MATH 2200, Assignment No. 3 November 8, 2006

The assignment is due Wednesday, November 15, in class. Late assignments receive a mark zero.

- 1. a) Using the **definition of the limit** of a sequence prove that $\lim_{n \to \infty} \frac{\sqrt{n}}{n+1} = 0.$ [5]
 - b) Prove that if $\lim x_n = 0$ and the sequence (y_n) is bounded, then $\lim x_n y_n = 0$. [5]
 - c) Give examples of sequences (x_n) and (y_n) such that $\lim x_n = x \neq 0$, (y_n) is bounded, but $\lim x_n y_n$ does not exist. [2]
- 2. Determine if (x_n) converges or diverges: (Explain why.)

a)
$$x_n = \frac{\sin 2n}{n} + \frac{n^2}{1 - n^2}$$
. [4]
b) $x_n = (-1)^n \sqrt{n}(\sqrt{n+1} - \sqrt{n})$. [6]
c) $x_n = \frac{2^n}{n}$. (What is $\lim_{n \to \infty} \frac{x_{n+1}}{x_n}$ equal to? Use this to prove your claim.) [7]

- 3. a) Let (x_n) be a bounded sequence and let s= sup{ x_n : n in |N }. Show that if s is not in { x_n : n in |N }, then there is a subsequence of (x_n) that converges to s. [7]
 - b) Show that if (x_n) is unbounded, then there exists a subsequence (x_{n_k}) such that $\lim_{k \to \infty} \frac{5}{x_{n_k}} = 0$. [6]
- 4. a) Show, by using the definition of a Cauchy sequence, that if (x_n) and (y_n) are Cauchy sequences, then (x_n+y_n) and (x_ny_n) are also Cauchy sequences. [7]
 - b) Let (x_n) be a Cauchy sequence such that x_n is an integer, for all n in |N|. Show that (x_n) is ultimately constant. [6]

Total [55/54]