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Value
                1. Let  f: A →  B and let X and Y be subsets of A.

                     a) Prove that if  X ⊆  Y, then  f(X) ⊆  f(Y).
[3]

                      b) Show that the converse of the statement in a) is false, i.e. give an example
  [3]                    of f, A, B, X and Y (subsets of A) such that f(X) ⊆  f(Y),  but X is not a
                           subset of Y.

                   c) Show that if f is an injection, then f(X) ⊆  f(Y) implies that X ⊆  Y.
                       State first the definition of an injection.
[5]

2. Prove the following by using the Field and Order axioms.

                  a) Show that if a > 0, then a-1> 0 too. (You can use Theorems proven in class
  [5]                such as 0x=0, –x = (–1)x and 1 > 0.)

                    b)  1-1 = 1. (You can use the Theorem on uniqueness of the inverse.)
[3]
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                  3.. a) Define the infimum of a set A that is bounded from below.
  [3]

                       b) Let  A = { x : |x-1|< x }. Find the interval form of A and the
  [7]                  infimum and the supremum of A if they exist. Use a) and show all of your
                        work.

              Bonus question: c) Define a supremum of a set A that is bounded above and
                    prove that if A and B are nonempty subsets of   , B is bounded and A⊆B,
                    then A is also bounded and  sup A ≤  sup B.
  [4]
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               4. a)  State the Nested Intervals Theorem..
[2]

                  b) State the Archimedean Property.
 [2]

                  c) Let In = 0, 1
n

⎛
⎝⎜

⎤
⎦⎥

. Prove that 
  

In
n =1

∞

 = ∅ , by using b). (Hint:Use proof

[6]                 by contradiction.)

                  d) Does c) contradict a) ?  Explain why.

[2]
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               5.  Let ( xn ) be a sequence of real numbers.

                a) State the definition of  lim
n→∞

xn = x .

[2]

                b) Prove, by using the definition of limit, that for any b in   , lim
n→∞

b
n
= 0 .

[5]

               c) Show that lim
n→∞

2cosn3

n
= 0 , by using b). (You can also use any theorem on

                   limits proven in class, and the properties of the cosx function. State all theorems
                   that you are using.)
[4]


