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Diffusive-to-ballistic transition in grain boundary motion studied by atomistic simulations
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An adapted simulation method is used to systematically study grain boundary motion at velocities and driving
forces across more than five orders of magnitude. This analysis reveals that grain boundary migration can occur in
two modes, depending upon the temperature (T ) and applied driving force (P ). At low P and T , grain boundary
motion is diffusional, exhibiting the kinetics of a thermally activated system controlled by grain boundary
self-diffusion. At high P and T , grain boundary migration exhibits the characteristic kinetic scaling behavior
of a ballistic process. A rather broad transition range in both P and T lies between the regimes of diffusive
and ballistic grain boundary motion, and is charted here in detail. The recognition and delineation of these two
distinct modes of grain boundary migration also leads to the suggestion that many prior atomistic simulations
might have probed a different kinetic regime of grain boundary motion (ballistic) as compared to that revealed in
most experimental studies (diffusional).
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I. INTRODUCTION

The motion of grain boundaries (GBs) is central to the
microstructural evolution in every class of polycrystalline
materials, and yet a deep understanding of the kinetics of
GB motion is still lacking. The challenge primarily results
from the complexity of the GB structural space. There is a
broad spectrum of GBs; in general, five parameters are required
to describe the macroscopic structure of a GB: three for the
lattice misorientation and two for the GB plane normal.1–4

Furthermore, GB motion is relevant over a wide range of
temperatures, from subambient to the melting point of the
material (Tm) during thermal or mechanical processing.5–7 The
driving forces for GB motion, in addition, can also span many
orders of magnitude; for curvature-driven migration alone
these can span from ∼102 Pa in coarse grained materials
to as high as ∼109 Pa when the grain sizes are reduced to
several nanometers,8 while extrinsic driving forces such as
mechanical shearing, interaction with lattice defects, etc., can
also be in play in some situations.6,7,9,10 So far, only a relatively
small portion of this vast parameter space has been explored in
controlled experiments, including only a small number of GBs
across the five-parameter GB space, under limited conditions
[GB velocity: 10−8 ∼ 10−3 m/s; driving force: 102 ∼ 106 Pa;
temperature: above 0.7 Tm (see Ref. 7)]. New techniques that
can access more of the relevant problem space are thus desired.

With the rapid development of high-speed computing in the
last decade, atomistic simulation has emerged as an alternative
method to study GB motion.11–33 Atomistic simulation, such
as molecular dynamics (MD), is not constrained from the point
of view of sample preparation and allows more flexibility in
adjusting the system temperature and driving force. Therefore
a variety of MD techniques have been developed in recent
years to study GB motion, and these can be grouped into two
main categories.

The first category of MD techniques, which we term
“driven motion” methods, extracts the GB mobility based
on a proportionality established from empirical experimental
observations:7

v = MP, (1)

where v is GB velocity, P is driving force, and M is the GB
mobility, which follows an Arrhenius relation:

M = M0 exp

(−Qm

kT

)
, (2)

where M0 is a preexponential constant, k is the Boltzmann
constant, T is temperature, and Qm is the activation energy for
GB migration. In this category, a variety of approaches have
been developed to apply controlled driving forces, P , and two
of these have been most widely used to study the motion of
planar GBs. One is the “elastic deformation method,”15,17,32–34

which involves an elastic strain applied to a bicrystal with
elastic anisotropy in the two grains. The different energy
changes induced in the two grains due to elastic anisotropy
provides a driving force for the GB to move into the grain of
higher energy and thereby lower the overall system energy. The
other technique is the “synthetic driving force method,”11,23,35

which involves the artificial addition of different amounts of
energy to atoms in a bicrystal according to their local lattice
orientation. A driving force arises at the GB due to the energy
difference across it, similarly to the “elastic deformation
method.”

Both of these two methods can effectively drive a planar
GB to move. However, due to the short time scale in typical
MD simulations, the slowest reported GB velocity extracted
from driven motion methods is ∼1 m/s,11,15,23,32 which is
orders of magnitude higher than typical experimental mea-
surements [(10−8 ∼ 10−3 m/s (see Ref. 7)]. Concomitantly,
the driving force used in such MD simulations is usually
∼108 Pa,11,15,23,32 also several orders of magnitude higher than
typical experimental values [102 ∼ 106 Pa (see Ref. 7)]. Such
discrepancies make it difficult to directly compare results from
experiments and MD simulations. As a corollary, the reported
activation energies for GB motion obtained by these techniques
are often significantly lower than experimentally measured
values.15,23,32

The second category of techniques, the “fluctuating bound-
ary” techniques, in contrast, require no external driving
force; the mobility of a GB is extracted from the interface
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thermal fluctuations. Currently two different methods have
been developed in this category. The first method, developed
by Foiles and Hoyt,36 applies to rough interfaces and generally
not to highly symmetric GBs, while the second, so-called
“interface-random-walk method”31 developed by Trautt et al.,
is more general. However, the major limitation for either
method is that very high temperatures, usually above about
0.80 Tm, are required in order to obtain measurable interface
fluctuations over the MD time scale.31 And there is another
drawback; although this method can be used to extract GB
mobilities in the zero-velocity limit, it is not applicable in
investigating the kinetics of grain boundary motion, e.g., how
GB velocity scales with the driving force. Unusually low
activation energies, e.g., ∼0.3 eV for Ni, have also been
predicted with this technique due to the limitations of the
accessible temperature range.

Since all existing methods to simulate grain boundary
motion have their weaknesses, we have proposed in a recent
preliminary report a new approach that can significantly
extend the scope of accessible regimes of GB motion without
increasing the computing demand.37 The new approach is
based on the adaptation of existing MD methods from both
“driven motion” and fluctuating boundary techniques. In
particular, an adaptation of the interface-random-walk method
was developed by enhancing the sampling statistics of GB
motion caused by thermal noise. As a result, subtle interface
fluctuations at temperatures as low as ∼0.2 Tm can be
measured. Moreover, we demonstrated that this method can
be extended to study slow GB motion at net velocities as
low as ∼10−4 m/s, by synergizing the boundary fluctuation
analysis with an applied bias. We refer to the resulting
technique as the adapted interface random walk (AIRwalk)
method.37

In this paper, we apply the AIRwalk method of Ref. 37 to
study GB motion at driving forces and velocities spanning a
very broad range—more than five orders of magnitude. This
permits a detailed discussion of the kinds of GB motion that
may be seen under various circumstances, and, in particular,
allows us to identify separate kinetic regimes that have not
been previously clearly delineated. These developments help
to unify the current view of GB kinetics, and bring together
the seemingly disparate pictures offered by prior experiments
and MD simulations.

II. METHODS

A. Adapted interface-random-walk method

The interface-random-walk method described in Ref. 31
was initially proposed to extract GB mobility at net zero
driving force and zero normal GB velocity. This method is
based on the fact that when exposed to a given temperature,
a large number (l) of GBs of identical geometry but different
initial conditions should deviate from their original positions
[hj (0), j = 1, 2, . . ., l] randomly; that is to say, statistically,
the average position among these l GBs at any specific time
t should remain unchanged [〈hj (t) − hj (0)〉 = 0, here 〈. . .〉
denotes the ensemble average for j = 1,2, . . . ,l), while the
variance {〈d2

j (t)〉 = 〈[hj (t) − hj (0)]2〉} linearly increases with

time according to

D =
〈
d2

j (t)
〉

t
= 2MkT

A
, (3)

where D is a boundary “diffusion” coefficient and A is the
interface area.

This technique was extended in Ref. 37 to study GB motion
under a small driving force by recognizing that the stochastic
nature of GB motion due to thermal noise should persist under
bias. We term the technique involving a nonzero driving force
as the “adapted interface-random-walk method.” Since the
AIRwalk method was only sketched in broad strokes in Ref. 37,
we present some further details on the methodology here.

First, we redefine the GB diffusion coefficient D. The
original definition of D in Eq. (3) implies that the variance
of GB displacement 〈d2

j (t)〉 linearly increases from zero with
time (〈d2

j (0)〉 = D × 0 = 0). As shown in Fig. 1, if in each
simulation the GB displacement is measured after every time
interval of �t = ti+1 − ti , i = 0,1,2, . . . ,n, the underlying
assumption of Eq. (3)31 is that the GB displacements dj (�ti)
and dj (�ti ′) during any given time intervals �ti and �ti ′

are uncorrelated to each other as long as i �= i ′. However,
this assumption is not valid for adjacent time intervals when
i ′ = i + 1, since the end position and final velocity of the GB
during time interval ti are always the starting position and

FIG. 1. Schematic showing the measurement of grain bound-
ary displacement dj (ti) by the (a) original interface-random-walk
method31 and (b) adapted-interface-random-walk method. In (a), each
row denotes a series of measurements of position at different times,
t , for a given simulated boundary; there are 2l rows corresponding
to the two boundaries in each of the l simulation cells. In (b), each
row is expanded to reflect increased sampling of many different time
intervals in a given simulation, inflating the number of viable data
points.
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initial velocity of the GB during time interval ti+1. Therefore,
at time t = tn one can write〈
d2

j (tn)
〉 = 〈[dj (�t1)+dj (�t2) + · · ·+ dj (�tn−1) + dj (�tn)]2〉
= n

〈
d2

j (�t)
〉 + 2(n − 1)〈d(�ti)d(�ti ′)〉, (4)

where the cross term 〈d(�ti)d(�ti ′)〉 is nonzero only when
i ′ = i + 1, i � n − 1. From Eq. (4), we derive that

〈
d2

j (t)
〉 = t

�t

[〈
d2

j (�t)
〉 + 2〈dj (�ti)dj (�ti+1)〉]

− 2〈dj (�ti)dj (�ti+1)〉,
= Dt − C0 (5)

with the diffusion coefficient D redefined as

D = d
〈
d2

j (t)
〉

dt
= 1

�t
[〈d2(�t)〉 + 2〈d(�ti)d(�ti+1)〉], (6)

and C0 = 2〈d(�ti)d(�ti+1)〉, which converges to a constant
value as time increases.

Second, we inflate the effective sample size N by several
orders of magnitude, not by performing more simulations,
but by recognizing that Eq. (6) should remain unchanged
no matter what the initial condition is. As shown in Fig. 1,
for l independent simulations, we can immediately inflate
the number of GB displacements dj (ti) at any time interval
of ti = i�t from N = 2l (each simulation cell contains two
independent GBs, as shown in Fig. 2) as defined from a single,
fixed initial position hj (t0) in the original interface-random-
walk method,31 to N = 2l(m + 1) by redefining dj (ti) as

dk

j
(ti) = hj (tk+i) − hj (tk),

j = 1,2, . . . l, k = 0,1,2, . . . ,m, (7)

i = 1,2, . . . n − m, m < n.

The third adaptation we introduce to the method from
Ref. 31 is that for any time interval of ti = i�t we fit the
N = 2l(m + 1) data points of GB displacement d(ti) from
Eq. (7) to a cumulative distribution function as in Eq. (8):

F (x) = 1

2

[
1 + erf

(
x − μ

σ
√

2

)]
, (8)

where F (x) is the probability that dj (ti) falls in the interval
(−∞,x], erf is the error function, and μ = 〈dk

j
(ti)〉, σ 2 =

〈dk
j
(ti)2〉 are the expected value and variance of the GB

displacement dj (ti). Equation (8) is obtained by integrating
the expected Gaussian distribution of dj (ti) into a cumulative
form, and fitting the full data set to this equation has accuracy
advantages over simply averaging. For instance, if the mean
value of dj (ti) were calculated as the straight ensemble average
among the N = 2l(m + 1) data points instead, we would
have

〈
dk

j
(ti)

〉 = 1

2l(m + 1)

∑
j

∑
k

dk

j
(ti)

= 1

2l(m + 1)

∑
j

∑
k

hj (tk+i) − hj (tk),

j = 1,2, . . . ,2l; k = 0,1,2, . . . ,m;

i = 1,2, . . . ,n − m; m < n. (9)

FIG. 2. (Color online) (a) Schematic of the simulation cell with
periodic boundary conditions applied along x, y, and z directions; the
atomistic configuration and plane indices of the (b) symmetric and
(c) inclined �5 grain boundaries. Atom colors correspond to local
lattice structures.

Setting i = 1 for demonstration purposes, Eq. (9) becomes

〈
dk

j
(t1)

〉 = 1

2l(m + 1)

∑
j

hj (tm+1) − hj (t0),

j = 1,2, . . . ,2l; m < n. (10)

Equation (10) clearly shows that in each simulation only the
data points at t = t0 and t = tm+1 (total data points N = 2l) have
been used, and the majority of information at time intervals in
between has been discarded. In contrast, every data point [total
data points N = 2l(m + 1)] can be used by fitting to Eq. (8).

B. GB geometry and simulation setup

As shown in the schematic of Fig. 2(a), each simulation cell
contains two GBs, with periodic boundary conditions imposed
along all three axes. Two types of GBs have been studied;
both are Ni �5 〈100〉 tilt GBs, but with different GB plane
inclinations, one of which is termed “symmetric” and one
“inclined.” The atomistic configurations including the plane
indices of both types of GBs are shown in Figs. 2(b) and
2(c), respectively. The atom colors correspond to the local
crystal structure according to Ackland-Jones analysis.38 This
analysis method is also used to track the GB position when no
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bias is applied, defined by the sites with non-fcc coordination.
The simulation cell dimensions {Lx,Ly, Lz} are {17.8, 1.0,
22.3 nm} (symmetric) and {10.0, 1.4, 21.7 nm} (inclined),
respectively.

MD simulations are performed using the software package
LAMMPS39,40 with embedded atom method potentials devel-
oped for Ni40 using an isothermal, isobaric (constant number
of atoms N , pressure P , and temperature T with Nose-Hoover
thermostat41,42) ensemble. This particular potential is used
in order to be consistent with our previous study, where we
confirm that similar mechanistic results are produced with a
second potential for Ni. 37 The time step is set to be 5 fs. The
simulation cell is relaxed by using a “heating-and-quenching”
approach.43,44 Specifically, each system is first relaxed at
1300 K and P = 0 for 25 ps, followed by a gradual annealing
to the desired temperature in 25 ps, and subsequently relaxed
at the desired temperature for another 25 ps prior to the
simulation. For simulations in which a bias is applied, a force
is exerted upon atoms near the GB according to the method
developed by Janssens et al..23 Specifically, a certain amount
of artificial energy (in eV) is added to each atom depending
on the local lattice orientation: zero for atoms at perfect lattice
sites in one grain, �e for atoms at perfect lattice sites in the
other grain, and some value between zero and �e for atoms
close to the GB. The normal GB velocity can thus be calculated
by tracking the change of the total amount of artificially added
energy �E, such that

v = 1

2

d[�E(t)/�e]

dt

lz

Ntotal
. (11)

Here, lz is the dimension of the simulation cell normal to the
GB plane, Ntotal is the total number of atoms in the simulation
cell, and the factor of two is introduced because the change
of �E(t) is due to the motion of two identical GBs moving
towards (or away from) each other. �e is set as an input to exert
the desired driving force (P = �e1.6 × 10−19 Pa/Vatom =
�e1.6 × 10−19 Pa/(a3/4) ∼ �e1.47 × 1010 Pa for Ni, here
Vatom is the atomic volume of Ni, and a = 0.352 nm is the
lattice constant). The number of independent simulations, the
duration of each simulation, and the analysis method depend
on the magnitude of the GB velocity. Usually, one simulation
of up to 500-ps duration is used if v > 1 m/s, 12 simulations of
1-ns duration are used if v < 1 m/s, and the use of the AIRwalk
method and Eq. (8) becomes critical when v < 0.1 m/s. In all
simulations, the GB position is calculated every 0.5 ps.

III. RESULTS

A. GB velocity measurement

An example showing the measurement of GB velocity via
Eq. (11) is given in Fig. 3, which shows the time variance
of the total amount of artificially added energy, �E(t), in
the simulation cell with inclined Ni �5 GBs at different
temperatures. The applied bias is �e = 0.05 eV per atom
(∼0.735 GPa) at the interfaces. Regardless of the temperature,
�E linearly decreases as a function of time, which is consistent
with a constant GB velocity. Introducing the values for each
parameter in Eq. (11), e.g., �e = 0.05 eV, Ntotal = 27584,
lz = 21.7 nm, the GB velocities can be calculated as 6.1
(600 K), 37.5 (800 K), 65.6 (1000 K), and 89.5 m/s (1200 K),

FIG. 3. (Color online) Evolution of the total amount of artificially
added energy that drives boundary motion, during the migration of
inclined Ni �5 grain boundaries at various temperatures.

respectively. The uncertainty on these measurements is quite
small, being estimated as ±2%.

B. Dependence of v on P

We have simulated the motion of GBs at velocities and
driving forces spanning more than five orders of magnitude,
e.g., v ∼ 10−3–102 m/s and P ∼ 105–109 Pa (equivalent to
�e ∼ 10−5–10−1 eV), as shown in Figs. 4(a) and 4(d), for
the symmetric and inclined �5 boundaries respectively. At
the highest temperatures we studied, the data appear linear,
i.e., GB velocity scales linearly with driving force, in line
with Eq. (1). However, from these figures, it is immediately
observed that for most of the investigated temperatures the GB
velocity increases quite nonlinearly with the applied driving
force for both types of GBs, which is contrary to the generally
assumed linear trend as described in Eq. (1). The nonlinearity is
generally more evident at lower temperatures, and can be seen
with even more clarity by examining the double-logarithmic
representations of the same data in Figs. 4(b) and 4(e).

In fact, the log-log presentations in Figs. 4(b) and 4(e)
suggest that multiple regimes of behavior may exist, de-
pending on the driving force. Specifically, we find that
there are two apparently linear regimes with a transition
in between. This is most clearly observed by examining
the intermediate temperatures on the log-log scales, i.e.,
T < 1000 K in Figs. 4(b) and 4(e). In these conditions, the
data exhibit an s-shaped curve that transitions from a slope of
unity to one much higher, then back to unity, as P increases.
The transitions of slope are better represented in Figs. 4(c) and
4(f) by plotting the derivatives at each data point on Figs. 4(b)
and 4(e). The two tails of the curves are convincingly linear
regimes, with (P/v)(dv/dP ) ∼ 1, separated by a steeper slope
in between. The first linear regime occurs when the applied
bias is high, which is quite clearly seen in Figs. 4(a) and 4(d),
e.g., when P > 0.05 eV at T > 700 K for both types of
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FIG. 4. (Color online) The boundary velocity v vs driving force P at various temperatures for the (a) symmetric and (d) inclined Ni �5
grain boundaries; v vs P at various temperatures in the log-log scale for the (b) symmetric and (e) inclined Ni �5 grain boundary; the slope
value at each data point on the log-log plot for the (c) symmetric and (f) inclined Ni �5 grain boundary. Here, the driving force can be converted
to Pa according to 1eV ∼ 1.47 × 1010 Pa.

GBs. The second linear regime, in contrast, is when the bias
is sufficiently small, as shown in the log-log plot of Figs. 4(b)
and 4(e), e.g., when P < 0.005 eV at T > 700 K for both
GBs. The transition between the two apparent linear regimes is
more abrupt and occurs at higher biases when the temperature
is lower [see Figs. 4(c) and 4(f)]; the transition is subtle at high
temperatures, e.g., T > 1000 K, or even unnoticeable at T =
1200 K.

IV. DISCUSSION

Our delineation of two different kinetic regimes of GB
motion, each of which exhibits a linear bias-velocity relation-
ship, and each of which is dominant in different ranges of
temperature and bias, represents the key result of this work.
A map, demarcating these regimes, is shown in Fig. 5, which
summarizes the results presented in Fig. 4. In this map, the
shading corresponds to the slope values (P/v)(dP/dv) as in
Figs. 4(c) and 4(f). Specifically, the symbols in blue color
represent the two linear regimes with a slope value close to
unity, which are separated by a transition area enclosed by the
dashed lines. The Figs. 5(a) and 5(b) show that the details of
the transition are somewhat dependent upon the structure of
the boundary, with the transition being somewhat wider for the

symmetric boundary. Nonetheless, all of our data speak to two
distinct modes of GB migration, separated in the P-T space.

We believe these two regimes correspond to different
modes of GB motion that are reminiscent of the low-bias
“diffusional” and high-bias “ballistic” kinetic regimes seen for
other driven kinetic processes. We are inspired by prior work
on such processes, such as for biased diffusion on crystalline
surfaces, studied as the Brownian motion of particles in
a tilted washboard potential.45,46 For such processes, when
the external bias P is sufficiently small, the particles are
“locked,” i.e., oscillate around their equilibrium positions with
occasional thermally activated random jumps over the energy
barrier back and forth, migrating with a net velocity of v ∝
exp(P/kT ), which can be reduced to a simple linear relation
v ∝ P when P is small (P/kT 
 1). In contrast, the particles
move essentially ballistically, in the “running” state, when the
external force is very large; in this case too, the displacement
of the particles is linear with time.45,46 When the external force
P is in the intermediate range, sufficiently large but below that
required to trigger the stable running state motion, dynamic
transitions between locked and running states occur, which
lead to an intermediate velocity averaging the two modes.45,46

This kind of diffusional-ballistic mode transition is exactly
in line with our observations of GB motion in Fig. 4. If indeed
GB motion can be described as either locked or running in
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FIG. 5. (Color online) A map of the modes of GB migration, built
using the local slope value of ln v vs ln P at various temperatures
and driving forces for the (a) symmetric and (b) inclined Ni �5
grain boundaries. The dashed lines separate diffusional, transition,
and ballistic regimes of grain boundary motion. Here, the driving
force can be converted to Pa according to 1eV ∼ 1.47 × 1010 Pa.

this sense, then there are several expectations that emerge.
First, at low driving forces, the locked state should exhibit the
characteristics of a diffusional system, e.g., stochastic behavior
that is dominated by thermal effects. Second, at higher
driving forces, we should observe behavior that comprises
some combination of locked/diffusional activity as well as
periods of running motion. Finally, at sufficiently high driving
forces, ballistic or running state activity as for free particles
should emerge and eventually dominate the GB motion. In
the following, we will identify the diffusional/locked and
ballistic/running states in GB motion and investigate how
the transitions between them occur. Finally, the influence of

applied driving force on the measured activation energy of GB
migration is discussed.

A. GB motion in the locked or diffusional state

It is expected from the above discussion that GB motion
should exhibit diffusional characteristics in the locked state (at
low driving forces). For GB migration, the natural diffusional
process to anticipate is, literally, a thermally activated mass dif-
fusion process in the GB (i.e., GB self-diffusion). While exper-
imental studies have often revealed comparable activation en-
ergies for processes of GB migration and GB diffusion,7,47–49

MD simulations based on driven motion methods15,17,23,32 have
consistently reported significantly lower activation energies
for GB migration than diffusion, usually by a factor of 3 ∼
5.15,17,32 Such discrepancies have sometimes been attributed to
the presumed existence of impurities in experimental studies
that might have significantly lowered the GB mobility.15,17,32

However, MD studies directly comparing GB migration and
diffusion in pure metals with no possibility of impurity effects
bear out the discrepancy: GB migration studied by the driven
motion methods yield an extracted activation energy for GB
migration that is still significantly lower than that for simulated
GB self-diffusion in the identical MD structure.32

We believe that the very high GB velocities involved in
past MD simulations15,17,23,32 may underlie the discrepancy
between results reported for GB migration and self-diffusion.
In our recent preliminary report on the AIRwalk method,31

we proposed that GB motion in the low-velocity regime (net
velocity ∼0 m/s) is indeed achieved via diffusion, which
we inferred from our measured activation energies for GB
migration closely matching those for GB diffusion measured
experimentally; although experimental work on GB migration
of the exact same geometry is not available, the typical
experimental values of activation energy are in line with our
simulated results. With the addition of the new data in Fig. 4,
we are now able to further articulate our conjecture: we believe
that the low-driving force mode of GB motion is diffusional,
while the high-P mechanism is not; driven MD simulations
probe a different mode of GB motion that is not diffusional,
and thus produce an apparent discrepancy as compared to
experiments that probe the diffusional mechanism.

In order to further confirm our conjecture, we now proceed
to develop a direct comparison between GB migration and
diffusion. To do so, we simulate GB self-diffusion by tracking
the mean square displacement of GB atoms for both symmetric
and inclined �5 GBs, following the procedure of Liu et al.50

and Suzuki et al..51 GB atoms are defined as those in a
1 nm-wide slab containing the GB, and their displacements
are measured as a function of time under no bias to assess
self-diffusion in the boundary.

Figure 6(a) shows a few example datasets for the dis-
placement of GB atoms in the inclined �5 GB; the atomic
displacement increases linearly with time at all temperatures.
The GB self-diffusivity is defined as50,51

DGBS = D0 exp

(−QD

kT

)

=
∑

[(xi − xi0)2 + (yi − yi0)2 + (zi − zi0)2]

6NGBt
, (12)
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FIG. 6. (Color online) (a) The evolution of mean square displace-
ment of grain boundary atoms in the inclined Ni �5 grain boundary at
various temperatures; the Arrhenius plot of (b) the self-diffusivity and
(c) mobility for both symmetric and inclined Ni �5 grain boundaries.
The activation energies extracted from the slope of linear fittings are
also indicated.

where QD is the activation energy for GB self-diffusion, xi ,
yi , zi are the coordinates of GB atom i (i = 1, 2, . . ., NGB)
at time t , and xi0, yi0, zi0 are the initial coordinates of atom
i, NGB is the total number of GB atoms in the slab. Note that
the diffusion coefficient D used in Eq. (3) is different from
the self-diffusivity DGBS calculated according to Eq. (12): D

is a kinetic descriptor of the boundary motion kinetics, while
DGBS characterizes atomic diffusion in the grain boundary.

The resulting GB diffusivities are presented in the Arrhe-
nius plot of Fig. 6(b). In this figure, we see a significant
effect of the GB plane upon the diffusion kinetics and
mechanism in the studied temperature range (500–1200 K);
whereas the inclined boundary exhibits a single regime with
an intermediate activation energy of 0.43 eV, the symmetric
boundary shows a more complex transition of behaviors,
including a low-temperature regime with a low activation

energy of 0.10 eV, and a high-temperature regime with a high
activation energy of 1.06 eV. This interesting behavior for
the symmetric �5 GB can be attributed to a transition of the
diffusional mechanisms; prior simulation work has shown50

that the GB diffusional process is dominated by interstitials
when the temperature is relatively low and by vacancies when
it is high.

More interesting than the diffusion measurements them-
selves is their comparison to the kinetics of GB migration.
Figure 6 shows a comparable Arrhenius plot of our measure-
ments of GB mobility at zero driving force (P = 0). Examining
this figure in light of the diffusion data in Fig. 6(b), it is
clear that for both types of GBs, the activation energy for
GB migration agrees very well with that for GB self-diffusion,
e.g., Qm = 0.45 ± 0.02 eV in comparison with QD = 0.43
± 0.04 eV in the inclined Ni �5 GB, and Qm1 = 1.16
± 0.08 eV, Qm2 = 0.11 ± 0.01 eV in comparison with
QD1 = 1.06 ± 0.04 eV and QD2 = 0.10 ± 0.01 eV in
the symmetric �5 GB, respectively. Not only are all these
values in excellent agreement individually, but the kink in
the trend line corresponding to the transition from interstitial
to vacancy-mediated diffusion in the symmetric boundary is
also reflected in the GB migration data. We interpret the very
close match of these kinetic data as strong evidence that GB
migration is achieved via diffusion in the zero-velocity limit.

The diffusional characteristics of GB motion in the locked
state help to explain the observed linear trend in Figs. 4(b)
and 4(e) in the low driving force regime. In the locked state,
GB atoms oscillate around their equilibrium positions and
randomly hop back and forth across the interface due to
thermal noise. This diffusional migration mechanism is the
one envisioned by, e.g., Gottstein et al.,7 and rate theory gives
the velocity dependence on driving force as v ∝ exp(P/kT ),
which can be reduced to the simple linear relationship of v =
MP as described in Eq. (1) when P/kT 
 1 (e.g., at T = 800
K, P = 0.005 eV, P/kT ≈ 0.07 
 1).

B. GB motion in the running state

The apparent linear regime of GB migration at large driving
forces in Fig. 4 could indicate ballistic motion of GB atoms
in the running state. In order to characterize the running state
as well as the transition from locked to running, we simulate
the migration of the inclined �5 GB under low driving forces
from P = 0.0001 to 0.05 eV at 800 K using the AIRwalk
method.

Figure 7(a) shows the time evolution of the GB displace-
ment variance 〈σ 2〉 among 12 independent simulations for
each case. It is anticipated that for ballistic motion, the GB
displacement variance will follow a quadratic dependence on
time t ,52,53

〈σ 2(t)〉 = 〈v2〉t2, (13)

instead of a linear dependence for diffusional motion, as in
Eq. (6). It is shown in Fig. 7(a) that when P � 0.005 eV, there
are clear deviations from a simple linear dependence of 〈σ 2〉 on
t . A cleaner demonstration is provided by a plot of the square
root of the GB displacement variance 〈σ 2〉 as a function of time
for P = 0.01 and 0.025 eV in Fig. 7(b), and fitted by Eq. (13).
An excellent fit is found for both cases, with the coefficients
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FIG. 7. (Color online) Time evolution of (a) the displacement
variance 〈σ 2〉 of the inclined Ni �5 grain boundary under various
driving forces and (b) the square root of 〈σ 2〉 at P = 0.01 and
0.25 eV at 800 K; (c) the slope value of each data point on (a).
The solid lines in (b) are linear fittings according to Eq. (13). Here,
the driving force can be converted to Pa according to 1eV ∼ 1.47 ×
1010 Pa.

of determination R2 greater than 0.99, thus confirming that in
the high-bias, high-velocity regime, GB motion exhibits the
characteristics of the ballistic running state.

Furthermore, the time evolution of the GB migration
diffusion coefficient is plotted in Fig. 7(c) using the definition
in Eq. (6). A transition of behavior is also clear in Fig 7(c);
at low biases where diffusional migration is observed, D is a
constant as expected, whereas when P � 0.005 eV and ballistic
migration begins to set in, D is no longer a constant. We note
that the critical driving force of P = 0.005 eV for the onset
of this transition is in line with the rough estimation based
on observations in Fig. 4 at 800 K. The time evolution of D

[see Fig. 7(c)], consequently, can be used as a signature to test
whether GB motion is in the locked or running state.

C. Dependence of Qm on P

It is now clear that the generally assumed linear relation
between GB velocity v and the driving force P [see Eq. (1)]
should only be applied for the conditions under which it
was developed; for thermally activated GB migration where
P is small enough that not only the trivial mathematical
condition (P 
 kT ) is fulfilled, but simultaneously the
locked or diffusional state of GB migration is attained.
Many extant MD studies on GB motion based on driven
motion methods have extracted artificially high GB mobilities
by using GB velocities (∼101 m/s) and driving forces in
what we term the “transition” regime or even the ballistic
regime.

In order to show how high simulated velocities and driving
forces can lead to inaccurate measurement of GB mobilities
and activation energies, we present in Fig. 8 an Arrhenius
plot of GB mobility constructed by assuming the validity
of Eq. (1) for both the symmetric and inclined �5 GBs
at all driving forces. In Fig. 8, the data points for P = 0
are “intrinsic” GB mobilities extracted from the AIRwalk
method with zero net bias, and the data points for P ∼ 0 are
extracted from the AIRwalk method with driving forces in the
locked/diffusional regime, which are determined by linearly
fitting all the data points in the locked regime to Eq. (1) at each
temperature.

FIG. 8. (Color online) Arrhenius plot of mobility for the
(a) symmetric and (b) inclined Ni �5 grain boundary at various
biases. The solid lines are added as guides for the eye, to show
the slope changes. Here, the driving force can be converted to Pa
according to 1eV ∼ 1.47 × 1010 Pa.
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Both Figs. 8(a) and 8(b) indicate that the measured GB
mobilities agree well with the true, intrinsic values only when
the driving force is sufficiently small; the deviation from the
true mobility grows larger as the driving forces increase. As
a result, the slopes from such Arrhenius plots yield only
apparent activation energies when the driving forces are high.
These apparent activation energies are not physical; they are
significantly smaller than the intrinsic values in the high-
temperature regime. For example, from Fig. 8, we observe
that the analysis becomes flawed above about T > 500 K for
the inclined �5 GB, which is the typical temperature range
in both experiments and prior MD simulations. Specifically,
the measured activation energies for the inclined �5 GB are
Qm = 0.51 eV when P = 0, Qm = 0.31 eV when P = 0.05 eV,
and Qm = 0.13 eV when P = 0.05 eV.

While past MD studies have occasionally attributed the
extracted lower activation energies as compared to experi-
mental values to assumed impurities or other artifacts in the
experimental data,15,17,32 our simulations offer an alternative
explanation. We propose that the discrepancy is more likely
due to the high driving forces and high GB velocities in
past MD simulations, which access the ballistic mode of GB
motion; although such ballistic GB motion data exhibit a linear
relationship between P and v, they cannot be validly analyzed
using v = MP [see Eq. (1)] to extract GB mobilities.

New evidence from this study also helps clarify the pro-
posed mechanisms for GB motion at low-temperature regimes
and the zero-driving-force limit in our preliminary report,37

where we tentatively attributed the relatively low activation
energy in that regime to a mechanism of transboundary
atomic hopping. With more details from Fig. 6, this change
of activation energy in different temperature regimes can
now be associated with the transition between vacancy- and
interstitial-dominated diffusional hoppings. As a corollary, the
extracted “activation energy” of Qm = 0.125 eV based on the
driven motion method in that study37 can now be interpreted
as that required to trigger the transition from diffusional to
ballistic motion for symmetric Ni �5 GB at T = 300.

V. CONCLUSIONS

Atomistic simulations based on the AIRwalk method have
been used to study the motion of both symmetric and inclined
�5 GBs over broad ranges of temperature and driving force.
This investigation provides a complete map of the major modes
of GB motion, and three major conclusions can be drawn: (i) al-
though the velocity v of GB motion often appears to be a mono-
tonic linear function of the applied driving force P , there are in
fact two distinct linear regimes as well as a transition regime in
between. The transition is extremely broad at low temperatures
and narrow at high temperatures. (ii) The two linear P-v
regimes correspond to dramatically different kinetic modes
of GB motion: the linear regime at low driving forces has the
characteristic behavior of diffusional GB motion in the locked
state, while the linear regime at high driving forces corresponds
to ballistic GB motion in the running state. The transition from
diffusive to ballistic GB motions can be identified by tracking
the GB displacement variance 〈σ 2(t)〉 among a large number
of independent simulations; 〈σ 2(t)〉 changes from linear for
diffusional motion to quadratic for ballistic motion. (iii) GB
mobility extracted from the transition or ballistic regimes by
assuming v = MP will lead to apparent activation energies that
are significantly different from the true value (and generally
lower). This artifact may be present in many extant MD
simulation works on GB migration, and provides an alternate
explanation for the mismatch between reported activation
energies from atomistic simulations and experiments.
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