MATH 2200 Assignment No.2, October 6, 2006

The assignment is due Friday, October 13, 2006, in class. Late assignments receive mark zero.

- 1. Use the **Principal of Mathematical Induction** to prove that:
 - a) $5^{2n} 1$ is divisible by 8, for every n in \mathbb{N} . [5]
 - b) $2^n < n!$, for every $n \ge 4$. [5]
- 2. a) If a < x < b and a < y < b, show that |x-y| < b-a. Interpret this geometrically. [5]
 - b) Determine and sketch the set of pairs (x,y) in $\mathbb{R} \times \mathbb{R}$ that satisfy |x| = |y|.[5]
 - c) Show that if $a, b \in \mathbb{R}$, and $a \neq b$, then there exists ε neighbourhoods U of a and V of b such that $U \cap V = \emptyset$. [6]
- 3. a) Prove that for a nonempty, bounded subsets A and B of \mathbb{R} , inf(A+B) = infA+infB. [6]
 - b) Prove that a supremum of a bounded nonempty set A is unique, i.e. prove that if $s_1 = \sup A$ and $s_2 = \sup A$, then $s_1 = s_2$. [6]
- 4. For the given set A, find supA and infA, whenever they exist:

a)
$$A = \bigcap_{n=0}^{\infty} I_n$$
 with $I_n = (1, 2 + \frac{1}{n}]$, [6]
b) $A = \bigcap_{n=0}^{\infty} I_n$ with $I_n = (1, 1 + \frac{1}{n})$, [4]
c) $A = \{\frac{1}{n} - \frac{1}{m} : n, m \text{ in } \mathbb{N}\}$. [7]

- $n \frac{1}{m} : n, m \text{ in } \mathbb{N}$)
- (Show all of your work.)

total [55/54 marks]