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Abstract—We present a methodological framework for multi-
channel Markov random fields (MRFs). We show that conditional
independence allows loopy belief propagation to solve a multi-
channel MREF as a single channel MRF. We use conditional mutual
information to search for features that satisfy conditional indepen-
dence assumptions. Using this framework we incorporate Kinetic
feature maps derived from breast dynamic contrast enhanced
magnetic resonance imaging as observation channels in MRF for
tumor segmentation. Our algorithm based on multichannel MRF
achieves an receiver operating characteristic area under curve
(AUC) of 0.97 for tumor segmentation when using a radiologist’s
manual delineation as ground truth. Single channel MRF based
on the best feature chosen from the same pool of features as used
by the multichannel MRF achieved a lower AUC of 0.89. We also
present a comparison against the well established normalized cuts
segmentation algorithm along with commonly used approaches
for breast tumor segmentation including fuzzy C-means (FCM)
and the more recent method of running FCM on enhancement
variance features (FCM-VES). These previous methods give a
lower AUC of 0.92, 0.88, and 0.60, respectively. Finally, we also
investigate the role of superior segmentation in feature extraction
and tumor characterization. Specifically, we examine the effect
of improved segmentation on predicting the probability of breast
cancer recurrence as determined by a validated tumor gene
expression assay. We demonstrate that an support vector machine
classifier trained on Kkinetic statistics extracted from tumors as
segmented by our algorithm gives a significant improvement in
distinguishing between women with high and low recurrence
risk, giving an AUC of 0.88 as compared to 0.79, 0.76, 0.75, and
0.66 when using normalized cuts, single channel MRF, FCM, and
FCM-VES, respectively, for segmentation.
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[. INTRODUCTION

RUCIAL to the performance of a feature extraction and
C image classification system is the availability of a reliable
and accurate segmentation approach for the object of interest
(e.g., tumor). In most medical imaging applications, the automa-
tion of this step is particularly important because of the large
amount of images to be analyzed. This makes the manual seg-
mentation approach tedious and prohibitively expensive. As a
result, extensive research has been done in the medical imaging
community for improving the quality of automated segmenta-
tion. Specifically, there is an abundance of methods geared to-
wards segmenting well defined anatomical structures (e.g., parts
of the brain). Notable among them are the variants of active
contours [1] and active shape models [2]. There are two main
drawbacks associated with this class of methods. First, they re-
quire manual initialization that should be very close to the ac-
tual structure to be segmented. Efforts for automating the ini-
tialization step have been restricted to structures for which pre-
cise a priori knowledge is available [3]. Second, they aim at
segmenting known anatomical structures that have well defined
control points in their shape, which is often not the case for ar-
bitrarily shaped lesions. Fuzzy C means (FCM) clustering and
its variants are also prevalent for the segmentation of well de-
fined structures [4]-[6]. Markov random field (MRF) based ap-
proaches have also been used for segmentation. For instance,
in [7], the authors model brain magnetic resonance imaging
(MRI) images as a MRF and use prior information for seg-
menting anatomical structures. Another approach for segmen-
tation includes spectral graph clustering methods [8]-[10]. No-
table among them is the normalized cuts algorithm [8] which
is a highly robust segmentation method and is widely used for
segmentation applications [11]-[14]. Specifically, [11] uses nor-
malized cuts for MRI image segmentation.

As compared to anatomically well defined structures, there
is relatively less work in the literature on segmenting arbitrarily
shaped structures (e.g., breast tumors). Among the work done
on breast tumor segmentation the most popular approach is
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FCM clustering employed by many researchers due to its sim-
plicity (e.g., [15], [16]). More recently Lee et al. [17] presented
a method that runs FCM on the variance map of enhancement
kinetics (FCM-VES). Although useful for segmentation, these
methods do not take into account the overlap of the feature
values of the tumor and nontumor pixels. As a result they have
to settle with a manually set threshold on FCM membership
probabilities, leading to poor generalization. In order to address
these issues we propose to incorporate a component of learning
for breast tumor segmentation. We present a framework for
multichannel extension of MRFs to make maximal usage of
multiple feature streams derived from the imaging data, here
specifically related to kinetic analysis of dynamic contrast
enhanced (DCE) breast MR images.

We have previously shown that a multichannel extension of
MRFs is feasible [18]. In this paper, we present a complete
methodological framework, selection of conditionally indepen-
dent feature channels for MRF, extended comparison with other
segmentation algorithms, and assessment of the potential impact
of improved segmentation on classification and characteriza-
tion of breast cancer tumors. We explore how inference methods
like loopy belief propagation [19] may be extended for a multi-
channel MRF. There have been considerable work in the litera-
ture that uses MRF for segmentation. In a representative work
[7], authors address the problem of brain image segmentation
using MRFs and present an expectation maximization frame-
work to solve the MRF. However, the approach in [7] is limited
to a single channel MRF. Often, it is desirable to integrate in-
formation from different channels, if available, to achieve better
segmentation. For example, in our specific application, multiple
channels would allow to take maximum advantage of DCE MRI
kinetic features that represent the properties of contrast agent
uptake by the tissue, which are expected to be different for tumor
and background tissues [15], [20]. In this work we exploit condi-
tional independence for solving an MRF via loopy belief propa-
gation [19] that reduces a multichannel MRF to a single channel
MREF for inference queries, allowing to capitalize on informa-
tion coming in from different channels. We also present a princi-
pled method to choose features satisfying conditional indepen-
dence to be included as multiple channels in the MRF observa-
tion model.

Key contributions of this paper are as follows.

* We show that conditional independence allows loopy be-
lief propagation to solve a multichannel MRF as a single
channel MRF thereby avoiding the modeling of joint dis-
tributions (Section II).

» Using conditional mutual information we present a princi-
pled method for choosing conditionally independent fea-
tures as different channels in the MRF observation model
(Section III).

* To elaborate on this premise, we introduce multiple feature
channels derived from the kinetic analysis of DCE mag-
netic resonance (MR) images in the observation model of
MREF (Section III).

* We show that our segmentation algorithm yields an area
under curve (AUC) of 0.97 under the ROC curve for breast
tumor segmentation compared to 0.89 for single channel
MREF using the best feature from the same pool of fea-
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Fig. 1. Multichannel MRF with two observations for each node. The variables
inscribed in the triangle represent the joint distribution of the MRF model. If the
observation variables (Y, 17) are conditionally independent given the hidden
variable ( X'), the joint distribution can be factorized into two parts, represented
by ellipses, allowing loopy belief propagation to solve a multichannel MRF as
a single channel MRF (see Section II).

tures as used by our multichannel MRF. Also, the nor-
malized cuts segmentation algorithm and commonly used
approaches for breast tumor segmentation, [15], [17] gave
lower AUCs (0.92, 0.88, and 0.60) (Section IV).

* Finally we demonstrate that superior segmentation leads
to improved feature extraction and tumor characteriza-
tion. In the specific application presented here, we show
that our segmentation method leads to improvement in
image-based prediction of breast cancer prognosis by dis-
tinguishing between patients with high and low recurrence
risks as determined by a validated gene expression assay
(Section V).

II. MULTICHANNEL MRF

To elaborate on the MRF concept, Fig. 1 shows how an image
can be modeled as a MRF. Each node (X) represents the class
of a pixel, and neighboring pixels are connected via edges. In
the context of segmentation the goal is to infer the class label
for each pixel (e.g., foreground versus background). For a de-
tailed review on single channel MRFs see [21]. Here, we present
a multichannel extension of MRFs and elaborate how to incor-
porate multiple observations in the MRF model. In Fig. 1 each
node emits two observations, ¥ and W (similar notion could be
extended to more than two observations). The joint probability
of the pixel class and the two observations over the entire image
is given below

PX, VW) o [[ bimey @iy wi) T wislwi,z;)
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In (1), ¢i(amc) is the multichannel node potential for the two
observations, and 7 represents the edge potential, and £ models
the adjacency of nodes including only those nodes that have
edges between them. The node potential captures the correla-
tion between the features and the class label, indicating the like-
lihood of x; coming from class ¢ based on the feature values of
i, w; and the feature distribution of class ¢. In (3), Z(x; # z;)
is an indicator function that equals 1 when x; # ; and 0 other-
wise. As a result, 1 biases neighboring nodes to have the same
class label via the parameter 3. In (2), GMM.,. is a Gaussian
mixture model learned for class ¢ for features ¢, w which can
be learned from labeled training data. It is clear from (2) that
with increasing number of observations the task of modeling
the node potential as a joint distribution would become difficult.
However, if the features in different channels are conditionally
independent given the hidden variable (X'), we can factorize the
right-hand side of (2) as follows:

P(yi, w;|GMM,) = P(y;|GMM_)P(w;|GMM.)
Y LWI|X. @)

Equivalently (4) can be written as

(/)i(JVIC)(T'i = ¢, Y, W;)
= (/)gy)(fpi =c i) (/)(w)(fvi = ¢, w;)

K1

®)

where (/)Ey) and (/)gu,») are the individual node potentials for the

features y and w respectively, which can be learned from labeled
training data (see Section III-D). The individual node potentials,
(]S,Ey) and </)§“") , can be multiplied together to give a single poten-
tial representing the multichannel potential. In Section III-C, we
present a principled method to choose features satisfying con-
ditional independence to invoke the factorization given in (4).
Using (4) the inference machinery for solving a single channel
MREF can be reused for multichannel MRFs as well, described
below.

A. Inference in Multichannel MRFs

Inference in the above mentioned MRF involves the max-
imum a posteriori (MAP) estimate of the state of each node in
the MRF. For tree structured distributions, the MAP estimate
for the random fields can be computed efficiently by dynamic
programming [22]. If the graphical model is a tree it can also be
computed in polynomial time using graph cuts [23]. For more
general settings, the belief propagation (BP) algorithm is an ef-
ficient way for solving inference problems in graphical models
[24]. Specifically, in [24], the authors show that the fixed points
arrived at by the BP algorithm correspond to the Bethe approx-
imation of the free energy of a factor graph. Moreover, mini-
mizing the free energy in turn corresponds to minimizing the
Kullback—Leibler divergence between a “trial” distribution and
the distribution that needs to be recovered [24], [25]. As such
belief propagation offers an efficient solution toward estimating
inference probabilities in graphical models. It should be noted
that the BP algorithm solves inference problems exactly when
the factor graph is a tree, and only approximately when the graph
has cycles [24]. There are BP algorithms that give good approx-
imate results even for graphical models with cycles [24]. If the

graph has cycles, the corresponding BP algorithm is often re-
ferred to as “loopy” belief propagation [19]. Freeman et al. [24]
present a seminal description as to why BP algorithm works well
which is primarily due to its equivalence with minimizing the
free energy of the factor graph, thereby arriving at better ap-
proximation of the distribution that needs to be recovered. As
such, the BP algorithm has significant advantages over other in-
ference methods, [19], [24], [25].

To capitalize on the advantages of the BP algorithm we inves-
tigate the loopy belief propagation algorithm to solve our mul-
tichannel MRF. Loopy BP is a dynamic message passing algo-
rithm used for doing inference in MRF. 6, ;(X}) is defined to
be an incoming message into node j from its neighboring node
i. Intuitively, 6;_,; captures the degree of belief that node 7 has
about node j. To start the process of message passing through
the nodes, the node messages are initialized (typically to unity)
and then the messages can be updated in the next iteration as
follows:

1
Zi; Z bicracy(me) - ij(wi, m7)

@
< I

kEN (-7

bimj(Xj) =

Sr—ilwi) (6)

where Z;_,; is a normalization constant, and A'(¢) is a set con-
taining the neighbors of node 7. Equation (6) is repeatedly in-
voked till the messages converge (the update in each message is
less than € e.g., 107%). Once the messages have converged the
final inference is done by using

. 1
P(X;) = Zﬁbi(,/\/tc)(wi) H br—i(Xi).
¢ kEN(3)

Q)

The inference engine will output for each node a vector of
size C' x 1 (C = 2 for two classes), representing the belief of
this node coming from each class. Optimal class label is simply
the class with the highest belief.

In the next section, we elaborate on the extraction of pixel-
wise feature maps to build a kinetic observation model for our
multichannel MRF.

III. MULTICHANNEL MRF BASED ON DCE-MRI KINETICS

A. Candidate Feature Channels

Typically, for DCE MR images we have a precontrast image
(captured prior to the injection of a contrast agent) and a number
of postcontrast images, captured at different time points after
the injection of the contrast agent [20]. The uptake of the con-
trast agent by different tissues manifests itself in the form of
contrast enhancement in postcontrast MR images, and the en-
hancement patterns, in general, are different for tumor and back-
ground tissues [26], [15]. As such DCE MRI derived features
hold promise for differentiating between tumor and background
tissues and we propose to investigate them as candidate features
for our multichannel MRF observation model.

A common way to quantify the enhancement pattern is to
compute relative enhancements as compared to the precontrast
image [17], [20]. By computing the relative enhancement on a
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Fig. 2. Candidate features for different observation channels of our multichannel MRF. (a) Illustration of basic kinetic features for a single pixel. (b) Pixel wise
maps of enhancement for three postcontrast time points. (c) Pixel wise maps of kinetic features: peak enhancement (P& ), wash-in-slope (WIS), wash-out-slope

(WOS).

pixel by pixel basis we can construct pixel wise maps of the
relative contrast enhancement as follows:

Hu,v,t) — I{u,v, )
I{u, v, o)

E(u,v,t) = ®)
where I(u, v, t) represents the intensity of pixel (u, v) captured
at time £, and #; is the precontrast time instant. For a particular
pixel, the relative enhancement plotted as a function of time is
defined as the kinetic curve [20]. In the literature (e.g., [17],
[20]) a number of basic features can be computed from this ki-
netic curve as illustrated in Fig. 2(a). Based on these features we
can derive a rich kinetic feature set by computing the pixel-wise
map for each feature as follows.
* Peak enhancement (PE)

PE(u,v) = max E(u,v,1) )
which represents the peak relative enhancement for every
pixel as computed over all postcontrast time points.

* Time to peak (77 P)

TTP(u,v) = arg max E(u, v, 1) (10)

which represents the time at which peak enhancement is

achieved.
+ Wash-in slope (WZIS)
PE(u,v)
WIS(u,v) = { TTPuv) —to. (11)

it TTP(u,v) #tg

0, otherwise

which is a measure of the initial uptake rate of the contrast
agent for every pixel.
« Wash-out slope (WOS)

E(u,v,tp) — PE(u, v)

tAI — TTP(LL U) ’
iftay £ TTP(u,v)

WOS(u,v) =

0, otherwise

(12)

where f,; is the last postcontrast time instant. The
wash-out slope captures the drop in the uptake rate of the
contrast agent after the peak enhancement is achieved.

Example pixel-wise maps of above features are depicted in
Fig. 2(b). For the rest of the paper we use &; to represent the
relative enhancement map for the 2th postcontrast time point.
We investigate the utility of these feature maps when included
in our multichannel MRF observation model for the purpose of
breast tumor segmentation.

B. MRF Representation-Superpixels

Many computer vision algorithms use the pixel grid as an un-
derlying representation. MRFs are also often defined on this reg-
ular grid. The pixel grid, however is not a natural representation
of the imaged structure, but rather an artefact of the imaging
process [27]. As a result there has been significant work in de-
riving efficient and perceptually meaningful entities from a low
level grouping process [27]-[29]. A popular approach is to di-
vide the image into segments of homogeneity called superpixels
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Fig. 3. Illustration of the oversegmentation step using superpixels. Here an
image consisting of ~ 5000 pixels has been divided into 100 superpixels.

[8]. Following the approach in [8], we first over-segmented the
DCE MR images into superpixels. There are a number of ad-
vantages to defining the MRF over the superpixels rather than
individual pixels. First, it reduces the complexity of images to
a few hundred pixels. Second, they are representationally effi-
cient in that they allow longer range interactions between su-
perpixels, which in the case of a regular grid are restricted to
adjacent pixels in the grid [28]. In order to define the MRF
neighborhood for superpixels we scan the rows and columns of
the superpixelized image and look for transitions. This enables
to build the adjacency matrix for superpixels that captures the
neighborhood. An example of the oversegmentation step using
superpixels is shown in Fig. 3. For this step, we used the pub-
licly available implementation! of superpixels based on [28],
[29]. Throughout this work the input image was first segmented
into 100 superpixels that were used as nodes in the MRF. If
N is the number of MRF nodes, the per-iteration complexity of
loopy belief propagation message update (6) ranges from O(N)
to O(N?), depending on the connectedness of the nodes in the
graph. As such defining the MRF over superpixels greatly re-
duces the complexity of the message update step.

C. Feature Choice for Multichannel MRF

The multichannel MRF described in Section II is based on
features that are conditionally independent of one another given
the pixel class. It is well known that mutual information is a
good indicator of statistical dependence (or lack thereof) be-
tween random variables [30]. Small values of mutual informa-
tion between two random variables indicate little statistical de-
pendence between the two. When certain variables are known,
the conditional mutual information captures the influence of this
knowledge on the statistical interaction between the variables in
question. We thus use conditional mutual information as a cri-
terion to assess the conditional independence of our features.
Specifically, in the multichannel MRF of Fig. 1, we are inter-
ested in assessing the independence of Y and W given X . Their
conditional mutual information is given by

ply, w|z)

sl Y

MIY,W|X)= Z plz,y,w)log

Ty,

The variable X represents the class of the pixel and hence is
discrete, whereas the features represented by ¥ and W are con-
tinuous. To compute the distributions required for evaluating the
above mutual information, one option is to discretize the contin-
uous variables and use histograms as approximation to the prob-

Thttp://www.cs.sfu.ca/~mori/research/superpixels/

ability densities. However, the inefficiencies of histograms for
modeling probability densities, especially the inherent discon-
tinuities, are well recognized in the literature [31]-[33]. There-
fore we employed kernel density estimation [32], [34] for es-
timating the densities required for computing the mutual infor-
mation. For all computations, the Gaussian kernel was used. For
bandwidth selection, a data driven approach for computing di-
agonal bandwidth matrix for multivariate Gaussian kernel was
employed [34].

We computed 7(Y'; W|X) by sequentially setting (Y, W) to
all possible pairs of the following six feature maps: postcontrast
enhancements (&1, &2, &), peak enhancement (PE), wash-in-
slope (WZS), and wash-out-slope (WOS). The features with
the least conditional mutual information were selected as chan-
nels for the multichannel MRF (see Section IV-B).

D. Training-Learning Node Potentials

The training step involves the computation of node poten-
tials as given in (5). We model node potentials as a mixture of
Gaussian distributions. A Gaussian mixture model (GMAM ) is
a weighted sum of M component Gaussian distributions [35].
For example, we can express the node potential for feature y as
follows:

M
P(y|gMMc) = Zwrg(y“l'l‘v(TPZ) (14)
r=1

where GMM,. represents the Gaussian mixture model for
class ¢ (e.g., tumor and nontumor pixels), w, is the weight of
the rth Gaussian component specified by the respective mean
and variance parameters, ., and o2. g(y|u,0,2) represents
the Gaussian pdf with the respective parameters as follows:

1 )
Nor e o (15)

At training step we need to learn the following parameters for
class c:

9(pry02) =

0o = {wrpr,07}; r=1,..., M (16)

There are several techniques available for estimating the
parameters of a G MM [35]. A popular approach for estimating
these parameters is through an iterative maximum likelihood
estimation using the expectation maximization (EM) algorithm
[36]. For learning the node potentials for our multichannel MRF
we employed the EM algorithm based method (Matlab statistics
toolbox?) and used M = 5 Gaussian components. To enable
maximal usage of the training data we used a leave-one-out
cross validation strategy for computing node potentials. For
every test image, the rest of the data was considered as training
set and node potentials were computed using the training set.

IV. SEGMENTATION EXPERIMENTS

A. Dataset

All experiments presented in this paper were conducted on
DCE breast MR images of 60 women diagnosed with breast
cancer. The dataset consists of bilateral breast MRI sagittal

Zhttp://www.mathworks.com/help/toolbox/stats/
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scans collected at our institution from 2007-2010. The ages
of the women at the time of the imaging ranged from 37
to 74 years with a mean age of 55.5 years. Of the women
analyzed, 93% had their primary tumor classified as T1 i.e.,
the tumor was 2.0 cm or less in the greatest dimension (G D).
The rest of the primary tumors were T2 2 ¢em < GD < 5
cm). Within the T1 tumors the distribution was as follows:
8% (0.1 cm < GD < 0.5cem); 37% (0.5 ¢em < GD <1
cm); 45% (1 em < GD < 2 cm). The imaging protocol is
as follows: The women were imaged prone in a 1.5T scanner
(GE LX echo, GE Healthcare, or Siemens Sonata, Siemens);
matrix size: 512 x 512; slice thickness: 2.4—4.4 mm; flip angle:
25° or 30°. The images were collected before and after the
administration of gadodiamide (Omniscan) or gadobenate
dimeglumine (MultiHance) contrast agents. Dynamic contrast
enhanced images were acquired at 90-s intervals for three
postcontrast time points.

The women in the dataset had estrogen receptor positive
(ER+), node negative tumors, which were analyzed with the
Oncotype DX prognostic gene expression assay [ 18]. Oncotype
DX is a validated reverse-transcriptase-polymerase-chain-re-
action (RT-PCR) assay (developed by Genomic Health Inc.)
that measures the expression of 21 genes in RNA from for-
malin-fixed paraffin-embedded (FFPE) tumor tissue samples
from the primary breast cancer [37]. The final outcome of
the Oncotype DX assay is a continuous recurrence score that
predicts the likelihood of breast cancer recurrence in 10 years
after the treatment (risk: low < 17%, 18% < medium > 30%,
high > 31%). It has been shown that the benefit of adjuvant
chemotherapy regimen starts becoming significant only in
patients with an Oncotype score greater than 30 [37]. To learn
feature statistics for distinguishing the breast tumor and non-
tumor area of an image, a fellowship-trained board-certified
breast imaging radiologist delineated the lesion boundaries
using the software ITK-SNAP [38]. The lesion boundaries
were defined on a central representative slice selected by the
radiologist, as usually assessed in standard clinical practice.

B. Segmentation Results

Using the strategy described in Section III-C we
computed pairwise conditional mutual information be-
tween all possible pairs of the following six features:
E1,E9,E3, PE, WIS, WOS. A visualization of the mutual
information matrix that resulted from this pairwise computation
is shown in Fig. 4. The feature pair (€1, WOS) had the least
conditional mutual information (0.02) and were selected as
the feature maps for our MRF. The mutual information was
computed in a leave-one-out sense and the same features were
consistently selected for all leave-one-out folds.

The input to the inference engine is the superpixelized version
of each feature map. For every superpixel the engine outputs a
probability estimate that the superpixel belongs to a tumor re-
gion. These inference probabilities are calculated using (7). In
Fig. 5 we show a comparison between single channel and multi-
channel MRF segmentation. The multichannel MRF is based on
the feature pair: (€1, WOS). For single channel MRF we tested
each of the individual features (&1, &2, 3, PE, WIS, WOS),
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Fig. 4. Visualization of the mutual information matrix generated by computing
conditional mutual information between feature pairs. The encircled cell corre-
sponds to the feature pair with the least conditional mutual information.
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Fig. 5. ROC comparison for breast tumor segmentation between multichannel
and single channel MRF. The multichannel MRF using the feature pair
(&1, WOS) gives an AUC of 0.97 under the ROC curve as compared to 0.89
for single channel MRF based on the best individual feature (£1).

and show the ROC for &; that gives the highest AUC. The infer-
ence probabilities are computed in a leave-one-out fashion i.e.,
the node potentials used in (7) are based on all images but the
test image. The manual segmentation provided by the radiolo-
gist was used as ground-truth to assess the pixelwise agreement
for ROC analysis. The ROC scores were derived from the infer-
ence probabilities. The multichannel MRF based method gives
an AUC of 0.97 outperforming the best single channel MRF that
gives an AUC of 0.89.

We compare our method against the following segmentation
algorithms.

C. Normalized Cuts

The normalized cuts algorithm [8] is a spectral graph theo-
retic method that is widely used for diverse segmentation appli-
cations [11]-[14]. It is an unsupervised segmentation technique
that maximizes both the dissimilarity between different groups
and the similarity within groups of pixels. The normalized cuts
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algorithm [8] models an image as a graph G = (V, E) and then
aims to find a partition of the graph to minimize the cut cost nor-
malized by the cost of the total edge connections to all the nodes
in the graph

cut(4, B)
assoc(B, V)

cut(4, B)

Ncut(A4,B) = assoc(A, V)

amn

where cut(A, B) is the sum of edge costs that are being cut
by the partition i.e., cut(4,B) = >, . .pw(u.v), and
assoc(A, V) =37 4 ;v w(u, ) is the sum of costs for edge
connections from nodes in A to all nodes in the graph. Mini-
mizing normalized cut exactly is NP-complete but [8] proposed
an approximate method that is able to solve the problem as a
generalized eigenvalue system (see [8] for details). Usually the
resultant eigenvectors are thresholded to obtain partitions of
the image. However, in order to generate ROC curves we used
the eigenvectors as the scores. We used the publicly available
implementation of normalized cuts in our experiments [39]. We
ran the normalized cuts algorithm using each of the six features
and report the best performance in Fig. 6 that gives an AUC of
0.92 by using &; as an input.

D. Fuzzy C Means

Fuzzy C means (FCM) is a popular method for segmenting
breast lesions from DCE-MRI images e.g., [15],[16]. FCM is an
unsupervised learning technique [40] that aims to find a fuzzy
partitioning of data points into clusters. If u; represents the
extent of membership of the ¢th data point to the %th class, the
FCM problem is to find all u; such that the following within
group weighted squared Euclidean distance is minimized:

c N
arg n%}n Z Z UZL‘HX'L' - m I’

k=1 1i=1

(18)

where b is a weighting exponent on each fuzzy membership, and
{1, is the weighted mean for kth class given the membership
probabilities u;. To ensure that uy; represent probabilities the
above optimization is subject to the following constraints:

S ugi =1, Vis 0<uy <1, Vk. (19)
k=1

For our experiments we used Matlab’s3 standard implemen-
tation of the FCM algorithm with b = 2. As input to the FCM
algorithm we tested all the individual features and pairs of fea-
tures, and FCM performed the best when £, and WOS were
concatenated together to represent every pixel by a2 x 1 feature
vector. Connected component analysis was done on the FCM
output and the largest component was selected as the segmented
lesion [16]. The FCM probabilities were used as scores for gen-
erating the ROC curve which gave an AUC of 0.88 (Fig. 6).

E. FCM on Enhancement Variance

In [17], the authors first compute pixelwise variance of rel-
ative enhancement of breast MRI images. They then run FCM

3Matlab version 7.13,R2011b
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Fig. 6. ROC comparison for breast tumor segmentation. The multichannel
MREF based segmentation method gives an AUC of 0.97 under the ROC curve
as compared to 0.92, 0.88, and 0.60 for normalized cuts [8], FCM [15], [16]
and FCM-VES [17], respectively.

on the pixelwise variance. This method gives an AUC of 0.60
as shown in Fig. 6.

F. Performance Comparison

Fig. 6 presents the comparison of all the above approaches
against our method. Our segmentation algorithm yields an AUC
of 0.97 under the ROC curve for breast tumor segmentation
compared to 0.92, 0.89, 0.88, and 0.60 for the normalized cuts
algorithm, single channel MRF, FCM, and FCM on enhance-
ment variance respectively. In Fig. 7, we show representative
segmentation results of our algorithm (row 7), FCM [15]
(row 3), FCM-VES [17], (row 4), normlaized cuts algorithm
(row 5), and the best single channel MRF (row 6).

V. CLASSIFICATION EXPERIMENTS

In this section we investigate if better quality segmentation
leads to better feature extraction and tumor characterization. In
the specific application presented here we explore the role of
segmentation in improved prediction of breast cancer prognosis
as assessed by a validated gene expression assay (Oncotype
DX). Although the outcome of the Oncotype assay is a contin-
uous score, it has been shown that the benefit of a chemotherapy
regimen starts becoming significant only in patients with an On-
cotype score greater than 30, which is the high recurrence risk
category [37]. As such, from a clinical perspective, the decision
of low versus high recurrence risk is very important to choose
women who are expected to benefit the most from adjuvant
chemotherapy [41], [42]. Recent data indicate that in addition
to distinguishing between benign and malignant findings, breast
MRI kinetic tumor features and contrast enhancement patterns,
are also significantly associated with histopathological findings
that are indicative of subsequent prognosis and probability of
relapse [43], [44]. To explore the effect of better segmentation
we focus on the task of binary prediction of Oncotype scores as
high or low, where we consider patients with scores greater than
30 in the high risk category.
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and the best single channel MRF (Row 6).
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Illustration of kinetic partitioning based on the TTP pixel-wise values. (a) Segmented lesion. (b) Set 1 pixels (yellow). (c) Set 2 pixels (blue). (d) Set three

pixels (green). Set z consists of pixels that have their peak enhancement at the ith postcontrast time point.

A. Features for Classification

Here, we propose to investigate a rich set of kinetic statis-
tics derived from DCE MRI images for the task of detecting
patients with high recurrence risk. We extract the kinetic statis-
tics in a two phase process: In the first phase the time to peak
(TTP) for every pixel within the segmented tumor is computed.
In the second phase we cluster the pixels based on their TTP
values. In the dataset under consideration there are three post-
contrast time points. TTP thus can have three discrete values
and the clustering step results in three groups of pixels. It has
been suggested that the heterogeneities in the contrast agent up-
take can be used for tumor characterization [20], [45]. One way

to interpret the kinetic heterogeneity is to divide the pixels into
clusters of homogeneity. Therefore the idea behind clustering
the pixels according to their TTP values is to group the pixels
that show similar contrast uptake behavior such that statistics
within these clusters of kinetic homogeneity could be explored.
This step partitions the pixels into as many sets as the number of
postcontrast time points, i.e., set ¢ consists of pixels that achieve
their peak enhancement at the ¢th postcontrast time point. Fig. 8
illustrates these partitions for an example case. In the second
step, pixel-wise maps of the following features were computed:
peak enhancement (PE), wash-in-slope (WIS), wash-out-slope
(WOS), (Fig. 2). Based on these pixel groupings we compute
partition-wise kinetic statistics as follows: Let M be the pixel
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TABLE I
COMPARISON OF SINGLE FEATURE CLASSIFICATION PERFORMANCE IN TERMS OF AREA UNDER THE ROC CURVE WHEN OUTPUTS OF VARIOUS
SEGMENTATION STRATEGIES WERE FED INTO THE FEATURE EXTRACTION STAGE. IN COLUMN 1 FEATURE NAMES FOLLOW THE NOTATION
OF (20)—(22). E.G., (1, PE) REPRESENTS THE MEAN FEATURE MAP VALUE OF PEAK-ENHANCEMENT FOR SET 1 PIXELS. COLUMNS 3-6
SHOW THE RESPECTIVE AUCS. IN EACH COLUMN THE BEST TWO VALUES ARE SHOWN IN BOLD

Feature Multichannel MRF  Single Channel MRF  Normalized Cuts FCM FCM-VES
P(Set = 1|M) 0.76 0.67 0.70 0.68 0.60
P(Set = 2|M) 0.76 0.68 0.69 0.66 0.64
P(Set = 3|M) 0.68 0.53 0.57 0.56 0.51

u(1,PE) 0.77 0.69 0.71 0.65 0.57
w(2,PE) 0.74 0.60 0.67 0.59 0.63
w(3,PE) 0.58 0.52 0.51 0.57 0.54
a?(1,PE) 0.75 0.67 0.69 0.67 0.55
o2(2,PE) 0.62 0.58 0.56 0.53 0.51
a2(3,PE) 0.59 0.52 0.51 0.57 0.55
w(1, WIS) 0.82 0.71 0.73 0.69 0.54
w(2, WIS) 0.78 0.70 0.72 0.70 0.60
w(3, WIS) 0.54 0.51 0.53 0.51 0.52
a%(1, WIS) 0.74 0.64 0.68 0.65 0.54
a%(2, WIS) 0.75 0.69 0.70 0.67 0.59
a%(3, WIS) 0.64 0.52 0.62 0.56 0.60
w(1, WOS) 0.81 0.68 0.74 0.68 0.65
©(2, WOS) 0.76 0.64 0.67 0.66 0.54
©(3, WOS) 0.74 0.69 0.70 0.67 0.60
a2(1, WOS) 0.75 0.70 0.71 0.63 0.57
a%(2, WOS) 0.74 0.66 0.69 0.66 0.52
a2(3, WOS) 0.79 0.69 0.72 0.64 0.65

partitioning such that M, represents the membership mapping
of pixel £ to its respective set. Given M one can derive the fol-
lowing set-wise statistics.

+ Posterior probability of observing set  given the partition

N
1

P(Set =il M) = > 6(My =)

k=1

(20)

where (M), = ¢) is an indicator function that equals 1
when M, = ¢, and zero otherwise. /V is the total number
of pixels. These /N pixels may come from an arbitrarily
shaped segmentation mask specifying the lesion.

* Mean value of feature map j for Set ¢

i) = e 55 (M =)
R M=)

ey

where f;(k) is the value of the jth feature map for kth
pixel, and the feature map can be either PE, WIS, or WOS.
 Variance of feature map ;5 for Set ¢

UQ(i,j> _ ;g\:l(fj(l") ._ M(“J))Z ) 6(Mk = 7’)

k’:l‘s(Mk? = 1)

(22)

Based on the above definitions, m pixel partitions and » feature
maps would result into a total of m(2n + 1) features. For this
dataset we had three postcontrast time points and based on the
TTP values the pixels were partitioned into three sets (m = 3).
Within these partitions we computed statistics for three feature

maps (n = 3) i.e., PE, WIS, and WOS. This resulted in
m{2n + 1) = 21 kinetic statistic features.

B. Single Feature Classifiers

To assess the classification performance of individual fea-
tures we learned single feature classifiers to distinguish between
the categories of low and high recurrence risk. For each fea-
ture we learned a leave-one-out binary decision stump classifier
[46] using the individual feature values as scores for generating
ROC:s to evaluate the univariate performance of each feature.
Table I shows the AUCs for the ROCs corresponding to each
feature classifier. When features extracted from the output of the
multichannel MRF algorithm were used for classification, 15 of
the 21 features give AUCs greater or equal to 0.74 with an av-
erage AUC of 0.76. In Table I we also present comparison with
single feature classification performance when features were ex-
tracted from the outputs of other segmentation techniques. For
all the features, AUCs using the multichannel MRF based seg-
mentation are higher than that for other approaches.

C. Multi-Feature Classifier

Using the features described in Section V-A we followed a
leave-one-out sequential forward feature selection scheme. For
each leave-one-out loop the feature selection was done as fol-
lows: Starting with a single feature, we sequentially added fea-
tures, learned a linear support vector machine (SVM) on the
training set corresponding to the current cross-validation fold,
and kept adding the features till the incremental classification
improvement dropped below a threshold (10~) as compared to
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Fig. 9. ROC Curves for the multi-feature SVM for classifying high versus low breast cancer recurrence risk. We get the highest AUC when the output of multi-

channel MRF segmentation method is fed to the feature extraction stage.

TABLE 11
SELECTION FREQUENCIES OF THE KINETIC STATISTIC FEATURES OVER ALL
THE CLASSIFICATION LEAVE-ONE-OUT LOOPS. FOR EVERY LEAVE-ONE-OUT

LoOP A SEQUENTIAL FORWARD FEATURE SELECTION SCHEME WAS
FOLLOWED. IN COLUMN 1 FEATURE NAMES FOLLOW THE NOTATION OF
(20)(22). E.G., (1, PE) REPRESENTS THE MEAN FEATURE MAP VALUE OF
PEAK-ENHANCEMENT FOR SET 1 PIXELS. COLUMN 2 SHOWS THE SELECTION
FREQUENCY OF EACH FEATURE OVER ALL CROSS VALIDATION FOLDS

Feature Selection Frequency
P(Set =1|M)  60/60 (100.00%)
P(Set =2|M)  60/60 (100.00%)
P(Set =3|M) 52/60 (86.67%)

w(1,PE) 60/60 (100.00%)
w(2,PE) 57/60 (95.00%)
(3, PE) 43/60 (71.67%)
a%(1,PE) 54/60 (90.00%)
a%(2,PE) 47/60 (78.33%)
a%(3,PE) 42/60 (70.00%)
w(1, WIS) 58/60 (96.67%)
w(2, WIS) 60/60 (100.00%)
w(3, WIS) 39/60 (65.00%)
a%(1,WIS) 56/60 (93.33%)
a%(2, WIS) 60/60 (100.00%)
a%(3, WIS) 46/60 (76.67%)
w1, WOS) 60/60 (100.00%)
w2, WOS) 60/60 (100.00%)
w(3, WOS) 52/60 (86.67%)
a?(1, WOS) 60/60 (100.00%)
a2(2, WOS) 55/60 (91.67%)
a2(3, WOS) 53/60 (88.33%)

the previous feature set. This SVM classifier was tested on the
left out example and the process was repeated for all cross-vali-
dation folds. Table II shows the frequency of selection for each
of the features across all leave-one-out loops.

The ROC for the multi-feature classifiers when the output of
different segmentation strategies were fed into the classification

stage is shown in Fig. 9. The multi-feature classifier was able to
distinguish between low and high recurrence risk patients with
an AUC = 0.88 under the ROC curve when the proposed multi-
channel MRF segmentation strategy was employed, which was
higher than that for other segmentation algorithms [Fig. 9(a) and
(b)] which give lower AUCs of 0.79, 0.76, 0,75, 0.66 for nor-
malized cuts, single channel MRF, FCM, and FCM-VES, re-
spectively.

VI. DISCUSSION

In Section IV-B, we derive features for our multi-
channel MRF that allow us to invoke conditional inde-
pendence conditions by computing pairwise conditional
mutual information between all possible pairs of features
(E1,E2,E3, PE,WIS, WOS). Although data-driven, the se-
lection of the first postcontrast enhancement (€1 ) and wash-out
slope (WOS) features as different observation channels of
the multichannel MRF deserves attention. These two features
capture different contrast agent uptake properties, each de-
pending on different directions of vascular permeability e.g., £1
represents the initial uptake of the contrast agent while WOS
captures the drop in the uptake after the peak enhancement.
As such they are less correlated with one another. The rest of
the kinetic features are essentially derived from one another
and are not expected to contain much uncorrelated information
as is evident from the mutual information matrix of Fig. 4.
As mentioned in (13) the conditional mutual information is
conditioned on X i.e., the class of the node as to whether it
belongs to tumor or background tissue. As such the selection
of & and WOS as good features for segmentation is also
noteworthy as they capture properties of the contrast uptake
in postcontrast MR images, which are shown to be different
for background and tumor tissues [26], [15]. Although we use
cross validation for generalization, and &, WOS do seem to
represent good features for segmentation, their applicability for
other cancer types requires more extensive validation.
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In this study, we have investigated pairs of features for the
multichannel MRF model. In principle, the multichannel MRF
framework is applicable to any number of channels as long as
the features satisfy conditional independence criterion. For the
feature set currently in question (&1, £2, &3, PE, WIS, WOS),
since only one pair satisfied the empirical test of conditional
independence, adding more features from the same feature set
would have essentially included features which already had sig-
nificant mutual information with the selected pair (£, WOS).
In the future, however, if more elaborate feature sets are ex-
plored, the possibility of experimenting with more channels re-
mains open. We should also note that in Fig. 4, the diagonal
of the mutual information matrix varies for different features,
unlike what one would expect for a correlation matrix, where
all diagonal values are same and equal to unity. The reason for
this is that the mutual information of a random variable with it-
self represents the entropy of the variable and hence would vary
from variable to variable [30].

It is worth mentioning that the work presented in [47] comes
closest in concept to ours in terms of using multiple features for
MREF. However, they assume a priori independence between
features, whereas in our current work we present a principled
method to derive conditionally independent features to arrive at
appropriate features for the multichannel MRF. Moreover, [47]
solves the MRF using an expectation maximization scheme,
whereas we present how inference methods like loopy BP
could be extended to multichannel MRFs. As mentioned in
Section II-A, the BP algorithm is equivalent to minimizing the
free energy of the graphical model, thereby arriving at better
approximation of the distribution that needs to be recovered.

We should note that while learning the node potentials for
our multichannel MRF we are modeling the features as a mix-
ture of Gaussian PDFs. The features in and of themselves may
not necessarily be Gaussians. However, it has been shown that
the Gaussian mixture models provide good practical approxi-
mations to non-Gaussian noise processes [48]. That said, ap-
proximating the features with other distributions is a potential
direction for future research.

We have also explored the impact of improved segmentation
on the characterization and classification of breast cancer
tumors. Our multichannel MRF segmentation method gives
a much lower pixelwise false positive rate for the same true
positive rate as depicted in the ROC curves of Fig. 6. This
perhaps explains the improvement in classifying the Oncotype
recurrence risk categories when tumors segmented by our
algorithm are used for feature extraction. From a clinical per-
spective, the minimally-invasive estimation of recurrence risk
from DCE-MRI features is an important question as it could
become a useful decision tool for routing candidate patients
to appropriate treatment options [49]. Our results suggest that
improved segmentation could play a significant role in assisting
this clinical decision. Moreover, the DCE-MRI features are cur-
rently extracted from a representative 2-D slice of the primary
lesion. Kinetic partitioning of the entire 3-D volume of the
lesion could potentially lead to richer statistics that may further
improve the prediction of breast cancer recurrence in future
work. Also, our current work focuses on accurately segmenting
the tumor given a coarsely defined rectangular ROI. Adapting

the existing method for a fully automated tumor detection is a
potential topic for future research.

VII. CONCLUDING REMARKS

In this paper, we have presented a methodological framework
for a multichannel extension of MRFs for breast tumor segmen-
tation from DCE-MRI images. Using conditional independence
we have shown that loopy belief propagation can solve a mul-
tichannel MRF as a single channel MRF. We have presented a
method to search for optimal MRF features that satisfy condi-
tional independence conditions by employing pairwise condi-
tional mutual information. Using this framework we incorpo-
rate a kinetic observation model derived from DCE breast MR
images into the multichannel MRF and demonstrate superior
segmentation results (AUC = 0.97). Our multichannel MRF
outperforms single channel MRF (AUC: 0.89) employing the
best individual feature from the same pool of features as used
by the multichannel MRF. Our approach also performs signif-
icantly better as compared to the well known normalized cuts
segmentation algorithm and commonly used previous methods
for breast tumor segmentation (AUCs: 0.92, 0.88, 0.60). More-
over, we also demonstrate that our improved segmentation leads
to better feature extraction and tumor characterization with an
application on predicting breast cancer prognosis as determined
by a validated tumor gene expression assay. Specifically, when
tumors segmented by our algorithm were fed into an SVM clas-
sifier, it was able to distinguish between women with high and
low breast cancer recurrence risk with an AUC of 0.88 under
the ROC as compared to AUCs 0f 0.79, 0.76, 0.75, and 0.66 for
othersegmentation methods. The decision of low versus high re-
currence risk is very important from a clinical perspective as it
could enable to select patients that are expected to benefit the
most from adjuvant chemotherapy [50], [41], [42]. We believe
that the proposed methodological framework could also be ex-
tended to other imaging modalities and organs as well.
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