136.169, Assignment No. 3 November 28, 2005

The assignment is due Monday, December 5, 2003 in class. Late assignments receive mark zero.

1.a) Show that for x > 0 we have that $\tan^{-1} x = \sin^{-1} \left(\frac{x}{\sqrt{1+x^2}} \right)$. [5]

- b) Let $f(x) = \sin^{-1}(\cos x)$. What is the domain of f? Is f periodic? Where is f continuous? Where is f differentiable? Show that the derivative of f (where ever it exists) is either 1 or -1. Draw the graph of f. [7]
- 2. Evaluate the limits :

a)
$$\lim_{x \to 0^+} \frac{\csc x}{\ln x}$$
. [3]
b) $\lim_{x \to 0} (1 + \tan x)^{\frac{1}{x}}$. [3]
c) $\lim_{x \to 1^+} (\frac{x}{x-1} - \frac{1}{\ln x})$. [3]

3. a) If $f(x) = \frac{\ln x}{x}$, show that f'(x) > 0 on (0, e) and f'(x) < 0 on (e, ∞) . What is the value of f at x=e? Use the above to show that $e^{\pi} > \pi^{e}$. [4]

b) Prove that $x^2+1 - \ln x > 0$ on $(0, \infty)$. [3]

- 4. Draw the graph of the function $f(x) = x + 1 \frac{1}{x} \frac{1}{x^2}$ by showing all the details of your work. [8]
- 5. You are riding on a Ferris wheel of diameter 20m. The wheel is rotating at 1 revolution per minute. How fast are you rising or falling when you are 6m horizontally away from the vertical line passing through the center of the wheel? [6]

Total [42/40]