DATE: October 25, 2004 Midtern Examination

DEPARTMENT & COURSE NO. <u>136.130</u> PAGE NO: <u>1 of 6</u>

EXAMINATION: <u>Vector Geometry & Linear Algebra</u>

TIME: <u>1 Hour</u>

(10) 1. Solve, by Gauss-Jordan elimination, the system:

$$2x_1 + x_2 + x_3 = 7$$
,
 $x_1 + x_2 - x_3 = 0$,

$$3x_1 + x_2 + 3x_3 = 14$$
.

DATE: October 25, 2004 Midtern Examination

DEPARTMENT & COURSE NO. <u>136.130</u> PAGE NO: <u>2 of 6</u>

EXAMINATION: Vector Geometry & Linear Algebra

TIME: 1 Hour

(7) 2. Evaluate $\det \begin{bmatrix} 2 & 0 & 11 \\ 1 & 2 & 3 \\ -3 & -2 & -8 \end{bmatrix}$ by row reduction to the determinant of an upper

triangular matrix. No other method will be awarded marks. Show all your work.

DATE: October 25, 2004 Midtern Examination

DEPARTMENT & COURSE NO. <u>136.130</u> PAGE NO: <u>3 of 6</u>

TIME: 1 Hour

(10) 3. Evaluate $\det \begin{bmatrix} 5 & 2 & 6 \\ 7 & 3 & 0 \\ 1 & 4 & 8 \end{bmatrix}$ by expansion using column 2. No other method will be

awarded marks. Show all your work.

EXAMINATION: Vector Geometry & Linear Algebra

DATE: October 25, 2004 Midtern Examination

DEPARTMENT & COURSE NO. <u>136.130</u> PAGE NO: <u>4 of 6</u>

EXAMINATION: Vector Geometry & Linear Algebra TIME: 1 Hour

(9) 4. Let
$$A = \begin{bmatrix} -40 & 16 & 9 \\ 13 & -5 & -3 \\ 5 & -2 & -1 \end{bmatrix}$$
.

a) Find A^{-1} . Note: A^{-1} has only integer entries.

b) Use
$$A^{-1}$$
 to solve $AX = \begin{bmatrix} 1 \\ -2 \\ -1 \end{bmatrix}$.

DATE: October 25, 2004 Midtern Examination

DEPARTMENT & COURSE NO. <u>136.130</u> PAGE NO: <u>5 of 6</u>

EXAMINATION: Vector Geometry & Linear Algebra TIME: 1 Hour

(10) 5. Let
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 0 \end{bmatrix}$$
, $B = \begin{bmatrix} 3 & -1 & 2 \\ 1 & 0 & 4 \end{bmatrix}$, $C = \begin{bmatrix} 1 & -1 \\ 2 & 1 \\ -2 & 3 \end{bmatrix}$, $D = \begin{bmatrix} 1 & 2 & -1 \\ 1 & 0 & 2 \\ -2 & -3 & 1 \end{bmatrix}$.

Calculate defined expressions; write "undefined" beside undefined expressions.

a)
$$CA + DB^{T} =$$

b)
$$A^2 =$$

c)
$$B^2 =$$

d)
$$AB - 3C =$$

e)
$$B^TB =$$

DATE: October 25, 2004

Midterm Examination

DEPARTMENT & COURSE NO. 136.130

PAGE NO: <u>6 of 6</u>

EXAMINATION: Vector Geometry & Linear Algebra

TIME: 1 Hour

(14) 6. Let $A = \begin{bmatrix} 0 & 1 \\ 2 & 4 \end{bmatrix}$.

a) Using only elementary row operations, transform $\,A\,$ into $\,I_2\,$. Use suitable notation (or words) to explain what each elementary row operation is.

b) Find elementary matrices $E_1, E_2, ..., E_n$, such that $E_n ... E_2 E_1 A = I_2$.

c) For each $\,E_{\,i}\,$ found in b), give the inverse $\,E_{\,i}^{-1}\,$.

d) Using the above results, express A as an explicit product of elementary matrices.