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Value

            1. Let  f: A →  B and let H be a subset of the co-domain B.

               a) Give the definitions of f −1(H )  and f a surjection.
[2]

               b) Prove that if f  is surjective, then f ( f −1(H )) = H .

[6]

              c) Give an example of f , A, B and H such that H ⊄ f ( f −1(H )) .

[2]
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               2. Let F(+,•)  be an ordered field with zero 0
^
 and identity 1̂ .

                   Prove, by using the field and order axioms, that for x, y, z in F:

            a) x • y=0
^
 if and only if x=0

^
 or y=0

^
. (You can use that z• 0

^
=0
^
, for every z in F.)

[6]

                b) Let x2 be defined as x• x. Prove that  x2+y2=0
^
 if and only if x=0

^
 and y=0

^
.

  [6]            (You can use part a) and the fact that if x≠ 0
^
, then x2 ∈ |P.)
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               3.  Prove, by using the Principal of Mathematical Induction, that every
                    non-empty finite subset of   has a greatest member (maximum). ( Namely,
[7]               if A = {a1, a2, …, an}, then there exists ai in A such that ai ≥  aj , for j =1, 2, …n.
                   You can use that if a ≥  b and b ≥ c then a ≥  c.)

                  4.  a) Define the infimum of a set A that is bounded from below.
[2]

                    b) State the Archimedean property.

[2]

                    c) Show, by using the definition of infimum and part b), that the infimum of

                       the set A = 3− 2x
x

: x ≥ 1⎧
⎨
⎩

⎫
⎬
⎭

 is equal to –2.

[6]
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    5. a) State the definition of  limit of a sequence.
[3]

      b) Prove by using the definition that lim
n→∞

3n
2n +1

=
3
2

.

[5]

Bonus Question: c) Prove that if lim
n→∞

xn = 0  and ( yn ) is bounded, then lim
n→∞

xnyn = 0 .
[4]

      6. a) State the Nested Intervals theorem.
[2]

        b) Give an example of a sequence of nested, bounded, open intervals In

[2]              such that 
 

In
n=1

∞

 =∅ .

         c) Give an example of a sequence of nested, unbounded, closed intervals In

[2]              such that 
 

In
n=1

∞

 =∅ .  (Note:  [a, ∞ ) is a closed interval.)
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        d) State the Bolzano-Weierstrass theorem.
[2]

       e) Give an example of an unbounded sequence that has a bounded subsequence.
[2]

       f) Give an example of a bounded sequence that does not converge.
[2]

7. (a) State the definition of lim
x→ c

f (x) = L  (where 
 
f :A→   and c is a cluster point of A.)

[3]

     b) Prove by using the definition that lim
x→−1

x + 2
x − 3

=
−1
4

.

[6]

  Bonus question:

               c) b)  Let f: A→    be nonnegative on A, and let f be continuous at c. Prove by
                 using the definition of limit that then lim

x→c
f (x) = lim

x→c
f (x) ,

[5]
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            8. Let f, g :  →   and let h = f+g and k = f–g. Use the Theorem on limits of
               combination of functions to prove that if h and k are continuous at c, then f and
               g are also continuous at c.
    [5]

9. a) Define when is f  uniformly continuous on A.
[3]

         b) Prove by using the definition that f (x) = 1
x2

 is uniformly continuous on A=[1,∞ ).

 [7]
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             10. Let f be continuous on (–2, 2] and such that lim
x→−2

f (x)  does not exist. Answer
                  the following questions and explain your answer. State the Theorems, if
                  you are using any.

                 a) Does lim
n→∞

f ((2 − 1
n
)2 − 3)  exist? If yes, is it equal to lim

n→∞
f
sin 1

n
1
n

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

?

[4]

               b) If f (−1) = − f (1)  can the range of f equal to (3, ∞ )?
  [3]

             c) Can the image of [–1, 2] under f  be equal to [0, 3) ?
  [2]

              d) Is f  uniformly continuous on (–2, 2)? Is it uniformly continuous
                   on [–1, 2]?
 [4]

             e) If (xn) is a Cauchy sequence in [–1, 2], must ( f (xn)) also be Cauchy?
 [2]

              f) Give an example of f as above and (xn) in (–2, 2] such that (xn) is a Cauchy
                sequence but f(xn) is not Cauchy.
[3]


