MATH 2200, Assignment No. 1

September 22, 2006

The assignment is due Friday, September 29, 2006 in class. Late assignments receive a mark zero.

- 1. Given sets A and B, show that :
 - a) The sets $A \cap B$ and $A \setminus B$ are disjoint. [5]
 - b) $A = (A \cap B) U (A \setminus B)$. [5]
- 2. a) Let $f(x) = -x^2$ and $g(x) = \frac{1}{\sqrt{x}}$. Find the functions $f \circ g$ and $g \circ f$ if they exist, by first finding the domains, codomains and ranges of f and g. Draw the graphs of all of the functions that do exist. [7]
 - b) Show that if f: $A \rightarrow B$ is surjective and $H \subseteq B$, then f (f⁻¹(H)) = H. Give an example to show that the equality need not hold if f is not surjective. [7]
 - c) If f is a bijection of A onto B, show that f^{-1} is a bijection of B onto A. [5]
- 3. Prove (by referring to each Field axiom and each Theorem as you are using it) that:
 - a) 2+2 = 4, using that a natural number $n \neq 1$ is defined as (n-1) + 1. [3]
 - b) If $a \neq 0$ and $b \neq 0$, show that (ab) $^{-1}=a^{-1}b^{-1}$. [6]
 - c) For a not zero, $(-a)^{-1} = -(a^{-1})^{-1}$, i.e. the inverse of a negative is the negative of the inverse. (Caution: do not write 1/a instead of a^{-1} .) [8]
- 4. For a and b in \mathbb{R} let $a \# b := \frac{ab}{2} + 1$. (Note: a # b is a binary operation mapping $\mathbb{R} \times \mathbb{R} \to \mathbb{R}$. Check if for all a, b and c in \mathbb{R} :
 - a) a # b = b # a, [2]
 - b) a # (b # c) = (a # b) # c, [4]

c) there exists e in \mathbb{R} such that , for all a in \mathbb{R} , a # e = e # a = a . [4]