136.130</u>	TIME: <u>2 hours</u>					
EXAMINATION: Vector Geometry & Linear Algebra	EXAMINERS: Various					

Values

- [10] 3. Use Cramer's Rule to solve for <u>only</u> y: No other method will be awarded marks. Show all your work.
 - 2x + y z = -22x + y + 2z = 12x - 2y + z = -1

 DATE: December 22, 2004
 FINAL EXAMINATION

 PAPER NO. ______580__
 PAGE _4 _ of _ 9____

 DEPARTMENT & COURSE NO: 136.130
 TIME: 2 hours

 EXAMINATION: Vector Geometry & Linear Algebra
 EXAMINERS: Various

Values

[15] 4. Let $\mathbf{u} = (1, 1, 3)$ and $\mathbf{v} = (2, 2, -1)$. Find each of the following:

(a) The cosine of the angle between \mathbf{u} and \mathbf{v} ;

(b) A non-zero vector orthogonal to both $\, u \,$ and $\, v \, ; \,$

(c) The area of the parallelogram determined by $\, u \,$ and $\, v \, . \,$

FINAL EXAMINATION					
PAGE <u>5 of 9</u>					
TIME: <u>2 hours</u>					
EXAMINERS: Various					

Values

[15] 5. (a) Find parametric equations or the vector form for the line L passing through the points P = (2, 4, -1) and Q = (5, 0, 7).

(b) Find an equation of the plane passing through the point (3, -1, 7) and perpendicular to the line (x, y, z) = (7, 1, 2) + t(4, 2, -5).

DATE: December 22, 2004	FINAL EXAMINATION				
PAPER NO580	PAGE <u>6 of 9</u>				
DEPARTMENT & COURSE NO: <u>136.130</u>	TIME: <u>2 hours</u>				
EXAMINATION: Vector Geometry & Linear Algebra	EXAMINERS: Various				

Values

[9] 6. (a) Find the point P of intersection of the line (x, y, z) = (2, 1, 3) + t(2, -2, 1)with the plane x + y - z = 2.

(b) How far is the point P from the origin?

DATE: December 22, 2004	FINAL EXAMINATION					
PAPER NO580	PAGE <u>7 of 9</u>					
DEPARTMENT & COURSE NO: <u>136.130</u>	TIME: <u>2 hours</u>					
EXAMINATION: Vector Geometry & Linear Algebra	EXAMINERS: Various					

Values

[20] 7. (a) Express (7, 3) as a linear combination of (2, 3) and (5, 6).

- (b) Let U be the set of all vectors in \mathbb{R}^3 that are perpendicular to the vector (2, 3, 4). Give a reason why U is a subspace of \mathbb{R}^3 .
- (c) Find a basis for U of part (b).
- (d) Let V be the following subset of \mathbb{R}^3 : $V = \{(a, 5, b) | a, b \in \mathbb{R}\}$. Find a vector v so that $v \in V$ but $2v \notin V$.

(e) Let W be the following <u>subset</u> of \mathbb{R}^2 : $W = \{(x, y) | x = 0 \text{ or } y = 0\}$: Find two vectors **u** and **w** in W so that $\mathbf{u} + \mathbf{w} \notin W$.

DATE: December 22, 2004	FINAL EXAMINATION					
PAPER NO. <u>580</u>	PAGE <u>8 of 9</u>					
DEPARTMENT & COURSE NO: <u>136.130</u>	TIME: <u>2 hours</u>					
EXAMINATION: Vector Geometry & Linear Algebra	EXAMINERS: Various					

Values

[16] 8. Given: the reduced row echelon form of the matrix

	3	9	-2	1	16	14		1	3	0	0	4	5	
٨	1	3	-3	2	11	5	is R =	0	0	1	0	-1	2	l
A=	3	9	5	-4	-1	13	1S $\mathbf{K} =$	0	0	0	1	2	3	ŀ
	3	9	-5	2	21	11		0	0	0	0	0	0	

(a) Find a basis of the row space of A.

(b) Find a basis of the column space of A.

(c) Find a basis of the nullspace of A.

(d) The dimension of the row space of A is	<u> </u>
The dimension of the column space of A is	.
The dimension of the nullspace of A is	<u> </u>

FINAL EXAMINATION					
PAGE <u>9 of 9</u>					
TIME: <u>2 hours</u>					
EXAMINERS: Various					

Values [10] 9. Let V be the vector space $M_{2,2}$ of all 2 x 2 matrices.

(a) Find a basis for V that contains
$$A = \begin{bmatrix} 2 & 3 \\ 5 & 2 \end{bmatrix}$$
 but does not contain $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$.

(b) Express $B = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ as a linear combination of the basis that you gave in part (a).