136.169, Assignment No. 4

                                                     January 17, 2003

 

   The assignment is due Friday, January 24, 2003 in class. Late assignments receive a mark zero.

 

 

 

       1. Evaluate the limits :

               a)  .                            [3]

               b)  .                    [3]

               c) .                [3]

 

 

 

2.Find the n-th derivative of f(x) = ln (x+1). Prove the formula by using induction.[5]

 

 

 

3.   Let f(x) = ln (x+1).

 

            a)Write the Taylor polynomial  Pn(x) and the Lagrange remainder Rn(x) for

f(x)  around  =0 .  [3]

 

      b) Show that  for x=1.   [3]

 

      c) Find n such that the approximation of ln2 by the n-th Taylor polynomial Pn

         for ln (x+1) around 0 is with an error smaller than 0.001.   [4]

 

 

 

       4.a) Prove that a general cubic polynomial ,

             has exactly one inflection point . [5]

 

          b) Prove that if a cubic polynomial has three x-intercepts, then the inflection point

              occurs at the average value of the three intercepts. [4]

 

 

 

5.   Draw the graph of the function  by showing all the

details of your work.  [9]

 

 

---------------------------------------------------------------------------------------------------

 

                                                                     Total  [42/40]