MATH 2200, Assignment No. 4 November 24, 2006

The assignment is due Friday, December 1, 2006 in class. Late assignments receive a mark zero.

- 1. a) Show that $\lim_{x \to -1} \frac{x+5}{2x+3} = 4$, by using the definition of a limit. [6]
 - b) Show that $\lim_{x\to 1} \frac{1}{1-x}$ does not exist. [4]
- 2. a) Define g: $\mathbb{R} \to \mathbb{R}$ by g(x) = 3x for x rational and g(x) = x-2 for x irrational. Find all the points at which g is continuous. Prove your statements. [6]
 - b) Let $f: A \to \mathbb{R}$ be nonnegative on A, and let f be continuous at c. Prove by using the definition of limit that then $\lim_{x \to c} \sqrt{f(x)} = \sqrt{\lim_{x \to c} f(x)}$, and so the function \sqrt{f} is also continuous at c. [6]
- 3. a) Let $f: \mathbb{R} \to \mathbb{R}$ be continuous at c and let f(c) > 0. Show that there exists a neighbourhood $V_{\delta}(c)$ of c such that for any x in $V_{\delta}(c)$ we have that f(x) > 0.[6]
 - b) Let $f: \mathbb{R} \to \mathbb{R}$ be continuous on \mathbb{R} and such that $f(m/2^n) = 0$ for all m in \mathbb{Z} and all n in \mathbb{N} . Show that f(x) = 0, for all x in \mathbb{R} . [7]
 - c) Let $f: \mathbb{R} \to \mathbb{R}$ be continuous on \mathbb{R} and let $S = \{x \text{ in } \mathbb{R} : f(x) = 0\}$. If (x_n) is contained in S and $x = \lim_{n \to \infty} (x_n)$, show that x is also in S. [3]
- 4. a) Give an example of functions f and g that are both discontinuous at a point c in \mathbb{R} but such that both f+g and fg is continuous at c. [3]
 - b) Give an example of a function f that is discontinuous at every point of \mathbb{R} , but such that |f| is continuous on \mathbb{R} . [2]
 - c) Show that if f and g are such that f is continuous at c, g is discontinuous at c and fg is continuous at c, then f must be zero at c . [7]

Total [50/48]