Mathematics of Eventown and Oddtown

Robert D. Borgersen

umborger@cc.umanitoba.ca

Two towns: Eventown and Oddtown.

- Two towns: Eventown and Oddtown.
- The 32 citizens of each town love forming clubs.

- Two towns: Eventown and Oddtown.
- The 32 citizens of each town love forming clubs.
- The mayors impose club-forming rules:

- Two towns: Eventown and Oddtown.
- The 32 citizens of each town love forming clubs.
- The mayors impose club-forming rules:
 - Every pair of clubs has an even number of common members.

- Two towns: Eventown and Oddtown.
- The 32 citizens of each town love forming clubs.
- The mayors impose club-forming rules:
 - Every pair of clubs has an even number of common members.
 - Every club must have ____ membership.

- Two towns: Eventown and Oddtown.
- The 32 citizens of each town love forming clubs.
- The mayors impose club-forming rules:
 - Every pair of clubs has an even number of common members.
 - Every club must have even membership.

- Two towns: Eventown and Oddtown.
- The 32 citizens of each town love forming clubs.
- The mayors impose club-forming rules:
 - Every pair of clubs has an even number of common members.
 - Every club must have <u>odd</u> membership.

- Two towns: Eventown and Oddtown.
- The 32 citizens of each town love forming clubs.
- The mayors impose club-forming rules:
 - Every pair of clubs has an even number of common members.
 - Every club must have even/odd membership.
- Question: How many distinct clubs could possibly be made in each town?

Math

Rules	Math
No two clubs have exactly the same membership	

Rules	Math
No two clubs have exactly the same membership	For all $i \neq j$, $C_i \neq C_j$.

Rules	Math
No two clubs have exactly the same membership	For all $i \neq j$, $C_i \neq C_j$.
Every two clubs must have an even number of common members	

Rules	Math
No two clubs have exactly the same membership	For all $i \neq j$, $C_i \neq C_j$.
Every two clubs must have an even number of common members	For all $i \neq j$, $ C_i \cap C_j $ is even.

Rules	Math
No two clubs have exactly the same membership	For all $i \neq j$, $C_i \neq C_j$.
Every two clubs must have an even number of common members	For all $i \neq j$, $ C_i \cap C_j $ is even.
Every club must have an even number of people	

Rules	Math
No two clubs have ex- actly the same mem- bership	For all $i \neq j$, $C_i \neq C_j$.
Every two clubs must have an even number of common members	For all $i \neq j$, $ C_i \cap C_j $ is even.
Every club must have an even number of people	For all i , $ C_i $ is even.

Thm. There is a way to form 65535 clubs in Eventown.

Thm. There is a way to form 65535 clubs in Eventown.

Pf. Pair up the citizens, and decree that a citizen can join a club if and only if their partner joins as well.

Thm. There is a way to form 65535 clubs in Eventown.

Pf. Pair up the citizens, and decree that a citizen can join a club if and only if their partner joins as well.

Check the rules:

Thm. There is a way to form 65535 clubs in Eventown.

Pf. Pair up the citizens, and decree that a citizen can join a club if and only if their partner joins as well.

Check the rules:

• For all $i \neq j$, $|C_i \cap C_j|$ is even.

Thm. There is a way to form 65535 clubs in Eventown.

Pf. Pair up the citizens, and decree that a citizen can join a club if and only if their partner joins as well.

Check the rules:

• For all $i \neq j$, $|C_i \cap C_j|$ is even. PASSED!

Thm. There is a way to form 65535 clubs in Eventown.

Pf. Pair up the citizens, and decree that a citizen can join a club if and only if their partner joins as well.

Check the rules:

- For all $i \neq j, |C_i \cap C_i|$ is even. PASSED!
- For all i, $|C_i|$ is even.

Thm. There is a way to form 65535 clubs in Eventown.

Pf. Pair up the citizens, and decree that a citizen can join a club if and only if their partner joins as well.

Check the rules:

• For all $i \neq j, |C_i \cap C_j|$ is even. PASSED!

• For all i, $|C_i|$ is even. PASSED!

Thm. There is a way to form 65535 clubs in Eventown.

Pf. Pair up the citizens, and decree that a citizen can join a club if and only if their partner joins as well.

Under this situation, the number of possible distinct non-empty clubs is $2^{16} - 1 = 65535$.

Is there a similar "construction" in the Oddtown scenario?

- Is there a similar "construction" in the Oddtown scenario?
- For the set of people $P = \{p_1, ..., p_{32}\}$, for all $i \in [1, 32]$, let $C_i = \{p_i\}$.

- Is there a similar "construction" in the Oddtown scenario?
- For the set of people $P = \{p_1, \dots, p_{32}\}$, for all $i \in [1, 32]$, let $C_i = \{p_i\}$.

Check the rules:

- Is there a similar "construction" in the Oddtown scenario?
- For the set of people $P = \{p_1, \dots, p_{32}\}$, for all $i \in [1, 32]$, let $C_i = \{p_i\}$.

Check the rules:

• For all $i \neq j$, $|C_i \cap C_j|$ is even.

- Is there a similar "construction" in the Oddtown scenario?
- For the set of people $P = \{p_1, \dots, p_{32}\}$, for all $i \in [1, 32]$, let $C_i = \{p_i\}$.

Check the rules:

• For all $i \neq j$, $|C_i \cap C_j|$ is even. PASSED!

- Is there a similar "construction" in the Oddtown scenario?
- For the set of people $P = \{p_1, ..., p_{32}\}$, for all $i \in [1, 32]$, let $C_i = \{p_i\}$.

Check the rules:

- For all $i \neq j$, $|C_i \cap C_j|$ is even. PASSED!
- For all i, $|C_i|$ is odd.

- Is there a similar "construction" in the Oddtown scenario?
- For the set of people $P = \{p_1, \dots, p_{32}\}$, for all $i \in [1, 32]$, let $C_i = \{p_i\}$.

Check the rules:

• For all $i \neq j$, $|C_i \cap C_j|$ is even.

PASSED!

• For all i, $|C_i|$ is odd.

PASSED!

- Is there a similar "construction" in the Oddtown scenario?
- For the set of people $P = \{p_1, ..., p_{32}\}$, for all $i \in [1, 32]$, let $C_i = \{p_i\}$.

The surprising result is the following:

- Is there a similar "construction" in the Oddtown scenario?
- For the set of people $P = \{p_1, \dots, p_{32}\}$, for all $i \in [1, 32]$, let $C_i = \{p_i\}$.

- The surprising result is the following:
- Thm. There is no way to form more than 32 clubs under the rules of Oddtown.

Proof idea:

- Proof idea:
 - ullet Associate each club with a vector in \mathbb{Z}_2^{32}

- Proof idea:
 - Associate each club with a vector in \mathbb{Z}_2^{32}
 - Show linear independence

- Proof idea:
 - ullet Associate each club with a vector in \mathbb{Z}_2^{32}
 - Show linear independence
 - Thus there are at most 32.

- Proof idea:
 - ullet Associate each club with a vector in \mathbb{Z}_2^{32}
 - Show linear independence
 - Thus there are at most 32.
- Pf on overhead.

Let X be a set, n = |X|.

Oddtown Thm. (Berlekamp 1969)

$$\mathcal{F} \subseteq \mathcal{P}(X)$$
 s.t.

- $\forall A \in \mathcal{F}, |A|$ is odd, and
- $\forall A, B \in \mathcal{F}$, $A \neq B$, $|A \cap B|$ is even.

Then $|\mathcal{F}| \leq n$.

Eventown Thm. (Berlekamp 1969, Graver 1975)

 $\mathcal{F} \subseteq \mathcal{P}(X)$ s.t. $\forall A, B \in \mathcal{F}$, $|A \cap B|$ is even. Then

$$|\mathcal{F}| \le 2^{\lfloor n/2 \rfloor} + \begin{cases} 1 \text{ if } n \text{ is odd,} \\ 0 \text{ if } n \text{ is even.} \end{cases}$$

Fisher's Inequality (Fisher 1940)

$$\ell, k \in \mathbb{Z}^+$$
, $\mathcal{F} \subseteq \mathcal{P}(X)$ s.t. $\forall A, B \in \mathcal{F}$, $A \neq B$,

- $|A| = |B| = \ell$
- $|A \cap B| = k$.

Then $|\mathcal{F}| \leq n$.

(this is related to BIBDs.)

Nonuniform Fisher's Inequality. (Majumdar 1953)

$$k \in \mathbb{Z}^+$$
, $\mathcal{F} \subseteq \mathcal{P}(X)$ s.t.

$$\forall A, B \in \mathcal{F}, A \neq B, |A \cap B| = k.$$

Then $|\mathcal{F}| \leq n$.

Theorem. (Frankl and Wilson 1981)

$$L \subseteq \mathbb{Z}^+ \cup \{0\}, \mathcal{F} \subseteq \mathcal{P}(X)$$
 s.t.

$$\forall A, B \in \mathcal{F}, A \neq B, |A \cap B| \in L.$$

Then

$$|\mathcal{F}| \le \sum_{i=0}^{|L|} \binom{n}{i}.$$