136.169, Assignment No. 1

September 23, 2005

The assignment is due Friday, September 30, in class. Late assignments receive a mark zero.

- 1. Let f(x) = 3 |x| and $g(x) = \sqrt{x-2}$.
 - a) Find the domains and the ranges of f and g and draw their graphs. [4]
 - b) Find the domains, ranges and formulas for the functions $f \circ g$ and $g \circ f$ (if the corresponding function is defined). Draw the graphs of $f \circ g$ and $g \circ f$ (if the corresponding function is defined).[5]
 - c) Check if f and g are one-to one, and if yes, find their inverse functions. [4]
- 2. a) The point P lies on the x axis and the point Q lies on the line y = -2x. The point (2,1) is the midpoint of PQ. Find the coordinates of P. [4]
 - b) Find the y coordinates of the points of intersection of the circle $x^2+y^2 = 4$ and the ellipse $x^2+2y^2+8y+4=0$. Draw a picture. [4]
 - c) What is the length (no decimal numbers, please) of the line segment having one end on the x axis, the other end on the y axis, passing through the point $(1, 2 - \frac{2}{\sqrt{3}})$ and making an angle of 150° with the positive part of the x axis. Draw a picture. [4]

3.Using the formal definition of the limit, verify that:

a)
$$\lim_{x \to -2} (5 - 2x - x^2) = 5$$
. [4]

b) If $\lim_{x\to 2} f(x) = L, L > 0$, show that there exists $\delta > 0$ such that, whenever $0 < |x - 2| < \delta$, we have that f(x) > 0.[6]

4.Showing all of your work, find:

a)
$$\lim_{x \to 1} \left(\left(\frac{3 - x^2}{x^2 - 2x - 1} \right)^3 - 2x \right).$$
 [3]
b)
$$\lim_{x \to 2^+} \frac{2x^3 - 4x^2}{|2x - 4|}.$$
 [3]