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§8.5 Application of Laplace Transforms to Partial Differential Equations

In Sections 8.2 and 8.3, we illustrated the effective use of Laplace transforms in solv-
ing ordinary differential equations. The transform replaces a differential equation in
y(t) with an algebraic equation in its transform ỹ(s). It is then a matter of finding
the inverse transform of ỹ(s) either by partial fractions and tables (Section 8.1) or
by residues (Section 8.4). Laplace transforms also provide a potent technique for
solving partial differential equations. When the transform is applied to the variable
t in a partial differential equation for a function y(x, t), the result is an ordinary
differential equation for the transform ỹ(x, s). The ordinary differential equation
is solved for ỹ(x, s) and the function is inverted to yield y(x, t). We illustrate this
procedure with five physical examples. The first two examples are on unbounded
spatial intervals; inverse transforms are found in tables. The last three examples
are on bounded spatial intervals; inverse transforms are calculated with residues.

Problems on Unbounded Intervals

Example 8.18 A very long cylindrical rod is placed along the positive x-axis with one end at
x = 0 (Figure 8.22). The rod is so long that any effects due to its right end may
be neglected. Its sides are covered with perfect insulation so that no heat can
enter or escape therethrough. At time t = 0, the temperature of the rod is 0◦C
throughout. Suddenly the left end of the rod has its temperature raised to U0, and
maintained at this temperature thereafter. The initial, boundary-value problem
describing temperature U(x, t) at points in the rod is

∂U

∂t
= k

∂2U

∂x2
, x > 0, t > 0, (8.19a)

U(0, t) = U0, t > 0, (8.19b)
U(x, 0) = 0, x > 0, (8.19c)

where k is a constant called the thermal diffusivity of the material in the rod. Use
Laplace transforms on variable t to find U(x, t).

x x=0 Insulation

InsulationInsulation

Insulation

Figure 8.22

Solution When we apply the Laplace transform to the partial differential equa-
tion, and use property 8.10a,

sŨ (x, s) − U(x, 0) = kL
{

∂2U

∂x2

}
.

Since the integration with respect to t in the Laplace transform and the differenti-
ation with respect to x are independent, we interchange the order of operations on
the right,

sŨ(x, s) = k
∂2Ũ

∂x2
,

where we have also used initial condition 8.19c. Because only derivatives with
respect to x remain, we replace the partial derivative with an ordinary derivative,
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sŨ = k
d2Ũ

dx2
, x > 0. (8.20a)

When we take Laplace transforms of boundary condition 8.19b, we obtain

Ũ(0, s) =
U0

s
, (8.20b)

a boundary condition to accompany differential equation 8.20a. A general solution
of 8.20a is

Ũ(x, s) = Ae
√

s/kx + Be−
√

s/kx.

Because U(x, t) must remain bounded as x becomes infinite, so also must Ũ (x, s).
We must therefore set A = 0, in which case 8.20b requires B = U0/s. Thus,

Ũ (x, s) =
U0

s
e−

√
s/kx. (8.21)

The inverse transform of this function can be found in tables,

U(x, t) = U0 L−1

{
e−

√
s/kx

s

}
= U0 erfc

(
x

2
√

kt

)
, (8.22a)

where erfc (x) is the complementary error function

erfc (x) = 1 − erf (x) = 1 − 2√
π

∫ x

0

e−u2
du =

2√
π

∫ ∞

x

e−u2
du. (8.22b)

Notice that for any x > 0 and any t > 0,
temperature U(x, t) is positive. This
indicates that the abrupt change in
temperature at the end x = 0 from 0◦C
to U0 is felt instantaneously at every
point in the rod. We have shown a plot
of U(x, t) for various fixed values of t
in Figure 8.23.•
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Figure 8.23

Example 8.19 A very long taut string is supported from below so that it lies motionless on the
positive x-axis. At time t = 0, the support is removed and gravity is permitted to
act on the string. If the end x = 0 is fixed at the origin, the initial, boundary-value
problem describing displacements y(x, t) of points in the string is

∂2y

∂t2
= c2 ∂2y

∂x2
− g, x > 0, t > 0, (8.23a)

y(0, t) = 0, t > 0, (8.23b)
y(x, 0) = 0, x > 0, (8.23c)
yt(x, 0) = 0, x > 0, (8.23d)

where g = 9.81 and c > 0 is a constant depending on the material and tension of
the string. Initial condition 8.23d expresses the fact that the initial velocity of the
string is zero. Use Laplace transforms to solve this problem.
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Solution When we apply Laplace transforms to the partial differential equation,
and use property 8.10b,

s2ỹ(x, s) − sy(x, 0) − yt(x, 0) = c2L
{

∂2y

∂x2

}
− g

s
.

We now use initial conditions 8.23c,d, and interchange operations on the right,

s2ỹ = c2 d2ỹ

dx2
− g

s
,

or,

d2ỹ

dx2
− s2

c2
ỹ =

g

c2s
, x > 0. (8.24a)

This ordinary differential equation is subject to the transform of 8.23b,

ỹ(0, s) = 0. (8.24b)

A general solution of differential equation 8.24a is

ỹ(x, s) = Aesx/c + Be−sx/c − g

s3
.

For this function to remain bounded as x → ∞, we must set A = 0, in which case
condition 8.24b implies that B = g/s3. Thus,

ỹ(x, s) = − g

s3
+

g

s3
e−sx/c. (8.25)

Property 8.4b gives

y(x, t) = −gt2

2
+

g

2

(
t − x

c

)2

h
(
t − x

c

)
(8.26)

where h(t− x/c) is the Heaviside unit step function. What this says is that a point
x in the string falls freely under gravity for 0 < t < x/c, after which it falls with
constant velocity −gx/c [since for t > x/c, y(x, t) = (g/2)(−2xt/c + x2/c2)]. A
picture of the string at any given time t0 is shown in Figure 8.24. It is parabolic
for 0 < x < ct0 and horizontal for x > ct0. As t0 increases, the parabolic portion
lengthens and the horizontal section drops.•

y

xct

y gx
c

y gt
x ct

gt
0

0= 2

2

=

-

2 2
( -2 0)

2
0
2

-

Figure 8.24

Problems on Bounded Intervals

The next three examples are on bounded intervals; we use residues to find
inverse transforms.
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Example 8.20 A cylindrical rod of length L has its ends at x = 0 and x = L on the x-axis.
Its sides are insulated so that no heat can enter or escape therethrough. At time
t = 0, the left end (x = 0) has temperature 0◦C, and the right end (x = L) has
temperature L◦C, and the temperature rises linearly between the ends. Suddenly
at time t = 0, the temperature of the right end is reduced to 0◦C, and both ends are
held at temperature zero thereafter. The initial, boundary-value problem describing
temperature U(x, t) at points in the rod is

∂U

∂t
= k

∂2U

∂x2
, 0 < x < L, t > 0, (8.27a)

U(0, t) = 0, t > 0, (8.27b)
U(L, t) = 0, t > 0, (8.27c)
U(x, 0) = x, 0 < x < L, (8.27d)

k again being the thermal diffusivity of the material in the rod. Use Laplace trans-
forms to find U(x, t).

Solution When we take Laplace transforms of 8.27a, and use property 8.10a,

sŨ(x, s) − x = k
d2Ũ

dx2
,

or,

d2Ũ

dx2
− s

k
Ũ = −x

k
, 0 < x < L. (8.28a)

This ordinary differential equation is subject to the transforms of 8.27b,c,

Ũ(0, s) = 0, (8.28b)
Ũ(L, s) = 0. (8.28c)

A general solution of differential equation 8.28a is

Ũ(x, s) = A cosh
√

s

k
x + B sinh

√
s

k
x +

x

s
.

For Example 8.18 on an unbounded interval, we used exponentials in the solution
of 8.20a. On bounded intervals, hyperbolic functions are preferable. Boundary
conditions 8.28b,c require

0 = A, 0 = A cosh
√

s

k
L + B sinh

√
s

k
L +

L

s
.

From these,

Ũ(x, s) =
1
s

(
x −

L sinh
√

s/kx

sinh
√

s/kL

)
. (8.29)

Although
√

s/k denotes the principal square root function, Ũ (x, s) in 8.29 is a
solution of problem 8.28 for any branch of the root function.

It remains now to find the inverse transform of Ũ(x, s). We do this by cal-
culating residues of estŨ(x, s) at its singularities. To discover the nature of the
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singularity at s = 0, we expand Ũ(x, s) in a Laurent series around s = 0. Provided
we use the same branch for the root function in numerator and denominator of 8.29,
we may write that

Ũ(x, s) =
1
s

{
x −

L[
√

s/kx + (
√

s/kx)3/3! + · · ·]√
s/kL + (

√
s/kL)3/3! + · · ·

}

=
1
s

[
x − x + sx3/(6k) + · · ·

1 + sL2/(6k) + · · ·

]

=
1
s

[
sx(L2 − x2)

6k
+ · · ·

]

=
x(L2 − x2)

6k
+ terms in s, s2, · · · .

Since this is the Laurent series of Ũ(x, s) valid in some annulus around s = 0, it
follows that Ũ(x, s) has a removable singularity at s = 0.

To invert Ũ (x, s) with residues, the function cannot have a branch cut in
the left half-plane Im s < 0. Suppose we choose a branch of

√
s/k in 8.29 with

branch cut along the positive real axis. We continue to denote this branch by
√

s/k
notwithstanding the fact that it is no longer the principal branch. Singularities of
Ũ (x, s) in the left half-plane then occur at the zeros of sinh

√
s/kL; that is, when√

s/kL = nπi, or, s = −n2π2k/L2, n a positive integer. Because the derivative of
sinh

√
s/kL does not vanish at s = −n2π2k/L2, this function has zeros of order 1

at s = −n2π2k/L2. It follows that Ũ(x, s) has simple poles at these singularities.
Residues of estŨ (x, s) at these poles are

Res
[
estŨ(x, s),−n2π2k

L2

]
= lim

s→−n2π2k/L2

(
s +

n2π2k

L2

)
est

s

(
x −

L sinh
√

s/kx

sinh
√

s/kL

)

= − e−n2π2kt/L2

−n2π2k/L2
L sinh

nπxi

L
lim

s→−n2π2k/L2

s + n2π2k/L2

sinh
√

s/kL
.

L’Hôpital’s rule yields

Res
[
estŨ (x, s),−n2π2k

L2

]
=

iL3

n2π2k
e−n2π2kt/L2

sin
nπx

L
lim

s→−n2π2k/L2

1
L

2
√

ks
cosh

√
s/kL

=
2iL2

n2π2k
e−n2π2kt/L2

sin
nπx

L

1
L

nπki
coshnπi

=
2L

nπ
(−1)n+1e−n2π2kt/L2

sin
nπx

L
.

We sum these residues to find the inverse transform of Ũ(x, s),

U(x, t) =
2L

π

∞∑

n=1

(−1)n+1

n
e−n2π2kt/L2

sin
nπx

L
.• (8.30)

Readers familiar with other methods for solving partial differential equations
will be well aware that this solution can also be obtained by separation of variables.
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Exponentials enhance convergence for large values of t. For instance, suppose the
rod is 1/5 m in length and is made from stainless steel with thermal diffusivity
k = 3.87× 10−6 m2/s. Consider finding the temperature at the midpoint x = 1/10
m of the rod at the four times t = 2, 5, 30, and 100 minutes. Series 8.30 gives

U(1/10, 120) =
2
5π

∞∑

n=1

(−1)n+1

n
e−0.1145861n2

sin
nπ

2
≈ 0.100◦C;

U(1/10, 300) =
2
5π

∞∑

n=1

(−1)n+1

n
e−0.28646526n2

sin
nπ

2
≈ 0.092◦C;

U(1/10, 1800) =
2
5π

∞∑

n=1

(−1)n+1

n
e−1.7187915n2

sin
nπ

2
≈ 0.023◦C;

U(1/10, 6000) =
2
5π

∞∑

n=1

(−1)n+1

n
e−5.7293052n2

sin
nπ

2
≈ 0.0004◦C.

To obtain these approximations we used four nonzero terms in the first series, three
in the second, and one in each of the third and fourth.

Laplace transforms also yield a representation for temperature in the rod that
is particularly valuable when t is small. This representation is not available through
separation of variables. We write transform 8.29 in the form

Ũ (x, s) =
x

s
−

L sinh
√

s/kx

s sinh
√

s/kL
=

x

s
− L

s

e
√

s/kx − e−
√

s/kx

e
√

s/kL − e−
√

s/kL

=
x

s
− L

s

e−
√

s/kL(e
√

s/kx − e−
√

s/kx)

1 − e−2
√

s/kL
.

If we regard 1/(1−e−2
√

s/kL) as the sum of an infinite geometric series with common
ratio e−2

√
s/kL, then

Ũ(x, s) =
x

s
− L

s

[
e
√

s/k(x−L) − e−
√

s/k(x+L)
] ∞∑

n=0

e−2n
√

s/kL

=
x

s
− L

∞∑

n=0

[
e−

√
s/k[(2n+1)L−x]

s
− e−

√
s/k[(2n+1)L+x]

s

]
.

Tables of Laplace transforms indicate that

L−1

{
e−a

√
s

s

}
= erfc

(
a

2
√

t

)

where erfc (x) is the complementary error function in equation 8.22b. Hence U(x, t)
may be expressed as a series of complementary error functions,

U(x, t) = x − L

∞∑

n=0

{
erfc

[
(2n + 1)L − x

2
√

kt

]
− erfc

[
(2n + 1)L + x

2
√

kt

]}

= x − L
∞∑

n=0

{
erf
[
(2n + 1)L + x

2
√

kt

]
− erf

[
(2n + 1)L − x

2
√

kt

]}
,



SECTION 8.5 439

where we have used the fact that erfc (x) = 1−erf (x). This series converges rapidly
for small values of t (as opposed to solution 8.30 which converges rapidly for large
t). To see this consider temperature at the midpoint of the stainless steel rod at
t = 300 s:

U(1/10, 300) =
1
10

− 1
5

∞∑

n=0

{
erf

[
(2n + 1)/5 + 1/10

2
√

3.87× 10−6(300)

]
− erf

[
(2n + 1)/5− 1/10

2
√

3.87× 10−6(300)

]}
.

For n > 0, all terms essentially vanish, and

U(1/10, 300) ≈ 1
10

− 1
5
[erf (4.402)− erf (1.467)] = 0.092◦C.

For t = 1800,

U(1/10, 1800) =
1
10

− 1
5

∞∑

n=0

{
erf

[
(2n + 1)/5 + 1/10

2
√

3.87 × 10−6(1800)

]
− erf

[
(2n + 1)/5− 1/10

2
√

3.87× 10−6(1800)

]}
.

Once again, only the n = 0 term is required; it yields

U(1/10, 1800) ≈ 1
10

− 1
5
[erf (0.1797)− erf (0.5991)] = 0.023◦C.

Even for t as large as 6000, we need only the n = 0 and n = 1 terms to give

U(1/10, 6000) =
1
10

− 1
5

∞∑

n=0

{
erf

[
(2n + 1)/5 + 1/10

2
√

3.87× 10−6(6000)

]
− erf

[
(2n + 1)/5− 1/10

2
√

3.87 × 10−6(6000)

]}

≈ 1
10

− 1
5
[erf (0.9843)− erf (0.3281) + erf (2.297)− erf (1.641)]

= 0.0004◦C.

Example 8.21 The ends of a taut string are fixed at x = 0 and x = L on the x-axis. The string is
initially at rest along the axis and then at time t = 0, it is allowed to drop under its
own weight. The initial, boundary-value problem describing displacements y(x, t)
of points in the string is

∂2y

∂t2
= c2 ∂2y

∂x2
− g, 0 < x < L, t > 0, (8.31a)

y(0, t) = 0, t > 0, (8.31b)
y(L, t) = 0, t > 0, (8.31c)
y(x, 0) = 0, 0 < x < L, (8.31d)
yt(x, 0) = 0, 0 < x < L, (8.31e)

where g = 9.81 and c > 0 is a constant depending on the material and tension of
the string. Initial condition 8.31e expresses the fact that the initial velocity of the
string is zero. Use Laplace transforms to solve this problem.

Solution When we take Laplace transforms of 8.31a, and use initial conditions
8.31d,e,

s2ỹ(x, s) = c2 ∂2ỹ

∂x2
− g

s
,

or,
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d2ỹ

dx2
− s2

c2
ỹ =

g

c2s
, 0 < x < L. (8.32a)

This ordinary differential equation is subject to the transforms of 8.31b,c,

ỹ(0, s) = 0, (8.32b)
ỹ(L, s) = 0. (8.32c)

A general solution of 8.32a is

ỹ(x, s) = A cosh
sx

c
+ B sinh

sx

c
− g

s3
.

Boundary conditions 8.32b,c require

0 = A − g

s3
, 0 = A cosh

sL

c
+ B sinh

sL

c
− g

s3
.

Thus,

ỹ(x, s) =
g

s3
cosh

sx

c
− g

s3 sinh sL/c

(
−1 + cosh

sL

c

)
sinh

sx

c
− g

s3
. (8.33)

We invert this transform function by finding residues of estỹ(x, s) at its singularities.
To determine the type of singularity at s = 0, we expand ỹ(x, s) in a Laurent series
around s = 0:

ỹ(x, s) = − g

s3


1 −

(
1 +

s2x2

2c2
+

s4x4

24c4
+ · · ·

)
+
(

s2L2

2c2
+

s4L4

24c4
+ · · ·

)



sx

c
+

s3x3

6c3
+ · · ·

sL

c
+

s3L3

6c3
+ · · ·







= − g

s3

[
−
(

s2x2

2c2
+

s4x4

24c4
+ · · ·

)
+
(

s2L2

2c2
+

s4L4

24c4
+ · · ·

)(
x

L
+

s2x(x − L)
6Lc2

+ · · ·
)]

= −gx(L − x)
2c2s

+ · · ·

This shows that ỹ(x, s) has a simple pole at s = 0, and from the product

estỹ(x, s) =
(

1 + st +
s2t2

2!
+ · · ·

)[
−gx(L − x)

2c2s
+ · · ·

]

= −gx(L − x)
2c2s

+ · · · ,

the residue of estỹ(x, s) at s = 0 is −gx(L − x)/(2c2).
The remaining singularities of ỹ(x, s) occur at the zeros of sinh (sL/c); that

is, when sL/c = nπi, or, s = nπci/L, n an integer. Because the derivative of
sinh (sL/c) does not vanish at s = nπci/L, this function has zeros of order one at
s = nπci/L. When n is even, s = nπci/L is a simple zero of −1 + cosh (sL/c), and
therefore these are removable singularities of ỹ(x, s). When n is odd, s = nπci/L
is not a zero of −1 + cosh (sL/c), and these are therefore simple poles of ỹ(x, s).
Residues of estỹ(x, s) at these poles are



SECTION 8.5 441

Res
[
estỹ(x, s),

nπci

L

]
= lim

s→nπci/L

(
s − nπci

L

)
−gest

s3

[
1 − cosh

sx

c
+
(
−1 + cosh

sL

c

)
sinh (sx/c)
sinh (sL/c)

]

− g

(nπci/L)3
enπcti/L(−1 + coshnπi) sinh

nπxi

L
lim

s→nπci/L

s − nπci/L

sinh (sL/c)

= − gL3i

n3π3c3
enπcti/L(−1 + cosnπ)i sin

nπx

L
lim

s→nπci/L

1
(L/c) cosh (sL/c)

= − gL3

n3π3c3
enπcti/L[1 + (−1)n+1] sin

nπx

L

1
(L/c) coshnπi

=
gL2

n3π3c2
enπcti/L[1 + (−1)n+1] sin

nπx

L
.

Since n is odd, we may write that residues of estỹ(x, s) at the poles s = (2n−1)πci/L
are

Res
[
estỹ(x, s),

(2n − 1)πci

L

]
2gL2

(2n − 1)3π3c2
e(2n−1)πcti/L sin

(2n − 1)πx

L
.

Displacements of points in the string are given by

y(x, t) = −gx(L − x)
2c2

+
∞∑

n=−∞

2gL2

(2n − 1)3π3c2
e(2n−1)πcti/L sin

(2n − 1)πx

L
.

We separate the summation into two parts, one over positive n and the other over
nonpositive n, and in the latter we set m = 1 − n,

y(x, t) = −gx(L − x)
2c2

+
2gL2

π3c2

∞∑

n=1

1
(2n − 1)3

e(2n−1)πcti/L sin
(2n − 1)πx

L

+
2gL2

π3c2

0∑

n=−∞

1
(2n − 1)3

e(2n−1)πcti/L sin
(2n − 1)πx

L

= −gx(L − x)
2c2

+
2gL2

π3c2

∞∑

n=1

1
(2n − 1)3

e(2n−1)πcti/L sin
(2n − 1)πx

L

+
2gL2

π3c2

∞∑

m=1

1
[2(1− m)− 1]3

e[2(1−m)−1]πcti/L sin
[2(1− m) − 1]πx

L
.

If we now replace m by n in the second summation, and combine it with the first,

y(x, t) = −gx(L − x)
2c2

+
2gL2

π3c2

∞∑

n=1

1
(2n − 1)3

e(2n−1)πcti/L sin
(2n − 1)πx

L

+
2gL2

π3c2

∞∑

n=1

1
(2n − 1)3

e−(2n−1)πcti/L sin
(2n − 1)πx

L

= −gx(L − x)
2c2

+
2gL2

π3c2

∞∑

n=1

e(2n−1)πcti/L + e−(2n−1)πcti/L

(2n − 1)3
sin

(2n − 1)πx

L

= −gx(L − x)
2c2

+
4gL2

π3c2

∞∑

n=1

1
(2n − 1)3

cos
(2n − 1)πct

L
sin

(2n − 1)πx

L
.(8.34)



442 SECTION 8.5

The first term is the static position that the string would occupy were it slowly
lowered under the force of gravity. The series represents oscillations about this
position due to the fact that the string was dropped from a horizontal position.

The technique of separation of variables and eigenfunction expansions leads to
the following solution of problem 8.31

y(x, t) = −2gL2

π3c2

∞∑

n=1

[1 + (−1)n+1]
n3

(
1 − cos

nπct

L

)
sin

nπx

L
.

We can see the advantage of Laplace transforms. They have rendered part of the
series solution in closed form, namely the term gx(L − x)/(2c2) in solution 8.34.•

Examples 8.18 and 8.21 contained specific nonhomogeneities and/or initial con-
ditions. Although Laplace transforms can handle nonhomogeneities and initial con-
ditions with arbitrary functions, they do not do so particularly efficiently. Our final
example is an illustration of this.

Example 8.22 Solve the following heat conduction problem in a rod of length L when the initial
temperature distribution is an unspecified function f(x),

∂U

∂t
= k

∂2U

∂x2
, 0 < x < L, t > 0, (8.35a)

U(0, t) = 0, t > 0, (8.35b)
U(L, t) = 0, t > 0, (8.35c)
U(x, 0) = f(x), 0 < x < L. (8.35d)

Solution When we take Laplace transforms of both sides of PDE 8.35a,

sŨ − f(x) = k
d2Ũ

dx2
,

or,

d2Ũ

dx2
− s

k
Ũ = −f(x)

k
, 0 < x < L,

subject to transforms of 8.35b,c,

Ũ(0, s) = 0, Ũ(L, s) = 0.

Variation of parameters leads to the following general solution of the differential
equation

Ũ(x, s) = A cosh
√

s

k
x + B sinh

√
s

k
x − 1√

ks

∫ x

0

f(u) sinh
√

s

k
(x − u) du.

The boundary conditions require

0 = A, 0 = A cosh
√

s

k
L + B sinh

√
s

k
L − 1√

ks

∫ L

0

f(u) sinh
√

s

k
(L − u) du.

Thus,

Ũ(x, s) =
sinh

√
s
k
x

√
ks sinh

√
s
kL

∫ L

0

f(u) sinh
√

s

k
(L − u) du − 1√

ks

∫ x

0

f(u) sinh
√

s

k
(x − u) du
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=
1√
k

∫ L

0

f(u)p̃(x, u, s) du − 1√
ks

∫ x

0

f(u) sinh
√

s

k
(x − u) du

where

p̃(x, u, s) =
sinh

√
s
kx sinh

√
s
k (L − u)

√
s sinh

√
s
kL

.

The second integral in Ũ(x, s) has a removable singularity at s = 0, and therefore
this term may be ignored in taking inverse transforms by residues. The function
p̃(x, u, s) has singularities when

√
s/kL = nπi, or, s = −n2π2k/L2. Since

p̃(x, u, s) =

[√
sx√
k

+ 1
6

(√
sx√
k

)3

+ · · ·
] [√

s(L−u)√
k

+ 1
6

(√
s(L−u)√

k

)3

+ · · ·
]

√
s

[√
sL√
k

+ 1
6

(√
sL√
k

)3

+ · · ·
] =

x(L − u)
L
√

k
+ · · · ,

it follows that p̃(x, u, s) has a removable singularity at s = 0. The singularities
s = −n2π2k/L2 are poles of order one, and residues of estp̃(x, u, s) at these poles
are

lim
s→−n2π2k/L2

(
s +

n2π2k

L2

)
est

sinh
√

s
k x sinh

√
s
k (L − u)

√
s sinh

√
s
kL

=
e−n2π2kt/L2

nπ
√

ki/L
sinh

nπxi

L
sinh

nπi(L − u)
L

lim
s→−n2π2k/L2

1
L

2
√

ks
cosh

√
s
k
L

=
−2
nπi

e−n2π2kt/L2
sin

nπx

L
sin

nπ(L − u)
L

1
L

nπ
√

ki
coshnπi

=
−2

√
k

L
e−n2π2kt/L2

sin
nπx

L
(−1)n+1 sin

nπu

L

1
(−1)n

=
2
√

k

L
e−n2π2kt/L2

sin
nπx

L
sin

nπu

L
.

Residues of est times the first integral in Ũ(x, s) can now be calculated by inter-
changing limits and integration in

lim
s→−n2π2k

L2

(
s +

n2π2k

L2

)
est

√
k

∫ L

0

f(u)p̃(x, u, s) du

to obtain

1√
k

∫ L

0

[
lim

s→−n2π2k
L2

(
s +

n2π2k

L2

)
estf(u)p̃(x, u, s)

]
du

=
1√
k

∫ L

0

f(u)

[
lim

s→−n2π2k
L2

(
s +

n2π2k

L2

)
estp̃(x, u, s)

]
du

=
1√
k

∫ L

0

f(u)

[
2
√

k

L
e−n2π2kt/L2

sin
nπx

L
sin

nπu

L

]
du

=
2
L

e−n2π2kt/L2

[∫ L

0

f(u) sin
nπu

L
du

]
sin

nπx

L
.
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The inverse transform of Ũ (x, s) is therefore

U(x, t) =
2
L

∞∑

n=1

[∫ L

0

f(u) sin
nπu

L
du

]
e−n2π2kt/L2

sin
nπx

L
.•

Readers who are familiar with the method of separation of variables for solving PDEs
will attest to the fact that separation of variables is more efficient than Laplace
transforms in obtaining the above solution. Similar complications arise when non-
homogeneities involve arbitrary functions. In general, Laplace transforms are less
appealing as an alternative to separation of variables when nonhomogeneities and
initial conditions contain unspecified functions. As a result exercises on bounded in-
tervals will be confined to problems containing specific nonhomogeneities and initial
conditions.

EXERCISES 8.5

In these exercises use Laplace transforms to solve the initial, boundary-value problem.

1. A very long cylindrical rod is placed along the positive x-axis with one end at x = 0. Its curved
sides are perfectly insulated so that no heat can enter or escape therethrough. At time t = 0,
the temperature of the rod is 0◦ C throughout. For t > 0, heat is added at a constant rate to
the left end. The initial, boundary-value problem for temperature U(x, t) in the rod is

∂U

∂t
= k

∂2U

∂x2
, x > 0, t > 0,

Ux(0, t) = C, t > 0,

U(x, 0) = 0, x > 0,

where k > 0 and C < 0 are constants.

2. A very long cylindrical rod is placed along the positive x-axis with one end at x = 0. Its curved
sides are perfectly insulated so that no heat can enter or escape therethrough. At time t = 0,
the temperature of the rod is a constant U throughout. For t > 0, the left end has temperature
U0. The initial, boundary-value problem for temperature U(x, t) in the rod is

∂U

∂t
= k

∂2U

∂x2
, x > 0, t > 0,

U(0, t) = U0, t > 0,

U(x, 0) = U, x > 0,

where k > 0 is a constant.

3. Use convolutions to express the solution to Exercise 1 in integral form when the boundary
condition at x = 0 is Ux(0, t) = f(t), t > 0.

4. Use convolutions to express the solution to Exercise 2 in integral form when the boundary
condition at x = 0 is U(0, t) = f(t), t > 0.

5. A very long string lies motionless along the positive x-axis. If the left end (x = 0) is subjected
to vertical motion described by f(t) for t > 0, subsequent displacements y(x, t) of the string are
described by the initial, boundary-value problem
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∂2y

∂t2
= c2 ∂2y

∂x2
, x > 0, t > 0,

y(0, t) = f(t), t > 0,

y(x, 0) = 0, x > 0,

yt(x, 0) = 0, x > 0,

where c > 0 is a constant.

6. A very long string lies motionless along the positive x-axis. At time t = 0, the support is
removed and gravity is permitted to act on the string. If the left end (x = 0) is subjected to
periodic vertical motion described by sin ωt for t > 0, subsequent displacements y(x, t) of the
string are described by the initial, boundary-value problem

∂2y

∂t2
= c2 ∂2y

∂x2
− g, x > 0, t > 0,

y(0, t) = sinωt, t > 0,

y(x, 0) = 0, x > 0,

yt(x, 0) = 0, x > 0,

where g = 9.81 and c > 0 is a constant.

7. A cylindrical rod of length L has its ends at x = 0 and x = L on the x-axis. Its curved sides
are perfectly insulated so that no heat can enter or escape therethrough. At time t = 0, the
temperature of the rod is given by f(x) = sin (mπx/L), 0 ≤ x ≤ L, where m > 0 is an integer.
For t > 0, both ends of the rod are held at temperature 0◦ C. The initial, boundary-value
problem for temperature U(x, t) in the rod is

∂U

∂t
= k

∂2U

∂x2
, 0 < x < L, t > 0,

U(0, t) = 0, t > 0,

U(L, t) = 0, t > 0,

U(x, 0) = sin
mπx

L
, 0 < x < L,

where k > 0 is a constant.

8. A cylindrical rod of length L has its ends at x = 0 and x = L on the x-axis. Its curved sides
are perfectly insulated so that no heat can enter or escape therethrough. At time t = 0, the
temperature of the rod is given by f(x) = x, 0 ≤ x ≤ L. For t > 0, both ends of the rod are
insulated. The initial, boundary-value problem for temperature U(x, t) in the rod is

∂U

∂t
= k

∂2U

∂x2
, 0 < x < L, t > 0,

Ux(0, t) = 0, t > 0,

Ux(L, t) = 0, t > 0,

U(x, 0) = x, 0 < x < L,

where k > 0 is a constant.
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9. A cylindrical rod of length L has its ends at x = 0 and x = L on the x-axis. Its curved sides
are perfectly insulated so that no heat can enter or escape therethrough. At time t = 0, the
temperature of the rod is 0◦ C throughout. For t > 0, its left end (x = 0) is kept at 0◦ C,
and its right end (x = L) is kept at a constant UL

◦ C. The initial, boundary-value problem for
temperature U(x, t) in the rod is

∂U

∂t
= k

∂2U

∂x2
, 0 < x < L, t > 0,

U(0, t) = 0, t > 0,

U(L, t) = UL, t > 0,

U(x, 0) = 0, 0 < x < L,

where k > 0 is a constant.

10. A cylindrical rod of length L has its ends at x = 0 and x = L on the x-axis. Its curved sides
are perfectly insulated so that no heat can enter or escape therethrough. At time t = 0, the
temperature of the rod is a constant U0

◦ C. For t > 0, its end x = 0 is insulated, heat is added
to the end x = L at a constant rate. The initial, boundary-value problem for temperature
U(x, t) in the rod is

∂U

∂t
= k

∂2U

∂x2
, 0 < x < L, t > 0,

Ux(0, t) = 0, t > 0,

Ux(L, t) = C, t > 0,

U(x, 0) = U0, 0 < x < L,

where k > 0 and C > 0 are constants.

11. A cylindrical rod of length L has its ends at x = 0 and x = L on the x-axis. Its curved sides
are perfectly insulated so that no heat can enter or escape therethrough. At time t = 0, the
temperature of the rod is a constant 100◦ C. For t > 0, its end x = 0 is kept at temperature 0◦,
and end x = L has temperature 100e−t. The initial, boundary-value problem for temperature
U(x, t) in the rod is

∂U

∂t
= k

∂2U

∂x2
, 0 < x < L, t > 0,

U(0, t) = 0, t > 0,

U(L, t) = 100e−t, t > 0,

U(x, 0) = 100, 0 < x < L,

where k > 0 is a constant. Assume that k 6= L2/(n2π2) for any integer n.

12. A cylindrical rod of length L has its ends at x = 0 and x = L on the x-axis. Its curved sides
are perfectly insulated so that no heat can enter or escape therethrough. At time t = 0, the
temperature of the rod is 0◦ C, and for t > 0 the ends of the rod continue to be held at 0◦ C.
When heat generation at each point of the rod is described by the function e−αt, where α is a
positive constant, the initial, boundary-value problem for temperature U(x, t) in the rod is

∂U

∂t
= k

∂2U

∂x2
+ e−αt, 0 < x < L, t > 0,

U(0, t) = 0, t > 0,

U(L, t) = 0, t > 0,

U(x, 0) = 0, 0 < x < L,
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where k > 0 is a constant. Assume that α 6= n2π2/L2 for any integer n.

13. A taut string has its ends fixed at x = 0 and x = L on the x-axis. If it is given an initial
displacement at time t = 0 of f(x) = kx(L − x), where k > 0 is a constant, and no initial
velocity, the initial boundary-value problem for displacements y(x, t) of points in the string is

∂2y

∂t2
= c2 ∂2y

∂x2
, 0 < x < L, t > 0,

y(0, t) = 0, t > 0,

y(L, t) = 0, t > 0,

y(x, 0) = f(x), 0 < x < L,

yt(x, 0) = 0, x > 0,

where c > 0 is a constant.

14. Repeat Exercise 13 if the initial displacement is zero and f(x) is the initial velocity of the string.

15. A taut string initially at rest along the x-axis has its ends fixed at x = 0 and x = L on the
x-axis. If gravity is taken into account, the initial boundary-value problem for displacements
y(x, t) of points in the string is

∂2y

∂t2
= c2 ∂2y

∂x2
− g, 0 < x < L, t > 0,

y(0, t) = 0, t > 0,

y(L, t) = 0, t > 0,

y(x, 0) = 0, 0 < x < L,

yt(x, 0) = 0, 0 < x < L,

where g = 9.81.

16. A taut string initially at rest along the x-axis has its ends at x = 0 and x = L fixed on the axis.
For t ≥ 0, it is subjected to a force per unit x-length F = F0 sinωt, where F0 is a constant, as
is ω 6= nπ/L for any positive integer n. The initial boundary-value problem for displacements
y(x, t) of points in the string is

∂2y

∂t2
= c2 ∂2y

∂x2
+

F0

ρ
sinωt, 0 < x < L, t > 0,

y(0, t) = 0, t > 0,

y(L, t) = 0, t > 0,

y(x, 0) = 0, 0 < x < L,

yt(x, 0) = 0, 0 < x < L,

where c > 0 and ρ > 0 are constants.

17. A cylindrical rod of length L has its ends at x = 0 and x = L on the x-axis. Its curved sides
are perfectly insulated so that no heat can enter or escape therethrough. At time t = 0, the
temperature of the rod is 0◦ C, and for t > 0, the ends x = 0 and x = L of the rod are held at
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temperature 100◦ C and 0◦ C respectively. The initial boundary-value problem for temperature
U(x, t) in the rod is

∂U

∂t
= k

∂2U

∂x2
, 0 < x < L, t > 0,

U(0, t) = 100, t > 0,

U(L, t) = 0, t > 0,

U(x, 0) = 0, 0 < x < L,

where k > 0 is a constant. Find two solutions, one in terms of error functions, and the other in
terms of time exponentials.

18. A cylindrical rod of length L has its ends at x = 0 and x = L on the x-axis. Its curved
sides are perfectly insulated so that no heat can enter or escape therethrough. At time t = 0,
the temperature of the rod is 0◦ C, and for t > 0, its left end x = 0 continues to be kept at
temperature 0◦ C. If heat is added to the end x = L at a constant rate, the initial boundary-value
problem for temperature U(x, t) in the rod is

∂U

∂t
= k

∂2U

∂x2
, 0 < x < L, t > 0,

U(0, t) = 0, t > 0,

Ux(L, t) = C, t > 0,

U(x, 0) = 0, 0 < x < L,

where k > 0 and C > 0 are constants. Find two solutions, one in terms of error functions, and
the other in terms of time exponentials.


