PLNT4610 BIOINFORMATICS

MID-TERM EXAMINATION

08:30 - 9:45 Thursday, October 17, 2019

Answer any combination of questions totalling to <u>exactly</u> 100 points. If you answer questions totalling more than 100 points, answers will be discarded at random until the total points are less than or equal to 100. There are 11 questions to choose from, totaling 120 points. This exam is worth 20% of the course grade.

Hand in this question sheet along with your exam book. All questions must be answered in the exam book. The exam sheets will be shreded after the exam.

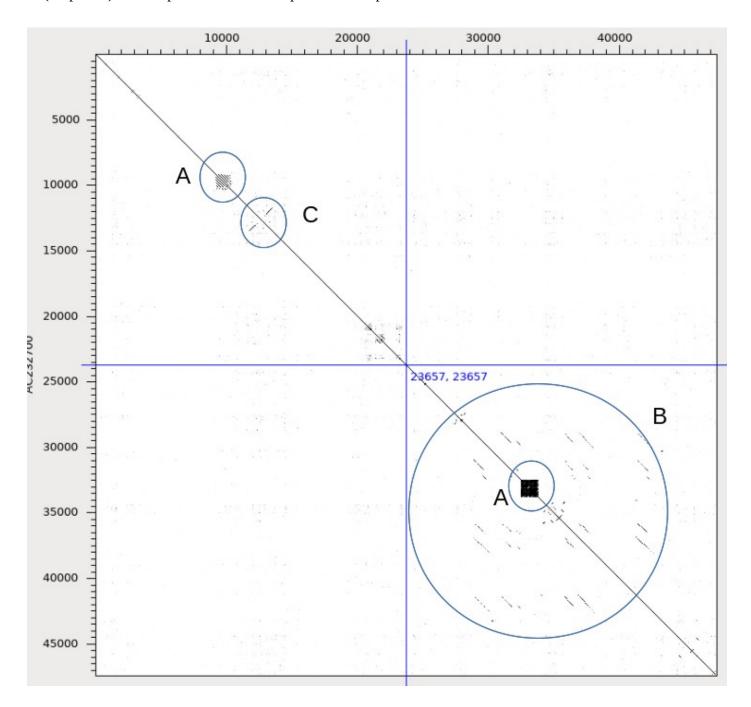
Ways to write a readable and concise answer:

- i. Just answer the question. Save time by specifically addressing what is asked. Don't give irrelevant background if it doesn't contribute to the question that was asked.
- ii. Avoid stream of consciousness. Plan your answer by organizing your key points, and then write a concise, coherent answer. Make your point once, clearly, rather than repeating the same thing several times with no new information.
- iii. Point form, diagrams, tables, bar graphs, figures are welcome. Often they get the point across more clearly than a long paragraph.
- iv. Your writing must be legible. If I can't read it, I can't give you any credit.
- 1. (10 points) In a very real sense, the cell has to work with information in ways that are analogous to how we work with data in bioinformatics. For example, one might think of the eukaryotic nucleus as being analogous to the hard drive of a computer, where the data is stored as a DNA sequence. In this analogy, the fact that chromatin domains are uncoiled in the nucleus to allow transcription factors to find any gene, would be analogous to the fact that a disk drive is a random-access device, on which any file can be found by rotating the disk, and moving the read/write head in or out on the disk.

Describe another cellular process that has an analogy in bioinformatics or computer science. How does your analogy fit the process, and in what ways does the analogy break down? Feel free to use diagrams to make your point.

2. (10 points) A pairwise alignment between two superoxide dismutases, NPSODM and PSSODI, is shown below. Calculate the similarity score, using the BLOSUM45 scoring matrix provided in the previous question. Show your work.

NPSODM GEDGTASFTL
.:.:.:.
PSSODI NAEGVAEATI


3. (10 points) Describe how thin clients such as Thinlinc divide tasks between the user's desktop computer and the remote server. How does this division of tasks make it possible for "Any user can do any task from anywhere".

4. (10 points) The following is an excerpt from a genomic sequence for a chlorophyll a/b binding protein from cotton (Accession number X54090).

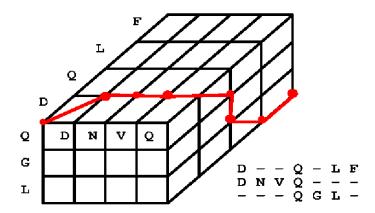
```
mRNA
                join(<454..599,690..>1341)
                /gene="cab"
                454..1341
gene
                /gene="cab"
                <454..597
exon
                /gene="cab"
                /number=1
CDS
                join(454..599,690..1341)
                /gene="cab"
                /codon_start=1
                /product="chlorophyll ab binding protein"
                /protein_id="CAA38025.1"
                /db_xref="GI:452314"
                /db_xref="SWISS-PROT:P27518"
                /translation="MATSAIQQSAFAGQTALKQSNELVCKIGAVGGGRVSMRRTVKSA
                PTSIWYGPDRPKYLGPFSDQIPSYLTGEFPGDYGWDTAGLSADPETFAKNRELEVIHC
                RWAMLGALGCVFPEILSKNGVKFGEAVWFKAGSQIFSEGGLDYLGNPNLIHAQSILAI
                WACOVVLMGFVEGYRVGGGPLGEGLDPIYPGGAFDPLGLADDPDAFAELKVKEIKNGR
                LAMFSMFGFFVQAIVTGKGPIENLFDHLADPVANNAWAYATNFVPGK"
intron
                600..689
                /gene="cab"
                /number=1
                691..>1341
exon
                /gene="cab"
                /number=2
```

What is the difference between the join statements for the mRNA and CDS features, and what does that difference signifiy?

5. (10 points) The output below shows a pairwise comparison of a BAC clone from tomato with itself.

A (4 points) - Describe the two features labeled as A.

B (4 points) - Describe the reason for the parallel diagonals in region B.


C (2 points) - Describe the region labeled as C. (Note: This output is from the Dotter program, which shows similarity between the two forward strands as diagonals running from upper left to lower right, and similarity between the forward and reverse strand as diagonals running from lower left to upper right.)

6. (10 points) You wish to design an oligonucleotide probe that would identify genes encoding the Superoxide dismutase protein. Given the following amino acid sequence from the SOD protein

GFHIHA

use the genetic code table and the ambiguity code table (both found on the last page of this question sheet) to design a degenerate oligonucleotide that should recognize SOD genes containing this protein motif, and would recognize all possible DNA sequences for this hexameric sequence. How many distinct DNA sequences would this degenerate oligonucleotide represent if you synthesized 17-mer oligos? Show your work.

- 7. (5 points) Why is it important to eliminate duplicate sequences before doing a multiple protein alignment?
- 8. (10 points) We have discussed the problem of multiple sequence alignment by extending the Needleman-Wunsch (Smith-Waterman) pairwise alignment algorithm to k sequences. This is illustrated for k=3 sequences below:

The time required for multiple alignment by this algorithm is $O(k^2 2^k n^k)$, where

k is the number of sequences n is the length of the alignment (assume all sequences are the same length)

Match each of the following phrases to one of the three terms in the expression above (ie. k^2 , 2^k or n^k)

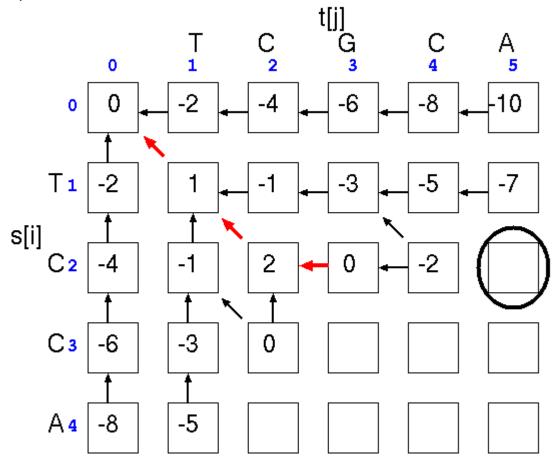
- a) the number of calculations that must be done to fill any given cell in the matrix
- b) total number cells in the k-dimensional matrix
- c) the number of pairwise comparisons between sequences at any given position in the alignment
- d) Which of these three terms is the most important reason that exhaustive multiple alignment becomes impractical beyond a small number of sequences? That is, which term increases most rapidly as the number of sequences increases?
- e) Aside from computational time, the memory (RAM) required to store the k-dimensional matrix also becomes a limitation. If you want to align 100 sequences, each of 200 amino acids in length, how many units of memory is needed to store the entire matrix?

9. (10 points) The script below, testprot_answer.sh, was part of the tutorial on Basic Shell Scripting.

```
#!/bin/bash
# Test whether a fasta file is nucleic acid or protein
# Read arguments from the command line, and set variables to
# represent the arguments
infile=$1
outfile=$2
# process the input file
result=`cat $infile | grep -v '^>' | grep -i -e [FPEJLZOIQ*X] |wc -l`
echo $result
if ((\$result > 0))
then
    msg="$infile contains protein."
else
    msg="$infile contains DNA."
fi
# output the result
echo $msg > $outfile
```

Modify this script so that instead of testing whether a fasta file contains nucleic acid or proteins, the new script instead prints out the number of sequences in a fasta file. For example, if there was a fasta file called pro.fsa, it might contain the following sequences

```
>CUSPREPERB:CDS1 323 bp
MAASSKVIVSLVLCLMMAVSVRSQLSSTFYDTTCPNVSSIVHGVMQQALQSDDRAGAKII
RLHFHDCFVDGCDGSVLLEDQDGITSELGAPGNGGITGFNIVNDIKTAVENVCPGVVSCA
DILALGSRDAVTLASGOGWTVOLGRRDSRTANLOGARDRLPSPFESLSNIOGIFRDVGLN
DNTDLVALSGAHTFGRSRCMFFSGRLNNNPNADDSPIDSTYASQLNQTCQSGSGTFVDLD
PTTPNTFDRNYYTNLQNNQGLLRSDQVLFSTPGASTIATVNSLASSESAFADAFAQSMIR
MGNLDPKTGTTGEIRTNCRRLN'
>PUMANPE:CDS1 364 bp
MVSCLGDKDGNANGLGFLFLLALSLLFISSQLYVSATYSTVPAVKGLEYNFYHSSCPKLE
TVVRKHLKKVFKEDVGQAAGLLRLHFHDCFVQGCDASVLLDGSASGPSEQDAPPNLSLRS
KAFEIIDDLRKLVHDKCGRVVSCADLTALAARDSVHLSGGPDYEVPLGRRDGLNFATTEA
TLQNLPAPSSNADSLLTALATKNLDATDVVALSGGHTIGLSHCSSFSDRLYPSEDPTMDA
EFAQDLKNICPPNSNNTTPQDVITPNLFDNSYYVDLINRQGLFTSDQDLFTDTRTKEIVQ
DFASDQELFFEKFVLAMTKMGQLSVLAGSEGEIRADCSLRNADNPSFPASVVVDSDVESK
SEL*
>TAP0X4:CDS1 320 bp
MAMAMASSLSVLLLLCLAAPSSAQLSPRFYARSCPRAQAIIRRGVAAAVRSERRMGASLL
RLHFHDCFVOGCDASILLSDTATFTGEOGAGPNAGSIRGMNVIDNIKAOVEAVCTOTVSC
ADILAVAARDSVVALGGPSWTVPLGRRDSTTASLSLANSDLPPPSFDVANLTANFAAKGL
SVTDMVALSGAHTIGQAQCQNFRDRLYNETNIDTAFATSLRANCPRPTGSGDSSLAPLDT
TTPNAFDNAYYRNLMSQKGLLHSDQVLINDGRTAGLVRTYSSASAQFNRDFRAAMVSMGN
ISPLTGTQGQVRLSCSRVN*
```


```
If the new script was called countseq.sh, the command countseq.sh pro.fsa would result in the output
```

That is, if the number of sequences would be written to the terminal, and not to a file.

Hint: The resultant script will be <u>much simpler</u> than the original script.

October 17, 2019

10. (10 points)

For the cell circled in the dynamic programming alignment, evaluate a[i,j].

$$a[i,j] = \max \begin{cases} a[i,j-1] - 2 \\ a[i-1,j-1] + p(i,j) \\ a[i-1,j] - 2 \end{cases}$$

11. (5 points) The histogram below shows the distribution of similarity scores from a tfasta (similar to tblastn) database search using a plant lipid transfer protein as the query. There is a distinct peak for sequences with z-scores greater than 120. What does this peak represent?

```
one = represents 428 library sequences
for inset = represents 8 library sequences
       E()
< 20
        0 :=
 22
        0 :=
 24
       5:*
    7
 26
 30
    75
       319 :*
   384 1232 := *
 32
  1515
      3341 :====
 36
  4706 6861 :======
 38 10955 11338 :=========*
 54 13351 14250 :========= *
   9609 11903 :===========
   6904 9772 :=========
 58
   4873
      7916 :=======
 62
   3531
      6346 :======
      5047 :======
   3072
 64
       3989 :===== *
   2424
       3138 :===== *
   2088
 68
      2459 :====*
 70
   1736
 72
   1633
      1921 :====*
      1498 :===*
   1404
 74
   1224
      1166 :==*
   1153
       906 :==*
       704 :=*=
   1079
 80
 82
   923
       538 :=*=
       426 :*=
   835
 84
       330 :*=
   698
 86
   520
       255 :*=
       198 :*
              90
   427
       153 :*
 92
   376
       118 :*
 94
   281
       92 :*
                96
   257
                :======*========
 98
   189
                55 :*
100
   165
       42 :*
102
   143
104
   118
                :====*======
        25 :*
                :===*======
106
    91
        20 :*
                :==*====
108
    59
      15 :*
                :=*=====
110
    60
        12 :*
                :=*===
    36
112
114
    28
                :=*==
        7:*
                :*===
    32
116
        5:*
                : *===
    29
118
                : *====
        4:*
    206
>120
72490335 residues in 38566 sequences
statistics extrapolated from 20000 to 231238 sequences
results sorted and z-values calculated from opt score
15333 scores better than 54 saved, ktup: 2, variable pamfact
```

12. (20 points) Tblastn compares a protein sequence against sequences from a nucleotide database. As each database sequence is read, it is translated into protein in all 6 reading frames, and the proteins compared to the query sequence. On the next page, tblastn results are shown in which the query sequence was a 418 amino acid sequence for the human alpha-1-antitrypsin precursor (NP_001121174). The best hit from the RefSeq Gene database was a 20946 bp gene for serpin, a trypsin inhibitor (NG_008290). Some of the feature annotation from the serpin gene is shown on page 9.

- a) (15 points) Keeping in mind that the query sequence is 418 amino acids long, explain why four shorter alignments were found. Use information from the annotation to support your explanation.
- b) (5 points) In the tblastn output, the matches are almost perfect, with two exceptions. The last four positions in the first alignment show two mismatches, and the beginning of the third alignment has a region of very poor match, while the rest of the alignment matches perfectly. These sections of poor similarity are an artifact of how tblastn works. Explain the reason that these poor matches are shown in the alignment.

TBLASTN RESULTS

```
>NG_008290.1 Homo sapiens serpin family A member 1 (SERPINA1), RefSeqGene
on chromosome 14
Length=20946
 Score = 449 bits (1154), Expect = 4e-141, Method: Compositional matrix adjust.
 Identities = 218/221 (99%), Positives = 219/221 (99%), Gaps = 0/221 (0%)
Query 1
              MPSSVSWGILLLAGLCCLVPVSLAEDPQGDAAQKTDTSHHDQDHPTFNKITPNLAEFAFS
              MPSSVSWGILLLAGLCCLVPVSLAEDPQGDAAQKTDTSHHDQDHPTFNKITPNLAEFAFS
Sbjct 12456
             MPSSVSWGILLLAGLCCLVPVSLAEDPQGDAAQKTDTSHHDQDHPTFNKITPNLAEFAFS
                                                                             12635
              LYRQLAHQSNSTNIFFSPVSIATAFAMLSLGTKADTHDEILEGLNFNLTEIPEAQIHEGF
Query
      61
                                                                             120
              LYRQLAHQSNSTNIFFSPVSIATAFAMLSLGTKADTHDEILEGLNFNLTEIPEAQIHEGF
Sbict
      12636
              LYRQLAHQSNSTNIFFSPVSIATAFAMLSLGTKADTHDEILEGLNFNLTEIPEAQIHEGF
                                                                             12815
Query
      121
              QELLRTLNQPDSQLQLTTGNGLFLSEGLKLVDKFLEDVKKLYHSEAFTVNFGDTEEAKKQ
                                                                             180
              QELLRTLNQPDSQLQLTTGNGLFLSEGLKLVDKFLEDVKKLYHSEAFTVNFGDTEEAKKQ
Sbjct 12816
              QELLRTLNQPDSQLQLTTGNGLFLSEGLKLVDKFLEDVKKLYHSEAFTVNFGDTEEAKKQ
                                                                             12995
Query
      181
              INDYVEKGTQGKIVDLVKELDRDTVFALVNYIFFKGKWERP
              INDYVEKGTQGKIVDLVKELDRDTVFALVNYIFFKGK +P
Sbjct 12996
             INDYVEKGTQGKIVDLVKELDRDTVFALVNYIFFKGKVAQP
                                                         13118
Score = 195 bits (495), Expect = 3e-53, Method: Compositional matrix adjust.
 Identities = 91/91 (100%), Positives = 91/91 (100%), Gaps = 0/91 (0%)
 Frame = +1
              GKWERPFEVKDTEEEDFHVDOVTTVKVPMMKRLGMFNIOHCKKLSSWVLLMKYLGNATAI
Query 216
              GKWERPFEVKDTEEEDFHVDQVTTVKVPMMKRLGMFNIQHCKKLSSWVLLMKYLGNATAI
             {\sf GKWERPFEVKDTEEEDFHVDQVTTVKVPMMKRLGMFNIQHCKKLSSWVLLMKYLGNATAI}
                                                                            14730
Sbjct 14551
              FFLPDEGKLQHLENELTHDIITKFLENEDRR
Query
      276
              FFLPDEGKLOHLENELTHDIITKFLENEDRR
Sbjct 14731
             FFLPDEGKLQHLENELTHDIITKFLENEDRR
                                               14823
 Score = 130 bits (328), Expect = 3e-31, Method: Compositional matrix adjust.
 Identities = 67/80 (84%), Positives = 70/80 (88%), Gaps = 3/80 (4%)
 Frame = +1
              GADLSGVTEEAPLKLSKAVHKAVLTIDEKGTEAAGAMFLEAIPMSIPPEVKFNKPFVFLM
Query 339
                              AVHKAVLTIDEKGTEAAGAMFLEAIPMSIPPEVKFNKPFVFLM
Sbjct 17011
             GISLTTCLCFSPLQ---AVHKAVLTIDEKGTEAAGAMFLEAIPMSIPPEVKFNKPFVFLM
Query
      399
              IEQNTKSPLFMGKVVNPTQK
              IEONTKSPLFMGKVVNPTOK
Sbjct 17182
              IEQNTKSPLFMGKVVNPTQK
                                   17241
Score = 100 bits (248), Expect = 4e-21, Method: Compositional matrix adjust.
 Identities = 50/50 (100%), Positives = 50/50 (100%), Gaps = 0/50 (0%)
 Frame = +3
Query 306
              RSASLHLPKLSITGTYDLKSVLGQLGITKVFSNGADLSGVTEEAPLKLSK
              RSASLHLPKLSITGTYDLKSVLGQLGITKVFSNGADLSGVTEEAPLKLSK
Sbjct 16080
             RSASLHLPKLSITGTYDLKSVLGQLGITKVFSNGADLSGVTEEAPLKLSK
                                                                  16229
```

FEATURE ANNOTATION

```
7091..18946
aene
                 /gene="SERPINA1"
                 /gene_synonym="A1A; A1AT; AAT; alpha1AT; nNIF; PI; PI1;
                 PR02275
                 /note="serpin family A member 1"
                 /db_xref="GeneID:5265"
mRNA
                 join(7091..7133,12452..13101,14552..14822,16082..16229,
                 17053..18946)
                 /gene="SERPINA1"
                 /gene_synonym="A1A; A1AT; AAT; alpha1AT; nNIF; PI; PI1;
                 PR022751
                 /product="serpin family A member 1, transcript variant 1"
                 /transcript_id="NM_000295.5'
                 /db xref="GeneID:5265"
exon
                 7091..7133
                 /gene="SERPINA1"
                 /gene_synonym="A1A; A1AT; AAT; alpha1AT; nNIF; PI; PI1;
                 /inference="alignment:Splign:2.1.0"
                 /number=1
exon
                 12452..13101
                 /gene="SERPINA1"
                 /gene_synonym="A1A; A1AT; AAT; alpha1AT; nNIF; PI; PI1;
                 PR02275"
                 /inference="alignment:Splign:2.1.0"
                 /number=2
CDS
                 join(12456..13101,14552..14822,16082..16229,17053..17244)
                 /gene="SERPINA1"
                 /gene_synonym="A1A; A1AT; AAT; alpha1AT; nNIF; PI; PI1;
                 PR02275"
                 /note="protease inhibitor 1 (anti-elastase),
                 alpha-1-antitrypsin; serpin peptidase inhibitor, clade A
                 (alpha-1 antiproteinase, antitrypsin), member 1; alpha-1
                 antitrypsin; serine (or cysteine) proteinase inhibitor,
                 clade A, member 1; alpha-1-antitrypsin null; serpin A1;
                 epididymis secretory sperm binding protein;
                 alpha-1-antiproteinase; alpha-1 protease inhibitor; serpin
                 peptidase inhibitor clade A member 1; alpha-1-antitrypsin
                 short transcript variant 1C4; serpin peptidase inhibitor
                 clade A (alpha-lantiproteinase, antitrypsin) member 1;
                 alpha-1-antitrypsin short transcript variant 1C5"
                 /codon_start=1
                 /product="alpha-1-antitrypsin precursor"
                 /protein_id="NP_000286.3
                 /db_xref="CCDS:CCDS9925.1"
                 /db_xref="GeneID:5265"
                 /translation="MPSSVSWGILLLAGLCCLVPVSLAEDPQGDAAQKTDTSHHDQDH
                 PTFNKITPNLAEFAFSLYRQLAHQSNSTNIFFSPVSIATAFAMLSLGTKADTHDEILE
                 GLNFNLTEIPEAQIHEGFQELLRTLNQPDSQLQLTTGNGLFLSEGLKLVDKFLEDVKK
                 LYHSEAFTVNFGDTEEAKKQINDYVEKGTQGKIVDLVKELDRDTVFALVNYIFFKGKW
                 ERPFEVKDTEEEDFHVDQVTTVKVPMMKRLGMFNIQHCKKLSSWVLLMKYLGNATAIF
                 FLPDEGKLQHLENELTHDIITKFLENEDRRSASLHLPKLSITGTYDLKSVLGQLGITK
                 VFSNGADLSGVTEEAPLKLSKAVHKAVLTIDEKGTEAAGAMFLEAIPMSIPPEVKFNK
                 PFVFLMIEQNTKSPLFMGKVVNPTQK"
exon
                 14552..14822
                 /gene="SERPINA1"
                 /gene_synonym="A1A; A1AT; AAT; alpha1AT; nNIF; PI; PI1;
                 PR02275'
                 /inference="alignment:Splign:2.1.0"
                 /number=3
exon
                 16082..16229
                 /gene="SERPINA1"
                 /gene_synonym="A1A; A1AT; AAT; alpha1AT; nNIF; PI; PI1;
                 PR022751
                 /inference="alignment:Splign:2.1.0"
                 /number=4
                 17053..18946
/gene="SERPINA1"
exon
                 /gene_synonym="A1A; A1AT; AAT; alpha1AT; nNIF; PI; PI1;
                 PR02275
                 /inference="alignment:Splign:2.1.0"
                 /number=5
```

The IUPAC-IUB symbols for nucleotide nomenclature [Cornish-Bowden (1985)Nucl. Acids Res. 13: 3021-3030.] are shown below:

Symbol	Meaning	Symbol	Meaning
G	Guanine	K	G or T
Α	Adenine	S	G or C
С	Cytosine	W	A or T
Т	Thymine	Н	A or C or T
U	Uracil	В	G or T or C
R	Purine (A or G)	V	G or C or A
Υ	Pyrimidine (C or T)	D	G or T or A
М	A or C	N	G or A or T or C

The Universal Genetic Code							
UUU UUC UUA UUG	phe leu	UCU UCC UCA UCG	ser	UAU UAC UAA UAG	tyr stop stop	UGU UGC UGA UGG	cys stop trp
CUU CUC CUA CUG	leu	CCU CCC CCA CCG	pro	CAU CAC CAA CAG	his gln	CGU CGC CGA CGG	arg
AUU AUC AUA AUG	ile met	ACU ACC ACA ACG	thr	AAU AAC AAA AAG	asn	AGU AGC AGA AGG	ser
GUU GUC GUA GUG	val	GCU GCC GCA GCG	ala	GAU GAC GAA GAG	asp glu	GGU GGC GGA GGG	gly

3-letter	1-letter	3-letter	1-letter	3-letter	1-letter
Phe	F	Leu	L	lle	I
Met	М	Val	V	Ser	S
Pro	Р	Thr	Т	Ala	Α
Tyr	Υ	His	Н	Gln	Q
Asn	N	Lys	K	Asp	D
Glu	E	Cys	С	Trp	W
Arg	R	Gly	G	STOP	*
Asx	В	Glx	Z	UNKNOWN	X
Xle (Leu/lle)	J	Pyl (pyrrolysine)	0		

Blosum 45 Amino Acid Similarity Matrix

```
Gly
     -2
Pro
Asp
     -1
          -1
               7
Glu
     -2
          0
               2
                    6
Asn
      0
          -2
               2
                    0
                        6
His
     -2
          -2
               0
                    0
                        1
                            10
     -2
               0
                    2
                        0
Gln
          -1
                             1
                                 6
     -2
                                 1
                                      5
Lys
          -1
               0
                    1
                        0
                            -1
                                      3
     -2
          -2
                    0
                        0
                             0
                                 1
                                          7
Arg
              -1
                                 0
                                     -1
      0
          -1
               0
                    0
                        1
                            -1
                                         -1
                                               4
Ser
     -2
                            -2
                                               2
Thr
          -1
              -1
                   -1
                        0
                                -1
                                     -1
                                         -1
                                                   5
Ala
      0
          -1
              -2
                   -1
                       -1
                            -2
                                -1
                                     -1
                                         -2
                                               1
                                                   0
     -2
          -2
              -3
                   -2
                             0
                                 0
                                         -1
                                              -2
Met
                       -2
                                     -1
                                                  -1
                                                       -1
                                                            6
     -3
          -3
              -3
                   -3
                       -3
                                     -2
Val
                            -3
                                -3
                                         -2
                                              -1
                                                   0
                                                        0
                                                            1
                                                                 5
Ile
     -4
          -2
              -4
                   -3
                       -2
                            -3
                                -2
                                     -3
                                         -3
                                              -2
                                                  -1
                                                       -1
                                                                 3
              -3
                   -2
                                                            2
                                                                 1
                                                                     2
Leu
     -3
          -3
                       -3
                            -2
                                -2
                                     -3
                                         -2
                                              -3
                                                  -1
                                                       -1
                                                                          1
Phe
                            -2
                                         -2
                                              -2
                                                       -2
                                                                 0
                                                                     0
                                                                              8
     -3
          -3
              -4
                   -3
                       -2
                                -4
                                     -3
                                                  -1
                                                            0
                                              -2
     -3
          -3
              -2
                   -2
                       -2
                             2
                                -1
                                     -1
                                         -1
                                                       -2
                                                            0
                                                                     0
                                                                          0
                                                                              3
                                                                                   8
Tyr
                                                  -1
                                                                -1
     -2
                                                                                   3
Trp
          -3
              -4
                   -3
                       -4
                            -3
                                -2
                                     -2
                                         -2
                                              -4
                                                  -3
                                                       -2
                                                           -2
                                                                -3
                                                                    -2
                                                                         -2
                                                                              1
                                                                                      15
Cys
     -3
         -4
              -3
                   -3
                       -2
                            -3
                                -3
                                     -3
                                         -3
                                              -1
                                                  -1
                                                       -1
                                                           -2
                                                                -1
                                                                     -3
                                                                         -2
                                                                             -2
                                                                                  -3
                                                                                      -5 12
     Gly Pro Asp Glu Asn His Gln Lys Arg Ser Thr Ala Met Val Ile Leu Phe Tyr Trp Cys
```