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Value

               1.  Define the number 2 by 2 = 1+1.

                a) Prove , by mentioning which field axioms you are using in each step,
[4]                that  2≠ 1. ( Hint: use proof by contradiction.)

                b) Prove,  by mentioning which order axioms and theorems you are using
  [2]             in each step, that 2≠ 0. (Hint: prove that 2 > 0. No proof by contrad. here.)

             2. Let  f: A →  B and let G and H be subsets of B.

                a) State the definition of  f-1 (G).
[1]

               b) Prove that if  G ⊆  H, then  f-1  (G) ⊆  f-1 (H).

[3]

              c) If  G ⊆  H  and f-1 (G) = f-1 (H), must G = H ? Prove your answer.

[3]
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               3. Let Ir =(r, 1),  for r in (0, 1) ∩ .

                a) State the density theorem (for rational numbers).
[2]

                b) If A =
 

Ir
r∈(0,1)∩
 ,  prove that  A = (0, 1). ( Use a) in one half of the proof.)

  [6]

               4.  a) Prove, by using the Principal of Mathematical Induction, that 1
2n

<
1
n

,

                         for every n in   .
[4]
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                    b) Define the infimum of a set A that is bounded from below.
[2]

                    c) Show that the infimum of the set A = {
 

1
2n
:n ∈  } is 0. (Hint: use a

                     corollary of the Archimedean property and part a).)

[4]

                  d) BONUS QUESTION:  Find the set A = 
 

In
n=1

∞

 , with In = [−1,
1
2n
] , by

[2]                  using c) and a consequence of the proof of the Nested Intervals Theorem
                       as stated in class.
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                 5. a) Define when is a function f: A →B an injection and when is it a surjection.
[2]

                   b)  Prove in details that the set A = { m
2 +1
3

: m ∈ {even natural numbers}} is

                      denumerable (i.e. infinite countable). (You have to find a bijection f between
                       and A and show me that that f is a bijection.)

[6]


