MATH 2202, Assignment No. 3 November 9, 2009

The assignment is due Monday, November 16, in class. Late assignments receive a mark zero.

a) Using the definition of the limit of a sequence prove that lim_{n→∞} √n/(n+1) = 0. [5]
 b) Prove that if lim_{n→∞} x_n = 0 and the sequence (y_n) is bounded, then lim_{n→∞} x_n y_n = 0. [5]
 c) Give examples of sequences (x_n) and (y_n) such that lim_{n→∞} x_n = x ≠ 0, (y_n) is bounded, but lim_{n→∞} x_n y_n does not exist. [2]

2. Determine if (x_n) converges or diverges: (**Explain** why by showing all of your work and using theorems done in class.)

a)
$$x_n = \frac{\sin 2n}{n} + \frac{n^2}{1 - n^2}$$
. [5]
b) $x_n = (-1)^n \sqrt{n} (\sqrt{n + 1} - \sqrt{n})$. [5]
c) $x_n = \frac{2^n}{n}$. [5]

(**Do not** use theorems on limits not done in class, which you might know from other courses, such as for example "L'Hospital's rule".)

3. a) Let (x_n) be a bounded sequence and let s= sup{ x_n : n in lN }. Show that if s is not in { x_n : n in lN }, then there is a subsequence of (x_n) that converges to s. [6]
b) Show that if (x_n) is unbounded, then there exists a subsequence (x_{n_k}) such that

$$\lim_{k \to \infty} \frac{5}{x_{n_k}} = 0 \quad [6]$$

4. a) Show, by using the definition of a Cauchy sequence, that if (x_n) and (y_n) are Cauchy sequences, then (x_n+y_n) and (x_ny_n) are also Cauchy sequences. [6]
b) Let (x_n) be a Cauchy sequence such that x_n is an integer, for all n in IN. Show that (x_n) is ultimately constant, i.e. ∃N ∈ N such that x_n = x_N, ∀n ≥ N. [3]

5. Let (x_n) and (y_n) be sequences of positive numbers and suppose that lim(x_n/y_n) = 0.
a) Show that if ∃N ∈ N, ∃c > 0, such that x_n ≥ c, ∀n ≥ N, then lim (y_n) = ∞. [4]
b) Use a) to show that if lim(x_n) = ∞, then lim (y_n) = ∞. [3]