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CHAPTER 16 LAPLACE TRANSFORMS

The Laplace transform is one of many so-called integral transforms in applied mathematics.
Through an improper integral, the Laplace transform creates an association between a class
of functions denoted by f(t) and a class of functions denoted by F (s). The advantage of
this association as far as our discussions are concerned is that solving a differential equation
for f(t) is replaced by solving an algebraic equation for F (s). The fact that the Laplace
transform is a linear operator (in the sense of equation 15.5) makes it particularly useful
for solving the linear differential equations encountered in Chapter 15. Furthermore, you
will recall that in Chapter 15 we assumed continuity of nonhomogeneous terms in linear
differential equations. This was a matter of convenience rather than necessity. In Exercises
26 and 27 of Section 15.9, we hinted at the awkwardness of incorporating discontinuities
into the techniques of Chapter 15. We shall give other examples of discontinuous nonho-
mogeneities in this chapter, and show how easily they are handled by Laplace transforms.
This is perhaps the biggest advantage of Laplace transforms over the methods of Chapter
15. Discontinuous forcing functions in vibrating mass-spring systems and driving voltages
in RCL-circuits are easily handled by Laplace transforms.

§16.1 The Laplace Transform and its Inverse

Definition 16.1 When f is a function of t, its Laplace transform denoted by F = L{f} is a function with
values defined by

F (s) =
∫ ∞

0

e−stf(t) dt, (16.1)

provided the improper integral converges.

For our purposes, s is a real variable, in which case F is a real-valued function of a
real variable s. The reader should be aware, however, that in advanced applications of
Laplace transforms, especially for solving partial differential equations and in digital signal
processing, it is necessary to take s as a complex number, in which case F is a complex-valued
function of a complex variable.

We should determine properties of a function that guarantee existence of its Laplace
transform. The following three examples point us in the correct direction.

Example 16.1 Find the Laplace transform of f(t) = eat where a is a constant.

Solution According to equation 16.1, the Laplace transform is defined by

F (s) =
∫ ∞

0

e−steat dt =
∫ ∞

0

e(a−s)t dt =
{

1
a − s

e(a−s)t

}∞

0

=
1

a − s

[
lim

t→∞
e(a−s)t − 1

]
.

This limit exists, and has value 0, only when s > a. Hence, the Laplace transform of
f(t) = eat is 1/(s− a), but only for s > a. We therefore write that

F (s) =
1

s − a
, s > a.•

Example 16.2 Find the Laplace transform of f(t) = t.

Solution According to equation 16.1, the Laplace transform is defined by

F (s) =
∫ ∞

0

t e−st dt.

Integration by parts leads to
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F (s) =
{
− t

s
e−st − 1

s2
e−st

}∞

0

= lim
t→∞

(
− t

s
e−st − 1

s2
e−st

)
+

1
s2

.

This limit exists, and has value 0, only when s > 0. In other words, the Laplace transform
of f(t) = t is F (s) = 1/s2, but the function is only defined for s > 0.•

Example 16.3 Find the Laplace transform of the discontinuous function f(t) =
{

2t2, 0 ≤ t ≤ 1
1, t > 1

.

Solution According to equation 16.1, the Laplace transform is defined by

F (s) =
∫ ∞

0

e−stf(t) dt =
∫ 1

0

2t2e−st dt +
∫ ∞

1

e−st dt.

Two integrations by parts on the first integral lead to

F (s) = 2
{(

− t2

s
− 2t

s2
− 2

s3

)
e−st

}1

0

+
{
−e−st

s

}∞

1

= −
(

1
s

+
4
s2

+
4
s3

)
e−s +

4
s3

,

provided s > 0 •

What have we learned from Definition 16.1 and these three examples? First, when
the function f(t) is discontinuous, it is necessary to subdivide the interval 0 < t < ∞ into
subintervals in which f(t) is continuous. To avoid an infinite number of such subintervals,
we could demand that f(t) have a finite number of discontinuities. It turns out that this
is not entirely necessary, although it is often the case. Instead, we demand that f(t) have
a finite number of discontinuities on every interval 0 ≤ t ≤ T of finite length. In addition,
to guarantee existence of the integral of e−stf(t) on each finite subinterval, we demand
that right- and left-hand limits of f(t) exist at every discontinuity. When a function has
a finite number of discontinuities on an interval and right- and left-hand limits exist at all
discontinuities in the interval, the function is said to be piecewise-continuous on that
interval. We shall assume therefore that f(t) is piecewise continuous on every interval
0 ≤ t ≤ T of finite length.

The second thing that we saw in Examples 16.1–16.3 is that there is always a restriction
on values of s. The function F (s) is not defined for all s; it is defined only for s larger than
some number (a in Example 16.1 and 0 in Examples 16.2 and 16.3). This is a direct result
of the fact that for improper integral 16.1 to converge, the integrand must approach 0 as
t → ∞, and must do so sufficiently quickly. This means that f(t) must not increase so
rapidly that it cannot be suppressed by e−st for some value of s. A sufficient restriction on
the growth of f(t) for large t is contained in the following definition.

Definition 16.2 A function f(t) is said to be of exponential order α, written O(eαt), if there exist constants
T and M such that |f(t)| < Meαt for all t > T .

What this says algebraically is that for sufficiently large t (t > T ), |f(t)| must grow no
faster than a constant M times eαt. Geometrically, the graph of |f(t)| must be below that
of Meαt for t > T . It is important to realize that the exponential order of a function f(t),
if it has one, is concerned with function behaviour for very large t, not for small t. The
absolute value |f(t)| must eventually be less than Meαt, and stay less, but it need not be
so for all t. For example, an exponential function eαt is O(eαt) since M can be chosen as
2. Constant functions are of exponential order zero. The trigonometric functions sinat and
cosat are O(e0t) since both are less than 2 = 2e0t for all t. The exponential order of tn is
discussed in the following example.
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Example 16.4 Show that the function tn, where n is a positive integer, is O(eεt) for arbitrarily small,
positive ε.

Solution Consider the function
f(t) = tne−εt for arbitrary ε > 0.
To draw its graph we first calculate that
f ′(t) = ntn−1e−εt − εtne−εt = tn−1e−εt(n − εt).
There is a relative maximum at t = n/ε and
when this is combined with the fact that
limt→∞ tne−εt = 0, the graph in Figure 16.1
results. It shows that the function tne−εt is n/

nn e n-

te

e( )/

bounded by M = (n/ε)ne−n for all t ≥ 0. In Figure 16.1
other words, tne−εt < 2M for all t > 0;
that is, tn < 2Meεt for t > 0, and tn is O(eεt).

We now show that piecewise-continuous functions of exponential order always have
Laplace transforms.

Theorem 16.1 If f(t) is piecewise-continuous on every finite interval 0 ≤ t ≤ T , and is of exponential order
α, then its Laplace transform exists for s > α.

Proof The improper integral in equation 16.1 can be divided into integrals over the
intervals 0 ≤ t ≤ T and T ≤ t ≤ ∞, for any T ,

F (s) =
∫ ∞

0

e−stf(t) dt =
∫ T

0

e−stf(t) dt +
∫ ∞

T

e−stf(t) dt.

Since f(t) is piecewise-continuous on 0 ≤ t ≤ T , there is no question that the first of these
integrals exists. Furthermore, since f(t) is O(eαt), there exist constants M and T such that
|f(t)| < Meαt for t > T . Hence,

∣∣∣∣
∫ ∞

T

e−stf(t) dt

∣∣∣∣ ≤
∫ ∞

T

e−st|f(t)| dt <

∫ ∞

T

Me−steαt dt =
∫ ∞

T

Me(α−s)t dt

=
{

M

α − s
e(α−s)t

}∞

T

=
M

s − α
e(α−s)T ,

provided s > α. In other words, the improper integral over the interval T ≤ t ≤ ∞ converges
when s > α. Thus, the Laplace transform of f(t) is defined for s > α.

Theorem 16.1 provides sufficient conditions for existence of Laplace transforms. Func-
tions that are not piecewise continuous or not of exponential order may or may not have
transforms. For example, the function f(t) = 1/

√
t is not piecewise continuous due to the

infinite discontinuity at t = 0. It does, however, have a Laplace transform (see Exercise 26).

In calculating Laplace transforms of known functions by means of Definition 16.1, it
is not necessary to determine whether the function is of exponential order prior to use of
the integral; evaluation of the integral will yield the interval on which the transform is
defined. When using techniques other than the defining integral to find Laplace transforms,
however, it may be necessary to know that the function is of exponential order and piecewise-
continuous on every finite interval. We shall develop other techniques in the next section.
In this section we concentrate on the integral definition for Laplace transforms.

Example 16.5 Find the Laplace transform for f(t) = tn, where n is a positive integer.

Solution Integration by parts gives

F (s) =
∫ ∞

0

tne−st dt =
{

tne−st

−s

}∞

0

−
∫ ∞

0

−n

s
tn−1e−st dt =

n

s

∫ ∞

0

tn−1e−st dt,
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provided s > 0. A second integration by parts yields

F (s) =
n

s

∫ ∞

0

tn−1e−st dt =
n

s

{
tn−1e−st

−s

}∞

0

− n

s

∫ ∞

0

−n − 1
s

tn−2e−st dt

=
n(n − 1)

s2

∫ ∞

0

tn−2e−st dt.

Further intergations by parts lead to

F (s) =
n(n − 1)(n − 2) · · · (1)

sn

∫ ∞

0

e−st dt =
n!
sn

{
e−st

−s

}∞

0

=
n!

sn+1
,

provided again that s > 0. This is consistent with Theorem 16.1 and Example 16.4. Accord-
ing to Example 16.4, tn is O(eεt) for arbitrarily small, positive ε, and therefore its Laplace
transform should exist for s > ε for arbitrarily small ε > 0. This is tantamount to s > 0.•

Example 16.6 Find the Laplace transform for f(t) = sin at, where a is a nonzero constant.

Solution According to equation 16.1,

F (s) =
∫ ∞

0

e−st sin at dt.

Integration by parts with u = sinat, du = a cosat dt, dv = e−st dt, and v = −(1/s)e−st,
gives

F (s) =
{
−

1
s
e−st sin at

}∞

0

−
∫ ∞

0

−
1
s
e−sta cosat dt =

a

s

∫ ∞

0

e−st cosat dt,

provided s > 0. A second integration by parts with u = cosat, du = −a sinat dt, dv =
e−st dt, and v = −(1/s)e−st, yields

F (s) =
a

s

{
−1

s
e−st cosat

}∞

0

− a

s

∫ ∞

0

−1
s
e−st(−a sin at) dt =

a

s2
− a2

s2

∫ ∞

0

e−st sin at dt,

provided once again that s > 0. We can therefore write that

F (s) =
a

s2
−

a2

s2
F (s),

and when this equation is solved for F (s), the result is F (s) = a/(s2 + a2). An alternative
derivation using complex exponentials is suggested in Exercise 25.•

The following table contains Laplace transforms of functions that occur very frequently
in differential equations. They can be verified with equation 16.1.

f(t) F (s) f(t) F (s)

tn
n!

sn+1
eat 1

s − a

sin at
a

s2 + a2
cosat

s

s2 + a2

Table 16.1



SECTION 16.1 1125

The Inverse Laplace Transform

Definition 16.3 When F is the Laplace transform of f , we call f the inverse Laplace transform of F , and
write

f = L−1{F}. (16.2)

For instance, Table 16.1 yields L−1{1/(s + 2)} = e−2t and L−1{s/(s2 + 3)} = cos
√

3t.
The Laplace transform F (s) of a function f(t) is unique, every function has exactly one
Laplace transform. On the other hand, many functions have the same transform. For
example, the functions

f(t) = t2 and g(t) =

{ 0, t = 1
t2, t 6= 1, 2
0, t = 2

,

which are identical except for their values at t = 1 and t = 2 both have the same transform
2/s3. The fact that F (s) = 2/s3 follows from Table 16.1; G(s) = 2/s3 follows from inte-
gration. What we are saying is that the inverse transform f = L−1{F} in Definition 16.3
is not an inverse in the true sense of inverse; there are many possibilities for f for given F .
In advanced work, a formula for calculating inverse transforms is derived, and this formula
always yields a continuous function f(t), when this is possible. In the event that this is
not possible, the formula gives a piecewise-continuous function whose value is the average
of right- and left-limits at discontinuities, namely limε→0 [f(t + ε) + f(t − ε)]/2. The im-
portance of this formula is that it defines f = L−1{F} in a unique way. Other functions
which have the same transform F differ from f only in their values at isolated points; they
cannot differ from f over an entire interval a ≤ t ≤ b. When f is a continuous function
with transform F , there cannot be another continuous function with the same transform.
We adopt the procedure of always choosing a continuous function L−1{F} for given F , or
when this is not possible, a piecewise-continuous function.

According to the following theorem, the Laplace transform is a linear operator in the
sense of equation 15.5; this is a direct result of the fact that integration is a linear operation.

Theorem 16.2 The Laplace transform and its inverse are linear operators; that is, for arbitrary functions
f and g with transforms F and G, and an arbitrary constant c,

L{f + g} = L{f} + L{g}, L{c f} = c [L{f}], (16.3a)
L−1{F + G} = L−1{F}+ L−1{G}, L−1{c F} = c [L−1{F}]. (16.3b)

For instance, using linearity and Table 16.1,

L{2e−t + 3 sin 4t} = 2L{e−t} + 3L{sin 4t} =
2

s + 1
+ 3

(
4

s2 + 16

)
,

and

L−1

{
2
s4

− 4s

s2 + 5

}
= 2L−1

{
1
s4

}
− 4L−1

{
s

s2 + 5

}
= 2

(
t3

6

)
− 4 cos

√
5t.

EXERCISES 16.1

In Exercises 1–6 use linearity and Table 16.1 to find the Laplace transform of the function.
1. f(t) = t3 − 2t2 + 1 2. f(t) = t + et

3. f(t) = e4t 4. f(t) = e−2t + 2et

5. f(t) = sin 4t + 3 cos4t 6. f(t) = cos 2t − 3 sin 4t
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In Exercises 7–12 use linearity and Table 16.1 to find the inverse Laplace transform of the function.

7. F (s) =
1
s3

8. F (s) =
2
s
− 3

s4

9. F (s) =
1

s + 5
+

4
s2

10. F (s) =
3

s − 1

11. F (s) =
s

s2 + 4
− 3

s2 + 4
12. F (s) =

2s

s2 + 2
− 5

s2 + 9
In Exercises 13–24 use Definition 16.1 to find the Laplace transform of the function. Treat a and b as constants.

13. f(t) =
{

0, 0 < t < 3
1, t > 3 14. f(t) =

{
1, 0 < t < 4
2, t > 4

15. f(t) =
{

t, 0 < t < 2
2, t > 2 16. f(t) =

{
t2, 0 < t < 1
0, t > 1

17. f(t) =
{

0, 0 < t < 1
t2, t > 1 18. f(t) =

{
0, 0 < t < 1
(t − 1)2, t > 1

19. f(t) =

{ 0, 0 < t < 1
1, 1 < t < 2
0, t > 2

20. f(t) =

{ t, 0 < t < 1
2 − t, 1 < t < 2
0, t > 2

21. f(t) =
{

2t, 0 < t < 1
t, t > 1 22. f(t) =

{
1 + t2, 0 < t < 1
2t, t > 1

23. f(t) =
{

0, 0 < t < a
1, t > a

24. f(t) =

{ 0, 0 < t < a
1, a < t < b
0, t > b

25. Use the expressions sin θ = (eiθ − e−iθ)/(2i) and cos θ = (eiθ + e−iθ)/2 and Example 16.1 to find Laplace
transforms for sin at and cosat.

26. Show that the Laplace transform of 1/
√

t is
√

π/s. Hint: Set u =
√

t in the definition of the Laplace
transform of 1/

√
t in terms of a definite integral and use the fact that

∫∞
0

e−u2
du =

√
π/2.

27. Are bounded functions (functions that satisfy |f(t)| < M for all t > 0) of exponential order?

ANSWERS

1. (s3 − 4s + 6)/s4 2. (s2 + s − 1)/(s3 − s2) 3. 1/(s − 4) 4. (3s + 3)/(s2 + s − 2)
5. (3s + 4)/(s2 + 16) 6. (s3 − 12s2 + 16s − 48)/(s4 + 20s2 + 64) 7. t2/2 8. 2 − t3/2
9. 4t + e−5t 10. 3et 11. cos 2t − (3/2) sin 2t 12. 2 cos

√
2t − (5/3) sin 3t

13. (1/s)e−3s 14. (1 + e−4s)/s 15. (1 − e−2s)/s2

16. 2/s3 − e−s(2 + 2s + s2)/s3 17. e−s(s2 + 2s + 2)/s3 18. (2/s3)e−s 19. (e−s − e−2s)/s
20. (1 − 2e−s + e−2s)/s2 21. 2/s2 − e−s(s + 1)/s2 22. 1/s + 2(1− e−s)/s3 23. (1/s)e−as

24. (e−as − e−bs)/s 27. Yes



SECTION 16.2 1127

16.2 Algebraic Properties of The Laplace Transform and its Inverse

Seldom is it necessary to evaluate the improper integral in Definition 16.1 to find the Laplace
transform for a function; other techniques prove more efficient. Keep in mind that our in-
tention is to use Laplace transforms to provide another method for solving linear differential
equations. With this in mind, note how each of the algebraic properties of the Laplace
transform uncovered in this section is directed toward the functions so prevalent in solving
linear differential equations, namely, tn, eat, sin at, cosat, and sums and products of these
functions. In Section 16.3, we derive formulas for taking Laplace transforms of derivatives
of functions and use these formulas to solve differential equations.

One of two shifting properties is contained in the following theorem.

Theorem 16.3 When F is the Laplace transform of f :

L{eatf(t)} = F (s − a), (16.4a)
L−1{F (s − a)} = eatf(t). (16.4b)

Proof By Definition 16.1,

L{eatf(t)} =
∫ ∞

0

eate−stf(t) dt =
∫ ∞

0

e−(s−a)tf(t) dt.

But this is equation 16.1 with s replaced by s − a; that is,

L{eatf(t)} = F (s − a).

Equation 16.4b is 16.4a written in terms of inverse transforms rather than transforms.

The notation in equation 16.4 is not quite as described earlier. The Laplace transform
and its inverse operate on functions, not on function values as is suggested by 16.4. These
equations would be more properly stated in the form

L{eatf}(s) = F (s − a), (16.4c)
L−1{F (s − a)}(t) = eatf(t). (16.4d)

We feel that the shifting property is more clearly conveyed for most readers by 16.4a,b, and
we apologize to readers who are offended by the notation. It is convenient to repeat this
practice in describing other properties of the Laplace transform, but we shall attempt to
minimize its use.

Theorem 16.3 states that multiplication by an exponential eat in the t-domain is equiva-
lent to a translation or shift by a in the s-domain. It provides a quick way to find the Laplace
transform of any function multiplied by an exponential, provided the Laplace transform of
the function is known. For example, since L{cos 2t} = s/(s2 + 4), 16.4a implies that

L{e3t cos 2t} =
s − 3

(s − 3)2 + 4
.

Example 16.7 Find the Laplace transform for f(t) = t2e−5t.

Solution Since L{t2} = 2/s3, property 16.4a gives L{t2e−5t} =
2

(s + 5)3
.•

Example 16.8 Find the inverse Laplace transform for F (s) = 1/(s2 − 6s + 14).

Solution First, by completing the square on the quadratic, we can express F (s) in the
form

F (s) =
1

(s − 3)2 + 5
.
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We can now use property 16.4b to find the inverse transform of f(t),

f(t) = e3tL−1

{
1

s2 + 5

}
= e3t 1√

5
sin

√
5t.•

The second shifting property of the Laplace transform involves shifts in the t-domain
rather than the s-domain. Such shifts are conveniently described by Heaviside’s unit step
functions (see Section 2.4). The fundamental unit step function is defined by

h(t) =
{

0, t < 0
1, t > 0

. (16.5)

Its graph is shown in Figure 16.2; there is a discontinuity of magnitude unity at t = 0.

t

1

t

1

a

Figure 16.2 Figure 16.3

When the discontinuity occurs at t = a, the function is denoted by

h(t − a) =
{

0, t < a

1, t > a
. (16.6)

Its graph is shown in Figure 16.3.
Heaviside unit step functions provide compact descriptions to functions with disconti-

nuities. One of the most important is shown in Figure 16.4. It is called a pulse function. It
can be expressed algebraically in the form h(t − a) − h(t − b). In the event that the height
of the nonzero portion is c rather than unity (Figure 16.5), we obtain c[h(t− a)− h(t− b)].

ta b

1

ta b

c

Figure 16.4 Figure 16.5

Pulse functions can be combined algebraically to produce step functions. The function
in Figure 16.6 is the sum of two pulse functions,

4[h(t) − h(t − 3)] + 2[h(t − 3) − h(t − 6)] = 4h(t) − 2h(t − 3) − 2h(t − 6).

The function in Figure 16.7 is the sum of three pulses,

3[h(t − a) − h(t − b)] + 4[h(t − b) − h(t − c)] + h(t − c)
= 3h(t − a) + h(t − b) − 3h(t − c).
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t

4

2

3 6 t

4

2

a b c

Figure 16.6 Figure 16.7

A convenient representation for the function in Figure 16.8 is t2[h(t) − h(t − a)], and
for the function in Figure 16.9, [2 − (t − a)/(b − a)][h(t − a) − h(t − b)].

t

a

a

2

Parabola

t

2

a b

1

Figure 16.8 Figure 16.9

What these examples illustrate is that to “turn a function on” over the interval a < t <
b, multiply it by h(t − a) − h(t − b). It will be zero for t < a and t > b. To turn a function
on for t > a, multiply it by h(t−a). The parabola in Figure 16.10 has equation a2 +(t−a)2

for t > a. To turn it on, we multiply by h(t − a); that is, the function can be expressed in
the form [a2 + (t − a)2]h(t − a). For the function in Figure 16.11, we turn on the straight
line y = a − a(t − a)/(b − a) for a < t < b, and then the horizontal line y = c for t > b,

[a − a(t − a)/(b − a)][h(t − a) − h(t − b)] + c h(t − b).

t

a

a

2

a22

2a ta b

a

c

Figure 16.10 Figure 16.11

The Laplace transform of the Heaviside unit step function is

L{h(t − a)} =
∫ ∞

0

e−sth(t − a) dt =
∫ ∞

a

e−st dt =
{

e−st

−s

}∞

a

=
e−as

s
, (16.7)

provided s > 0. To find the Laplace transform of a function that is the product of a Heaviside
function and another function we use the following theorem.

Theorem 16.4 When f(t) has a Laplace transform,

L{f(t)h(t − a)} = e−asL{f(t + a)}. (16.8a)

Proof If the graph of f(t) is as shown in Figure 16.12a, the graph of f(t)h(t−a) is shown
in Figure 16.12b. It is that of f(t) turned on for t > a. According to Definition 16.1,
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L{f(t)h(t − a)} =
∫ ∞

0

e−stf(t)h(t − a) dt =
∫ ∞

a

e−stf(t) dt.

If we change variables of integration with u = t − a, then

L{f(t)h(t − a)} =
∫ ∞

0

e−s(u+a)f(u + a) du

= e−as

∫ ∞

0

e−suf(u + a) du = e−asL{f(t + a)}.

t ta

Figure 16.12a Figure 16.12b

In Section 16.1 we used integration to find the Laplace transform of discontinuous
functions. Property 16.8a provides a convenient alternative, provided the discontinuous
function can be expressed in terms of Heaviside functions. We illustrate in the following
examples.

Example 16.9 Find the Laplace transform for the function f(t) =
{

0, 0 ≤ t ≤ 2
(t − 2)2, t > 2

, shown in Figure

16.13.

Solution Since f(t) can be expressed in the form f(t) = (t − 2)2h(t − 2), except for its
value at t = 2, equation 16.8a gives

F (s) = L{(t − 2)2h(t − 2)} = e−2sL{t2} =
2e−2s

s3
.•

t

1

2 3

t
-1

2 3

Figure 16.13 Figure 16.14

Example 16.10 Find the Laplace transform for the function f(t) =
{

0, 0 ≤ t < 2
t − 3, t > 2

, shown in Figure

16.14.

Solution Since f(t) can be expressed in the form f(t) = (t − 3)h(t − 2), its Laplace
transform is

F (s) = L{(t − 3)h(t − 2)} = e−2sL{t − 1} = e−2s

(
1
s2

− 1
s

)
.•
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Example 16.11 Find the Laplace transform for the function in Figure 16.15.

Solution The function is continuous, but because it is defined differently on the intervals
0 ≤ t ≤ 1, 1 < t ≤ 2, and t > 2, it can be represented most efficiently in terms of Heaviside
functions (except for its values at t = 1 and t = 2),

f(t) = 3(t − 1)[h(t − 1) − h(t − 2)] + 3h(t − 2)
= 3(t − 1) h(t − 1) + (6 − 3t) h(t − 2).

We can now use equation 16.8a to find its Laplace transform,

F (s) = e−sL{3t}+ e−2sL{6 − 3(t + 2)} =
3e−s

s2
− e−2s

(
3
s2

)
.•

t

3

1 2

Figure 16.15

Example 16.12 Find the Laplace transform for e−3t sin 2t h(t − 1).

Solution Using property 16.8a,

L{e−3t sin 2t h(t − 1)} = e−sL{e−3(t+1) sin 2(t + 1)}
= e−sL{e−3e−3t sin 2(t + 1)}
= e−s−3L{e−3t sin 2(t + 1)}.

Since

L{sin 2(t + 1)} = L{cos 2 sin 2t + sin 2 cos 2t} =
(cos 2)2
s2 + 4

+
(sin 2)s
s2 + 4

,

we can use property 16.4a to write

L{e−3t sin 2(t + 1)} =
(cos 2)2

(s + 3)2 + 4
+

(sin 2)(s + 3)
(s + 3)2 + 4

.

Consequently,

L{e−3t sin 2t h(t − 1)} = e−s−3

[
2 cos 2

(s + 3)2 + 4
+

(sin 2)(s + 3)
(s + 3)2 + 4

]
.•

The equivalent of property 16.8a in terms of inverse transforms is equally as important
as 16.8a itself, and it is from the inverse statement that it gets its name the second shifting
property of Laplace transforms. We state it as a corollary to Theorem 16.4.

Corollary 17.4.1 If f = L−1{F}, then

L−1{e−asF (s)} = f(t − a)h(t − a). (16.8b)

The graph of f(t− a)h(t− a) is that of f(t) (Figure 16.16a) shifted a units to the right
and turned on for t > a (Figure 16.16b).
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t ta

Figure 16.16a Figure 16.16b

Thus, to find the inverse transform of a function in the form e−asF (s), we find the inverse
transform of F (s), translate it a units to the right, and turn it on for t > a. For example,
since L−1{2/s3} = t2, it follows that

L−1

{
2e−4s

s3

}
= (t − 4)2h(t − 4).

A graph of (t − 4)2h(t − 4), except for its value at t = 4, is shown in Figure 16.17.

t
1

4 5 t

1

1 2

Figure 16.17 Figure 16.18

Example 16.13 Find the inverse transform for F (s) =
e−s − e−2s

s
.

Solution Since L−1{1/s} = 1, property 16.8b gives

f(t) = L−1

{
e−s

s

}
−L−1

{
e−2s

s

}
= h(t − 1) − h(t − 2).

This also follows from equation 16.7. The function is shown in Figure 16.18.•

Finding inverse transforms is often a matter of finding the partial fraction decomposition
of a rational function, together with the above properties and a set of tables. We illustrate
in the following example.

Example 16.14 Find inverse Laplace transforms for the following functions:

(a) F (s) =
s2 − 9s + 9
s3(s2 + 9)

(b) F (s) =
e−s

s2 − s
(c) F (s) =

1
s2(s2 − 4)

Solution (a) The partial fraction decomposition of F (s) is

F (s) =
1
s3

− 1
s2

+
1

s2 + 9
.

Table 16.1 therefore gives f(t) =
t2

2
− t +

1
3

sin 3t.

(b) Partial fractions give
1

s(s − 1)
=

1
s − 1

− 1
s
, and therefore
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L−1

{
1

s(s − 1)

}
= et − 1.

Property 16.8b now gives L−1{F (s)} = (et−1 − 1)h(t − 1).

(c) Partial fractions give
1

s2(s2 − 4)
=

1/16
s − 2

− 1/16
s + 2

− 1/4
s2

, and therefore

L−1

{
1

s2(s2 − 4)

}
=

1
16

e2t − 1
16

e−2t − t

4
.•

Periodic Functions

Periodic functions play a fundamental role in many applications of differential equations.
The integration in Definition 16.1 for a function f with period p, can be replaced by an
integral over the interval 0 ≤ t ≤ p,

F (s) =
1

1 − e−ps

∫ p

0

e−stf(t) dt. (16.9)

To verify this, we first write the integral in equation 16.1 as an infinite series of integrals

F (s) =
∫ ∞

0

e−stf(t) dt =
∞∑

n=0

∫ (n+1)p

np

e−stf(t) dt.

If we change variables of integration with u = t − np, then

F (s) =
∞∑

n=0

∫ p

0

e−s(u+np)f(u + np) du =
∞∑

n=0

e−nps

∫ p

0

e−suf(u) du

=
(∫ p

0

e−suf(u) du

)( ∞∑

n=0

e−nps

)
.

Since the series is geometric with common ratio e−ps,

F (s) =
∫ p

0

e−suf(u) du

[
1

1 − e−ps

]
=

1
1 − e−ps

∫ p

0

e−stf(t) dt.

For example, the function in Figure 16.19 has period 2, and therefore

F (s) =
1

1 − e−2s

∫ 2

0

(1 − t)e−st dt.

Integration by parts gives

F (s) =
1

1 − e−2s

{
(t − 1)

s
e−st +

1
s2

e−st

}2

0

=
1 + e−2s

s(1 − e−2s)
− 1

s2
.

We can avoid integration by parts by interpreting the integral over the interval 0 ≤ t ≤ 2
as the Laplace transform of the function in Figure 16.20. Its Laplace transform is

L{(1 − t)[h(t) − h(t − 2)]} = L{(1 − t) h(t)} + L{(t − 1) h(t − 2)}

=
1
s
− 1

s2
+ e−2sL{t + 1}

=
1
s
− 1

s2
+ e−2s

(
1
s2

+
1
s

)
.

Hence,

F (s) =
1

1 − e−2s

[
1
s
− 1

s2
+ e−2s

(
1
s2

+
1
s

)]
=

1 + e−2s

s(1 − e−2s)
− 1

s2
.
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t

1
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-1

t

1

1 2

-1

Figure 16.19 Figure 16.20

Example 16.15 Find the Laplace transform for | sin 2t|.

Solution Since | sin 2t| has period π/2 (see Figure 16.21), formula 16.9 gives

L{| sin 2t|} =
1

1 − e−πs/2

∫ π/2

0

e−st sin 2t dt.

To avoid integrations by parts, we write that

L{| sin 2t|} =
1

1 − e−πs/2
L{sin 2t[h(t) − h(t − π/2)]}

=
1

1 − e−πs/2

[
L{h(t) sin 2t} − L{sin 2t h(t − π/2)}

]

=
1

1 − e−πs/2

[
2

s2 + 4
− e−πs/2L{sin 2(t + π/2)}

]

=
1

1 − e−πs/2

[
2

s2 + 4
+ e−πs/2L{sin 2t}

]

=
1

1 − e−πs/2

[
2

s2 + 4
+

2e−πs/2

s2 + 4

]

=
2(1 + e−πs/2)

(s2 + 4)(1 − e−πs/2)
.•

t

1

pp p
2 2

3

Figure 16.21

There are other algebraic properties of the Laplace transform and its inverse, but the
ones discussed here suffice for our purposes.

EXERCISES 16.2

In Exercises 1–12 represent the functions in Exercises 13–24 of Section 16.1 in terms of Heaviside unit step
functions. Find the Laplace transform of each function.

In Exercises 13–20 represent the function algebraically in terms of Heaviside unit step functions. Find the
Laplace transform of each function.
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13. 14.

t

2

1 t3

2

1

1 2

15. 16.

t

Parabola
4

1

Parabola

t

1

1 2

17. 18.

t

1

-1

p 2p

Sine function

t2p
4p

-1

1
Sine function

19. 20.

t

1

-1

p 4p

t

e t2

1

2 -

ln2

In Exercises 21–26 use property 16.4a to find the Laplace transform for the function.
21. f(t) = t3e−5t 22. f(t) = t2e3t

23. f(t) = 4te−t − 2e−3t 24. f(t) = 5eat − 5e−at

25. f(t) = et sin 2t + e−t cos t 26. f(t) = 2e−3t sin 3t + 4e3t cos 3t

In Exercises 27–36 use property 16.8a to find the Laplace transform of the function.
27. f(t) = (t − 2)2h(t − 2) 28. f(t) = sin 3(t − 4)h(t − 4)

29. f(t) = t h(t − 1) 30. f(t) = (t + 5) h(t − 3)

31. f(t) = (t2 + 2) h(t − 1) 32. f(t) = cos t h(t − π)
33. f(t) = cos t h(t − 2) 34. f(t) = eth(t − 4)

35. f(t) = t2et h(t − 3) 36. f(t) = et cos 2t h(t − 1)

In Exercises 37–41 find the Laplace transform of the periodic function.

37. f(t) = t, 0 < t < a, f(t + a) = f(t)

38. f(t) =
{

1, 0 < t < a
−1, a < t < 2a

f(t + 2a) = f(t)

39. f(t) = | sinat|
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40. f(t) =
{

t, 0 < t < a
2a − t, a < t < 2a

f(t + 2a) = f(t)

41. f(t) =
{

1, 0 < t < a
0, a < t < 2a

f(t + 2a) = f(t)

Find the inverse Laplace transform in Exercises 42–58.

42. F (s) =
1

s2 − 2s + 5
43. F (s) =

s

s2 + 4s + 1

44. F (s) =
e−2s

s2
45. F (s) =

e−3s

s2 + 1

46. F (s) =
se−5s

s2 + 2
47. F (s) =

se−s

s2 − 4

48. F (s) =
1

4s2 − 6s − 5
49. F (s) =

s

s2 − 3s + 2

50. F (s) =
4s + 1

(s2 + s)(4s2 − 1)
51. F (s) =

e−3s

s + 5

52. F (s) =
e−2s

s2 + 3s + 2
53. F (s) =

1
s3 + 1

54. F (s) =
5s − 2

3s2 + 4s + 8
55. F (s) =

e−s(1 − e−s)
s(s2 + 1)

56. F (s) =
s

(s + 1)5
57. F (s) =

s2 + 2s + 3
(s2 + 2s + 2)(s2 + 2s + 5)

58. F (s) =
s2

(s2 − 4)2

59. If F (s) = L{f(t)} for s > α, for what values of s is F (s − a) the Laplace transform of eatf(t)?

60. Find the Laplace transform of the function

f(t) =





t2/4, 0 ≤ t < 1
−(t2 − 4t + 2)/4, 1 ≤ t < 3
(t − 4)2/4, 3 ≤ t ≤ 4

f(t + 4) = f(t).

61. Verify the change of scale property: If F (s) = L{f(t} for s > α, then for a > 0,

L{f(at)} =
1
a
F
( s

a

)
, s > αa.

ANSWERS

1. h(t − 3); (1/s)e−3s 2. 1 + h(t − 4); (1 + e−4s)/s 3. t + (2 − t) h(t − 2); (1 − e−2s)/s2

4. t2 [1 − h(t − 1)]; 2/s3 − e−s(2 + 2s + s2)/s3 5. t2 h(t − 1); e−s(2 + 2s + s2)/s3

6. (t − 1)2h(t − 1); (2/s3)e−s 7. h(t − 1) − h(t − 2); (e−s − e−2s)/s
8. t + (2 − 2t) h(t − 1) + (t − 2) h(t − 2); (1 − 2e−s + e−2s)/s2

9. 2t − t h(t − 1); 2/s2 − e−s(s + 1)/s2

10. t2 + 1 + (−t2 + 2t − 1) h(t − 1); 1/s + 2(1 − e−s)/s3 11. h(t − a); (1/s)e−as

12. h(t − a) − h(t − b); (e−as − e−bs)/s
13. 2(1− t)[1 − h(t − 1)], t 6= 1; 2(s − 1)/s2 + (2/s2)e−s

14. 2 − h(t − 1) + (t − 3) h(t − 2); (2 − e−s)/s + e−2s(1 − s)/s2

15. 4(1− t2)[1 − h(t − 1)], t 6= 1; 4(s2 − 2)/s3 + 8e−s(s + 1)/s3

16. 1 − t + (t2 − t) h(t − 1) − (t − 1)2 h(t − 2), t 6= 1; (s − 1)/s2 + e−s(s + 2)/s3 − e−2s(s2+
2s + 2)/s3 17. sin t [1 − h(t − 2π)], t 6= 0, 2π; (1 − e−2πs)/(s2 + 1)

18. h(t − 2π) sin t, t 6= 2π; e−2πs/(s2 + 1)
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19. 1 + (−1 + sin t) h(t − π); (1 − e−πs)/s − e−πs/(s2 + 1)
20. 2e−t + (1 − 2e−t) h(t − ln 2), t 6= ln 2; 2/(s + 1) + e−s ln 2/(s2 + s) 21. 6/(s + 5)4

22. 2/(s− 3)3 23. 4/(s + 1)2 − 2/(s + 3) 24. 10a/(s2 − a2)
25. 2/(s2 − 2s + 5) + (s + 1)/(s2 + 2s + 2) 26. 6/(s2 + 6s + 18) + 4(s − 3)/(s2 − 6s + 18)
27. (2/s3)e−2s 28. 3e−4s/(s2 + 9) 29. (s + 1)e−s/s2 30. (8s + 1)e−3s/s2

31. (3s2 + 2s + 2)e−s/s3 32. −se−πs/(s2 + 1) 33. (s cos 2 − sin 2)e−2s/(s2 + 1)
34. e4−4s/(s − 1) 35. (9s2 − 12s + 5)e3−3s/(s − 1)3 36. [(s − 1) cos 2 − 2 sin 2]e1−s/(s2 − 2s + 5)
37. [1 − e−as(1 + as)]/[s2(1 − e−as)] 38. (1 − e−as)/[s(1 + e−as)]
39. a(1 + e−πs/a)/[(s2 + a2)(1 − e−πs/a)] 40. (1 − e−as)/[s2(1 + e−as)]
41. 1/[s(1 + e−as)] 42. (1/2)et sin 2t 43. (1/2− 1/

√
3)e(

√
3−2)t + (1/2 + 1/

√
3)e−(

√
3+2)t

44. (t − 2) h(t − 2) 45. sin (t − 3)h(t − 3) 46. cos
√

2(t − 5)h(t − 5)
47. (1/2)[e−2(t−1) + e2(t−1)]) h(t − 1) 48. (

√
29/58)[e(3+

√
29)t/4 − e(3−

√
29)t/4] 49. 2e2t − et

50. e−t − 1 + et/2 − e−t/2 51. e−5(t−3) h(t − 3) 52. [e−(t−2) − e−2(t−2)]h(t − 2)
53. (1/3)e−t + (1/3)et/2[

√
3 sin (

√
3t/2)− cos (

√
3t/2)]

54. (1/3)e−2t/3[5 cos (2
√

5t/3)− (8/
√

5) sin (2
√

5t/3)]
55. [1 − cos (t − 1)]h(t − 1) − [1 − cos (t − 2)]h(t − 2)
56. t3e−t(4 − t)/24 57. (1/3)e−t(sin t + sin 2t) 58. e2t(2t + 1)/8 + e−2t(2t − 1)/8
59. s > α + a 60. (1 − e−s)2/[2s3(1 + e−2s)]
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16.3 Laplace Transforms and Differential Equations

The Laplace transform is a powerful technique for solving ordinary and partial differential
equations. It replaces differentiations with algebraic operations. The following theorem and
its corollary simplify this process.

Theorem 16.5 Suppose f is continuous for t ≥ 0 with a piecewise-continuous first derivative on every finite
interval 0 ≤ t ≤ T . If f is O(eαt), then L{f ′} exists for s > α, and

L{f ′(t)} = sF (s) − f(0). (16.10)

(A more precise representation of the left side of this equation is L{f ′}(s).)

Proof If tj , j = 1, . . . , n denote the discontinuities of f ′ in 0 ≤ t ≤ T , then
∫ T

0

e−stf ′(t) dt =
n∑

j=0

∫ tj+1

tj

e−stf ′(t) dt,

where t0 = 0 and tn+1 = T . Since f ′ is continuous on each subinterval, we may integrate
by parts on these subintervals,

∫ T

0

e−stf ′(t) dt =
n∑

j=0

[
{
e−stf(t)

}tj+1

tj
+ s

∫ tj+1

tj

e−stf(t) dt

]
.

Because f is continuous, f(tj+) = f(tj−), j = 1, . . . , n, and therefore
∫ T

0

e−stf ′(t) dt = −f(0) + e−sT f(T ) + s

∫ T

0

e−stf(t) dt.

Thus,

L{f ′} =
∫ ∞

0

e−stf ′(t) dt = lim
T→∞

∫ T

0

e−stf ′(t) dt

= lim
T→∞

[
−f(0) + e−sT f(T ) + s

∫ T

0

e−stf(t) dt

]

= sF (s) − f(0) + lim
T→∞

e−sT f(T ),

provided the limit on the right exists. Since f is O(eαt), there exists M and T such that for
t > T , |f(t)| < Meαt. Thus, for T > T ,

e−sT |f(T )| < e−sT MeαT = Me(α−s)T

which approaches 0 as T → ∞ (provided s > α). Consequently,

L{f ′} = sF (s) − f(0).

This result is easily extended to second and higher order derivatives. For extensions
when f is only piecewise-continuous, see Exercise 43.

Corollary 16.5.1 Suppose f and f ′ are continuous for t ≥ 0, and f ′′ is piecewise-continuous on every finite
interval 0 ≤ t ≤ T . If f and f ′ are O(eαt), then L{f ′′} exists for s > α, and

L{f ′′} = s2F (s) − sf(0) − f ′(0). (16.11)

Proof Since f ′ is continuous, f ′′ is piecewise-continuous, and f ′ is O(eαt), equation 16.10
gives

L{f ′′} = sL{f ′} − f ′(0).
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We can apply equation 16.10 once again to obtain

L{f ′′} = s[sF (s) − f(0)] − f ′(0) = s2F (s) − sf(0) − f ′(0).

The extension to nth-order derivatives is contained in the next corollary.

Corollary 16.5.2 Suppose f and its first n − 1 derivatives are continuous for t ≥ 0, and f (n)(t) is piecewise-
continuous on every finite interval 0 ≤ t ≤ T . If f and its first n− 1 derivatives are O(eαt),
then L{f (n)(t)} exists for s > α, and

L{f (n)(t)} = snF (s) − sn−1f(0) − sn−2f ′(0) − · · · − f (n−1)(0). (16.12)

We now show how to use Laplace transforms to solve ordinary differential equations,
beginning with the initial-value problem in the following example.

Example 16.16 Solve the initial-value problem

y′′ − 2y′ + y = 2et, y(0) = y′(0) = 0.

Solution First we assume that the solution of the problem is a function satisfying the
conditions of Corollary 16.5.1. We can then take Laplace transforms of both sides of the
differential equation,

L{y′′} − 2L{y′} + L{y} = 2L{et}.

Properties 16.10 and 16.11 yield

[s2Y (s) − sy(0) − y′(0)] − 2[sY (s) − y(0)] + Y (s) =
2

s − 1
.

We now substitute from the initial conditions y(0) = y′(0) = 0,

s2Y (s) − 2sY (s) + Y (s) =
2

s − 1
,

and solve this equation for Y (s),

Y (s) =
2

(s − 1)3
.

The required function y(t) can now be obtained by taking the inverse transform of Y (s),

y(t) = L−1

{
2

(s − 1)3

}
= 2L−1

{
1

(s − 1)3

}
(by linearity)

= 2etL−1

{
1
s3

}
(by 16.4b)

= 2et

(
t2

2

)
(from Table 16.1)

= t2et.•

This example is typical of Laplace transforms at work on differential equations. We
begin by assuming that the solution of the problem satisfies whatever conditions are nec-
essary to apply the transform to the differential equation. In the case of Example 16.16,
this meant assuming that y(t) satisfies the conditions of Corollary 17.5.1. In actual fact we
need only assume that y(t) and y′(t) are of exponential order. Since the nonhomogeneity
2et is continuous, our theory in Chapter 15 indicates that the solution has a continuous
second derivative. In applying the Laplace transform to a third-order differential equation,
we would assume that the solution satisfies the conditions of Corollary 17.5.2 for n = 3.
The Laplace transform reduces the differential equation in y(t) to an algebraic equation in
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its transform Y (s). Notice how initial conditions for the solution of the differential equation
are incorporated by the Laplace transform at a very early stage, unlike the techniques of
Chapter 15 where they are used to determine arbitrary constants in a general solution. The
algebraic equation is solved for Y (s) and the inverse transform then yields a function y(t).
That y(t) is a solution of the initial-value problem is easily verified by direct substitution
into the differential equation and initial conditions. We omit this verification, although the
problem is not truly solved until this action has been taken.

Example 16.17 Solve the initial-value problem

y′′ + 16y = 3 cos 2t, y(0) = 1, y′(0) = 0.

Solution Assuming that the solution satisfies the conditions of Corollary 16.5.1, we take
Laplace transforms of both sides of the differential equation and use the initial conditions

[s2Y − s(1) − 0] + 16Y =
3s

s2 + 4
.

The solution of this equation for Y (s) is

Y (s) =
3s

(s2 + 4)(s2 + 16)
+

s

s2 + 16
=

s/4
s2 + 4

+
3s/4

s2 + 16
,

and Table 16.1 gives

y(t) =
1
4

cos 2t +
3
4

cos 4t.•

Although Laplace transforms are particularly adept at handling initial conditions, they
also provide general solutions to linear differential equations, as shown in the next example.

Example 16.18 Find a general solution of the differential equation y′′ + 2y′ − 3y = t2.

Solution We denote initial values of the solution and its first derivative by y(0) = A and
y′(0) = B. If we assume that the solution of the problem satisfies the conditions of Corollary
16.5.1, and take Laplace transforms of both sides of the differential equation,

[s2Y − s(A) − B] + 2[sY − A] − 3Y =
2
s3

.

The solution of this equation for Y (s) is

Y (s) =
2

s3(s2 + 2s − 3)
+

As + (B + 2A)
s2 + 2s − 3

.

The partial fraction decomposition of the first term is

2
s3(s2 + 2s − 3)

=
−2/3

s3
− 4/9

s2
− 14/27

s
+

1/2
s − 1

+
1/54
s + 3

.

Hence,

Y (s) =
−2/3

s3
− 4/9

s2
− 14/27

s
+

1/2
s − 1

+
1/54
s + 3

+
As + (B + 2A)
(s − 1)(s + 3)

.

If we are not concerned with preserving the fact that A and B represent initial values for
y(t) and its first derivative, we can write that Y (s) is of the form

Y (s) =
−2/3

s3
−

4/9
s2

−
14/27

s
+

C

s − 1
+

D

s + 3
,

where C and D are constants. Inverse transforms now give the general solution
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y(t) = − t2

3
− 4t

9
− 14

27
+ Cet + De−3t.•

Example 16.19 A 2-kg mass is suspended from a spring with constant 128 N/m. It is pulled 4 cm above its
equilibrium position and released. An external force 3 sinωt N acts vertically on the mass
during its motion, where ω 6= 8. If damping is negligible, find the position of the mass as a
function of time.

Solution The initial-value problem describing oscillations of the mass is

2
d2x

dt2
+ 128x = 3 sinωt, x(0) = 1/25, x′(0) = 0.

If we take Laplace transforms of both sides of the differential equation,

2[s2X − s/25] + 128X =
3ω

s2 + ω2
=⇒ X(s) =

3ω

2(s2 + 64)(s2 + ω2)
+

s

25(s2 + 64)
.

When ω 6= 8, partial fractions on the first term on the left leads to

X(s) =
3ω

2(64− ω2)(s2 + ω2)
− 3ω

2(64− ω2)(s2 + 64)
+

s

25(s2 + 64)
.

Hence, displacement in the absence of resonance is

x(t) =
3

2(64 − ω2)
sinωt − 3ω

16(64− ω2)
sin 8t +

1
25

cos 8t.•

Convolutions

It is often necessary in applications to find the inverse transform of the product of two
functions FG when inverse transforms f and g of F and G are known. We shall see shortly
that the inverse of FG is what is called the convolution of f and g.

Definition 16.4 The convolution of two functions f and g is defined as

f ∗ g =
∫ t

0

f(u)g(t − u) du. (16.13)

The following properties of convolutions are easily verified using Definition 16.4:

f ∗ g = g ∗ f, (16.14a)
f ∗ (kg) = (kf) ∗ g = k(f ∗ g), k a constant (16.14b)

(f ∗ g) ∗ h = f ∗ (g ∗ h), (16.14c)
f ∗ (g + h) = f ∗ g + f ∗ h. (16.14d)

Example 16.20 Find the convolution of f(t) = sin t and g(t) = cos 4t.

Solution According to equation 16.13,

f ∗ g =
∫ t

0

sinu cos 4(t − u) du.

With the trigonometric identity sin A cosB = (1/2)[sin (A + B) + sin (A − B)], we obtain

f ∗ g =
1
2

∫ t

0

[sin (4t − 3u) + sin (5u − 4t)] du

=
1
2

{
1
3

cos (4t − 3u) − 1
5

cos (5u − 4t)
}t

0

=
1
15

(cos t − cos 4t).•
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The importance of convolutions lies in the following theorem.

Theorem 16.6 If f and g are O(eαt) and piecewise-continuous on every finite interval 0 ≤ t ≤ T , then

L{f ∗ g} = L{f}L{g}, s > α. (16.15a)

Proof If F = L{f} and G = L{g}, then

F (s)G(s) =
∫ ∞

0

e−suf(u) du

∫ ∞

0

e−sτg(τ) dτ =
∫ ∞

0

∫ ∞

0

e−s(u+τ)f(u)g(τ) dτ du.

Suppose we change variables of integration in the inner integral with respect to τ by setting
t = u + τ . Then

F (s)G(s) =
∫ ∞

0

∫ ∞

u

e−stf(u)g(t − u) dt du = lim
T→∞

∫ T

0

∫ ∞

u

e−stf(u)g(t − u) dt du.

We would like to interchange orders of integration, but to do so requires that the inner
integral converge uniformly with respect to u. To verify that this is indeed the case we note
that since f and g are O(eαt) and piecewise-continuous on every finite interval 0 ≤ t ≤ T ,
there exists a constant M such that for all t ≥ 0, |f(t)| < Meαt and |g(t)| < Meαt. For
each u ≥ 0, we therefore have |e−stf(u)g(t− u)| < M2e−steαueα(t−u) = M2e−t(s−α). Thus,

∣∣∣∣
∫ ∞

u

e−stf(u)g(t − u) dt

∣∣∣∣ < M2

∫ ∞

u

e−t(s−α) dt = M2

{
e−t(s−α)

α − s

}∞

u

=
M2e−u(s−α)

s − α
<

M2

s − α
,

provided s > α, and the improper integral is uniformly convergent with respect to u. The
order of integration in the expression for F (s)G(s) may therefore be interchanged (Figure
16.22), and we obtain

F (s)G(s) = lim
T→∞

[∫ T

0

e−st

∫ t

0

f(u)g(t− u) dudt

+
∫ ∞

T

e−st

∫ T

0

f(u)g(t − u) dudt

]
.

Since
∣∣∣∣∣

∫ ∞

T

e−st

∫ T

0

f(u)g(t − u) dudt

∣∣∣∣∣ <
∫ ∞

T

∫ T

0

M2e−t(s−α)du dt

= M2T

{
e−t(s−α)

α − s

}∞

T

=
M2Te−T (s−α)

s − α

provided s > α, it follows that

lim
T→∞

∫ ∞

T

e−st

∫ T

0

f(u)g(t − u) dudt = 0.

Thus,

F (s)G(s) = lim
T→∞

∫ T

0

e−st

∫ t

0

f(u)g(t − u) dudt = lim
T→∞

∫ T

0

e−stf ∗ g dt = L{f ∗ g}.
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u

t

u t

T

=

Figure 16.22

More important in practice is the inverse of property 16.15a.

Corollary 17.6.1 If L−1{F} = f and L−1{G} = g, where f and g are O(eαt) and piecewise-continuous on
every finite interval, then

L−1{FG} = f ∗ g. (16.15b)

The following example illustrates this corollary.

Example 16.21 Find the inverse transform of F (s) =
2

s2(s2 + 4)
.

Solution Since L−1{2/(s2 + 4)} = sin 2t and L−1{1/s2} = t, convolution propery 16.15b
gives

L−1

{
2

s2(s2 + 4)

}
=
∫ t

0

u sin 2(t − u) du

=
{

u

2
cos 2(t − u) +

1
4

sin 2(t − u)
}t

0

=
t

2
− 1

4
sin 2t.•

Convolutions are particularly useful when solving ordinary differential equations that
contain unspecified forcing functions.

Example 16.22 Find the solution of the initial-value problem

y′′ + 2y′ + 3y = f(t), y(0) = 1, y′(0) = 0,

where f(t) is piecewise-continuous for t ≥ 0.

Solution Assuming that the solution satisfies the conditions of Corollary 16.5.1, we take
Laplace transforms of both sides of the differential equation,

[s2Y − s] + 2[sY − 1] + 3Y = F (s),

and solve for Y ,

Y (s) =
F (s)

s2 + 2s + 3
+

s + 2
s2 + 2s + 3

.

To find the inverse transform of this function, we first note that

L−1

{
1

s2 + 2s + 3

}
= L−1

{
1

(s + 1)2 + 2

}
= e−tL−1

{
1

s2 + 2

}
=

1√
2
e−t sin

√
2t.

Convolution property 16.15b on the first term of Y (s) now yields

y(t) =
∫ t

0

f(u)
1√
2
e−(t−u) sin

√
2(t − u) du + L−1

{
(s + 1) + 1
(s + 1)2 + 2

}

=
1√
2

∫ t

0

f(u)e−(t−u) sin
√

2(t − u) du + e−tL−1

{
s + 1
s2 + 2

}

=
1√
2

∫ t

0

f(u)e−(t−u) sin
√

2(t − u) du + e−t

(
cos

√
2t +

1√
2

sin
√

2t

)
.•
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EXERCISES 16.3

In Exercises 1–16 use Laplace transforms to solve the initial-value problem.

1. y′′ + 3y′ − 4y = t + 3, y(0) = 1, y′(0) = 0

2. y′′ + 2y′ − y = et, y(0) = 1, y′(0) = 2

3. y′′ + y = 2e−t, y(0) = y′(0) = 0

4. y′′ + 2y′ + y = t, y(0) = 0, y′(0) = 1

5. y′′ − 2y′ + y = t2et, y(0) = 1, y′(0) = 0

6. y′′ + y = t, y(0) = 1, y′(0) = −2

7. y′′ + 2y′ + 5y = e−t sin t, y(0) = 0, y′(0) = 1

8. y′′ + 6y′ + y = sin 3t, y(0) = 2, y′(0) = 1

9. y′′ + y′ − 6y = t + cos t, y(0) = 1, y′(0) = −2

10. y′′ − 4y′ + 5y = te−3t, y(0) = −1, y′(0) = 2

11. y′′ + 4y = f(t), y(0) = 0, y′(0) = 1, where f(t) =
{

1, 0 < t < 1
0, t > 1

12. y′′ + 2y′ − 4y = cos2 t, y(0) = 0, y′(0) = 0

13. y′′ − 3y′ + 2y = 8t2 + 12e−t, y(0) = 0, y′(0) = 2

14. y′′ + 4y′ − 2y = sin 4t, y(0) = 0, y′(0) = 0

15. y′′ + 8y′ + 41y = e−2t sin t, y(0) = 0, y′(0) = 1

16. y′′ + 2y′ + y = f(t), y(0) = 0, y′(0) = 0, where f(t) =
{

t, 0 < t < 1
0, t > 1

In Exercises 17–19 use Laplace transforms to solve the boundary-value problem.

17. y′′ + 9y = cos 2t, y(0) = 1, y(π/2) = −1

18. y′′ + 3y′ − 4y = 2e−4t, y(0) = 1, y(1) = 1

19. y′′ + 2y′ + 5y = e−t sin t, y(0) = 0, y(π/4) = 1

In Exercises 20–23 use Laplace transforms to find an integral representation for the solution to the problem.

20. y′′ − 4y′ + 3y = f(t), y(0) = 1, y′(0) = 0

21. y′′ + 4y′ + 6y = f(t), y(0) = 0, y′(0) = 0

22. y′′ + 16y = f(t)

23. y′′ + 3y′ + 2y = etf(t)

In Exercises 24–27 use convolutions to find the inverse Laplace transform for the function.

24. F (s) =
1

s(s + 1)
25. F (s) =

1
(s2 + 1)(s2 + 4)

26. F (s) =
s

(s + 4)(s2 − 2)
27. F (s) =

s

(s2 − 4)(s2 − 9)

In Exercises 28–33 use Laplace transforms to find a general solution of the differential equation.
28. y′′ − 2y′ + 4y = t2 29. y′′ − 2y′ + y = t2et

30. y′′ + y = f(t) 31. y′′ + 2y′ + 5y = e−t sin t
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32. y′′ + 4y′ + y = t + 2 33. y′′ − 4y = f(t)

34. To find a general solution of y′′ + 9y = t sin t, replace t sin t by teti, solve the equation, and then take
imaginary parts.

35. To find a general solution of y′′ − 2y′ + 3y = t cos 2t, replace t cos 2t by te2ti, solve the equation, and
then take real parts.

Solve the problem in Exercises 36–37 .

36. y′′′ − 3y′′ + 3y′ − y = t2et, y(0) = 1, y′(0) = 0, y′′(0) = −2

37. y′′′ − 3y′′ + 3y′ − y = t2et

One end of a spring with constant k Newtons per metre is attached to a mass of M kilograms and the other
end is attached to a wall (figure below).

Wall
k

M

x x= 0

Dashpot

Attached to the mass is a dashpot that provides, or represents, a resistive force on the mass directly pro-
portional to the velocity of the mass. If all other forces are grouped into a function denoted by f(t), the
differential equation governing motion of the mass is

M
d2x

dt2
+ β

dx

dt
+ kx = f(t),

where β > 0 is a constant. The position of M when the spring is unstretched corresponds to x = 0.
Accompanying the differential equation will be two initial conditions x(0) = A and x′(0) = B representing
the initial position and velocity of M . In Exercises 38–44 , solve the initial-value problem with the given
information.

38. M = 1/5, β = 0, k = 10, f(t) = 0, x(0) = −0.03, x′(0) = 0

39. M = 1/5, β = 3/2, k = 10, f(t) = 0, x(0) = −0.03, x′(0) = 0

40. M = 1/5, β = 3/2, k = 10, f(t) = 4 sin 10t, x(0) = 0, x′(0) = 0

41. M = 2, β = 0, k = 16, f(t) = 0, x(0) = 0.1, x′(0) = 0

42. M = 1/10, β = 1/20, k = 5, f(t) = 0, x(0) = −1/20, x′(0) = 2

43. (a) Let f be O(eαt) and be continuous for t ≥ 0 except for a finite discontinuity at t = t0 > 0; and let f ′

be piecewise continuous on every finite interval 0 ≤ t ≤ T . Show that

L{f ′} = sF (s) − f(0) − e−st0 [f(t0+) − f(t0−)].

(b) What is the result in part (a) if t0 = 0?

ANSWERS

1. (27/80)e−4t + (8/5)et − 15/16− t/4
2. (1/2)et + [(1 + 2

√
2)/4]e(

√
2−1)t + [(1 − 2

√
2)/4]e−(

√
2+1)t 3. e−t − cos t + sin t

4. 2(1 + t)e−t + t − 2 5. et(1 − t + t4/12) 6. cos t − 3 sin t + t
7. (1/3)e−t(sin t + sin 2t)
8. [(794

√
2 + 1397)/(776

√
2)]e(−3+2

√
2)t + [(794

√
2 − 1397)/(776

√
2)]e(−3−2

√
2)t − (1/194)(4 sin3t+

9 cos3t)
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9. −1/36− t/6 + (377/450)e−3t + (33/100)e2t + (1/50)(sin t − 7 cos t)
10. (1/338)[(5 + 13t)e−3t + e2t(1364 sin t − 343 cos t)]
11. (1/4)(1 + 2 sin 2t − cos 2t) + (1/4)[−1 + cos 2(t − 1)]h(t − 1)
12. −1/8 + (1/40)(sin 2t − 2 cos 2t) + (1/80)[(7 +

√
5)e(

√
5−1)t + (7 −

√
5)e−(

√
5+1)t]

13. 14 + 12t + 4t2 + 2e−t + 8e2t − 24et

14. −(1/290)(8 cos4t + 9 sin 4t) + (
√

6/870)[(2
√

6 + 13)e(
√

6−2)t + (2
√

6 − 13)e−(
√

6+2)t]
15. (1/200)e−4t(cos 5t + 39 sin 5t) + (1/200)e−2t(7 sin t − cos t)
16. (t + 2)e−t + t − 2 + (2 − t − e1−t)h(t − 1)
17. (1/5)(cos 2t + 4 cos 3t + 4 sin 3t)
18. −(2t/5)e−4t + [(5e5 − 5e4 − 2)/(5e5 − 5)]e−4t + [(5e4 − 3)/(5e5 − 5)]et

19. (1/3)e−t sin t + (eπ/4 −
√

2/6)e−t sin 2t

20. (3/2)et − (1/2)e3t + (1/2)
∫ t

0
f(u)[e3(t−u) − et−u] du

21. (1/
√

2)
∫ t

0
f(u)e2(u−t) sin

√
2(t − u) du

22. C1 cos 4t + C2 sin 4t + (1/4)
∫ t

0 f(u) sin 4(t − u) du

23. C1e
−t + C2e

−2t +
∫ t

0 (e2u−t − e3u−2t)f(u) du
24. 1 − e−t 25. (2 sin t − sin 2t)/6
26. −(2/7)e−4t + [(4 −

√
2)/28]e

√
2t + [(4 +

√
2)/28]e−

√
2t 27. (1/10)(e3t + e−3t − e2t − e−2t)

28. t/4 + t2/4 + et(C1 cos
√

3t + C2 sin
√

3t) 29. (C1 + C2t)et + (1/12)t4et

30. C1 cos t + C2 sin t +
∫ t

0 f(u) sin (t − u) du 31. e−t(C1 cos 2t + C2 sin 2t) + (1/3)e−t sin t

32. C1e
(
√

3−2)t + C2e
−(

√
3+2)t + t − 2 33. C1e

2t + C2e
−2t + (1/4)

∫ t

0 f(u)[e2(t−u) − e2(u−t)] du
34. (t/8) sin t − (1/32) cos t + C1 cos 3t + C2 sin 3t
35. et(C1 cos

√
2t + C2 sin

√
2t) − (t/17) cos 2t − (4t/17) sin 2t− (62/289) cos2t − (44/289) sin2t

36. et(t5 − 30t2 − 60t + 60)/60 37. et(C1 + C2t + C3t
2 + t5/60)

38. −0.03 cos5
√

2t 39. −0.03e−15t/4[cos (5
√

23t/4) + (3/
√

23) sin (5
√

23t/4)]
40. −(12 cos 10t + 8 sin 10t)/65 + (4/65)e−15t/4[3 cos (5

√
23t/4) + (25/

√
23) sin (5

√
23t/4)]

41. (1/10) cos (2
√

2t) 42. (1/20)e−t/4[(159/
√

799) sin (
√

799t/4) − cos (
√

799t/4)]
43.(b) sF (s) − f(0+)
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16.4 Discontinuous Nonhomogeneities

Nonhomogeneities for the linear differential equations in Section 16.3 were all continuous.
As a result, Laplace transforms did not prove overly advantageous compared to methods of
Chapter 15. In this section we show that Laplace transforms are exceptional for handling
discontinuities. We begin by illustrating the awkwardness of previous techniques on the
initial-value problem

y′′ + 2y′ + y = f(t), y(0) = 1, y′(0) = 0,

where the nonhomogeneity is the discontinuous function

f(t) =
{

t, 0 < t < 1
0, t > 1 .

Basically what we do is solve the differential equation on the intervals 0 < t < 1 and t > 1
and then match the solutions at t = 1. The auxiliary equation m2 + 2m + 1 = 0 has double
root m = −1. On the interval 0 < t < 1, a particular solution of the differential equation
is yp = t − 2, and hence a general solution on this interval is y1(t) = (C1 + C2t)e−t + t − 2.
The initial conditions require

1 = y(0) = C1 − 2, 0 = y′(0) = C2 − C1 + 1,

the solutions of which are C1 = 3 and C2 = 2. On the interval 0 < t < 1, then,

y1(t) = (3 + 2t)e−t + t − 2.

For t > 1, the general solution of the differential equation is y2(t) = (D1 + D2t)e−t.
In Chapter 15 we saw that the solution of a second-order, linear differential equation

must be continuous and have a continuous first derivative, and this must be true even at
the point of discontinuity (t = 1) of f(t). This means that limt→1− y1(t) = limt→1+ y2(t)
and limt→1− y′

1(t) = limt→1+ y′
2(t), and therefore

5e−1 − 1 = (D1 + D2)e−1, −3e−1 + 1 = −D1e
−1.

These can be solved for D1 = 3−e and D2 = 2, and therefore the solution of the initial-value
problem is

y(t) =
{

(3 + 2t)e−t + t − 2, 0 ≤ t ≤ 1
(3 − e + 2t)e−t, t > 1

.

Let us now solve the problem by taking Laplace transforms of both sides of the differ-
ential equation,

[s2Y − s] + 2[sY − 1] + Y = L{f(t)},

where

L{f(t)} = L{t [h(t) − h(t − 1)]}
= L{t h(t)} − L{[t h(t − 1)}

=
1
s2

− e−sL{t + 1}

=
1
s2

− e−s

(
1
s2

+
1
s

)
.

Thus,

Y (s) =
1

(s + 1)2

[
s + 2 +

1
s2

− e−s

(
1
s2

+
1
s

)]

=
(s + 1) + 1
(s + 1)2

+
1

s2(s + 1)2
−

e−s

s2(s + 1)
.
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Partial fractions on the second and third terms lead to

Y (s) =
[

1
s + 1

+
1

(s + 1)2

]
+
[
−2

s
+

1
s2

+
2

s + 1
+

1
(s + 1)2

]
+ e−s

[
1
s
− 1

s2
− 1

s + 1

]

= −2
s

+
1
s2

+
3

s + 1
+

2
(s + 1)2

+ e−s

(
1
s
− 1

s2
− 1

s + 1

)
.

Consequently,

y(t) = −2 + t + 3e−t + 2te−t + [1 − (t − 1) − e−(t−1)] h(t − 1)
= (3 + 2t)e−t + t − 2 + (2 − t − e1−t) h(t − 1).

Although the Heaviside function is undefined at t = 1, right- and left-hand limits of this
solution as t → 1 are identical. So also are limits of its first derivative. In other words, if we
define the solution and its first derivative at t = 1 in terms of limits as t → 1, the solution
is identical to that obtained previously, but the Heaviside representation is clearly simpler,
and arriving at it with Laplace transforms was less work.

As we use Laplace transforms to solve other differential equations with discontinuous
nonhomogeneities, we invite the reader to make comparisons to solutions obtained with
techniques from Chapter 15.

Example 16.23 A 2-kg mass is suspended from a spring with constant 512 N/m. It is set into motion by
pulling it 10 cm above its equilibrium position and then releasing it. A sinusoidal force
A sin 8t acts on the mass but only for t > 1. Find the position of the mass as a function of
time if damping is negligible.

Solution The initial-value problem for displacement is

2
d2x

dt2
+ 512x = A sin 8t h(t − 1), x(0) =

1
10

, x′(0) = 0.

If we take Laplace transforms,

2
(
s2X −

s

10

)
+ 512X = Ae−sL{sin 8(t + 1)}

= Ae−sL{cos 8 sin 8t + sin 8 cos 8t}

= Ae−s

[
8 cos 8
s2 + 64

+
(sin 8)s
s2 + 64

]
.

Hence,

X(s) =
s

10(s2 + 256)
+

Ae−s[8 cos 8 + (sin 8)s]
2(s2 + 256)(s2 + 64)

.

Partial fractions on the second term gives

X(s) =
s

10(s2 + 256)
+

Ae−s

384

[
8 cos 8 + (sin 8)s

s2 + 64
− 8 cos 8 + (sin 8)s

s2 + 256

]
,

and therefore

x(t) =
1
10

cos 16t +
A

384
[
cos 8 sin 8(t − 1) + sin 8 cos 8(t − 1)

− 1
2

cos 8 sin 16(t − 1) − sin 8 cos 16(t − 1)
]
h(t − 1).

This has been graphed in Figure 16.23 for A = 100. Notice the smoothness of the graph
even at t = 1 when the force is discontinuous.•
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Figure 16.23

The delayed sinusoidal nonhomogeneity presented no problem in Example 16.23. When
the nonhomogeneity is periodic, but not sinusoidal, additional difficulties arise. Compared
to a solution by methods of Chapter 15, however, Laplace transforms are still superior. We
illustrate in the following example.

Example 16.24 Solve the initial-value problem

y′′ + 4y = f(t), y(0) = 0, y′(0) = 0,

where f(t) is the periodic function

f(t) =
{

1, 0 < t < 1
0, 1 < t < 2 f(t + 2) = f(t).

Solution When we take Laplace transforms of both sides of the differential equation,

s2Y + 4Y = L{f(t)} =
1

1 − e−2s

∫ 1

0

e−st dt =
1

1 − e−2s
L{h(t) − h(t − 1)}

=
1

(1 + e−s)(1 − e−s)

(
1
s
− e−s

s

)
=

1
s(1 + e−s)

.

Thus,

Y (s) =
1

s(s2 + 4)(1 + e−s)
.

Partial fractions gives

1
s(s2 + 4)

=
1/4
s

− s/4
s2 + 4

.

Now, 1/(1 + e−s) can be interpreted as the sum of a geometric series with common ratio
−e−s so that we may write

1
1 + e−s

= 1 − e−s + e−2s − e−3s + · · · .

In other words, Y (s) can be expressed as an infinite series

Y (s) =
1
4

(
1
s
− s

s2 + 4

)(
1 − e−s + e−2s − e−3s + · · ·

)
.

Each term in the series has an easily calculated inverse transform,

y(t) =
1
4
(1 − cos 2t) − 1

4
[1 − cos 2(t − 1)]h(t − 1) +

1
4
[1 − cos 2(t − 2)]h(t − 2) − · · · .

In sigma notation,

y(t) =
1
4

∞∑

n=0

(−1)n[1 − cos 2(t − n)] h(t − n).
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To evaluate y(t) for any given t, it is necessary to include only those terms in the series for
which n < t. For example, the solution at t = 2.4 is given by

y(2.4) =
1
4
[1 − cos 2(2.4)] − 1

4
[1 − cos 2(2.4− 1)] +

1
4
[1 − cos 2(2.4− 2)] = −0.182.

Once again the graph of the solution in Figure 16.24 demonstrates that y(t) and y′(t) are
continuous, even at the discontinuities t = 1, 2, . . . of f(t).•

t1 2 3 4 5

0.4

0.2

-0.2

Figure 16.24

Consider using the techniques of Chapter 15 to find y(2.4) in this example. It would be
necessary to solve the differential equation on the intervals 0 < t < 1, 1 < t < 2, 2 < t < 3,
match at t = 1 and t = 2, and then find y(2.4) from the solution for 2 < t < 3. Try it. You
will be convinced that Laplace transforms are superior.

Important in applications are nonhomogeneities called unit pulses and unit impulses.
We discuss them in the context of the vibrating mass-spring system in Figure 16.25. When
damping and surface friction are negligible, the differential equation describing the position
of the mass relative to its equilibrium position is M d2x/dt2+kx = f(t) where f(t) represents
all forces on M other than the spring. The external force is called a unit pulse at time
t = t0 when it is of the form in Figure 16.26. It can be represented in terms of Heaviside
unit step functions as

p(t0, a, t) =
1
a
[h(t − t0) − h(t − t0 − a)]. (16.16)

The value of t0 identifies the time at which the pulse begins and a represents its width. The
area under the graph is unity (hence the name unit pulse).

k

M

x ta

a

t

1

0 t0 +

Figure 16.25 Figure 16.26

The Laplace transform of the unit pulse at t = t0 is

L{p(t0, a, t)} =
1
as

[
e−t0s − e−(t0+a)s

]
. (16.17)

Let us determine the reaction of the mass-spring system to a unit pulse at time t = 0,
and this force only. We assume that the mass is motionless at its equilibrium position when
this force is applied. The initial-value problem for the position of M is

M
d2x

dt2
+ kx = p(0, a, t), x(0) = 0, x′(0) = 0.
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If we take Laplace transforms of both sides of the differential equation, and use formula
16.17 with t0 = 0,

Ms2X + kX =
1
as

(1 − e−as) =⇒ X(s) =
1 − e−as

as(Ms2 + k)
.

Partial fractions give

X(s) =
1
ka

(
1
s
− s

s2 + k/M

)
(1 − e−as),

from which

x(t) =
1
ka

(
1 − cos

√
k

M
t

)
− 1

ka

[
1 − cos

√
k

M
(t − a)

]
h(t − a).

At time t = a, when the unit pulse ceases,
the position of the mass is given by
(1 − cos

√
k/Ma)/(ka) and its velocity

is [1/(a
√

kM)] sin
√

k/Ma. For most
applications, a is very small; in particular,
sufficiently small that

√
k/Ma < π/2.

In this case, the displacement of the mass
from equilibrium increases for 0 < t < a,

t0.2 0.4

0.01

0.005

-0.005

and its velocity at time t = a is positive. Figure 16.27
A graph of this function for parameter
values k = 100, M = 1, and a = 1/10 is
shown in Figure 16.27.

Even more important in practice
is the response of a system to what is
called the unit impulse force. It
is defined to be the limit of the unit
pulse p(t0, a, t) as the time interval
t0 < t < t0 + a becomes indefinitely
short. As a gets smaller and smaller
in Figure 16.26, the area under the
curve remains unity; the force simply
acts over shorter and shorter time
intervals. We have shown the situation
for a = 1/10, 1/20, 1/40, and 1/80
in Figure 16.28.
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Figure 16.28

The limit of this function as a → 0 is not a function in the normal sense of function. It
has value 0 for all t except t = t0 where its value is “infinite”. Such functions are discussed
in advanced mathematics; they are known as generalized functions. This particular one is
called the unit impulse or the Dirac delta function. It is denoted by

δ(t − t0) = lim
a→0

1
a
[h(t − t0) − h(t − t0 − a)]. (16.18)

The Dirac delta function can be defined in other ways; they are essentially equivalent
and lead to identical properties. Two such formulations are limits of the sequences of
functions in Figures 16.29 and 16.30. In both cases, the area under each curve is unity.
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Like the functions in Figure 16.28, those in Figure 16.29 are discontinuous, but they are
symmetric around t0. The functions in Figure 16.30 are continuous and symmetric around
t0.
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tt0t0 -0.05
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t0 -0.0125 t0 +0.0125

Figure 16.29 Figure 16.30

In our vibrating mass-spring system, the Dirac delta function represents a unit force
instantaneously applied at time t = t0. The function does not conform to the conditions of
Theorem 16.1; it is of exponential order, but it is not piecewise-continuous on every finite
interval. It does, however, have a Laplace transform. If we write

L{δ(t − t0)} = L
{

lim
a→0

p(t0, a, t)
}

,

it might seem natural to interchange limit and Laplace transform operations,

L{δ(t − t0)} = lim
a→0

L{p(t0, a, t)}.

Unfortunately, it not possible to justify the validity of the interchange, but it does lead to
a correct formula for the Laplace transform of δ(t − t0), and we shall therefore proceed.
Substituting from equation 16.17 and using L’Hopital’s rule on the limit gives

L{δ(t − t0)} = lim
a→0

(
e−t0s − e−(t0+a)s

as

)
= lim

a→0

(
se−(t0+a)s

s

)
= e−t0s. (16.19)

Let us determine the response of the mass-spring system in Figure 16.25 to a unit
impulse at time t = 0. To do so we solve the initial-value problem

M
d2x

dt2
+ kx = δ(t), x(0) = 0, x′(0) = 0.

When we take Laplace transforms and use formula 16.19 with t0 = 0,

Ms2X + kX = 1 =⇒ X(s) =
1

Ms2 + k
.

The inverse transform is

x(t) =
1
M

L−1

{
1

s2 + k/M

}
=

1√
kM

sin

√
k

M
t.



SECTION 16.4 1153

A graph of this function for k = 400 and
M = 2 is shown in Figure 16.31.
It is straightforward to show that the
same displacement results from giving
the mass an initial velocity of 1/M
and applying no impulse. In other words,
the solution does not satisfy the initial
condition x′(0) = 0. This is a result of
specifying initial conditions and Dirac

t0.5 1

-0.04

-0.02

0.02

0.04

delta function simultaneously at t = 0. Figure 16.31
There would be no problem if the impulse
force occured at any other time. This is illustrated in the following example.

Example 16.25 A 100-gm mass is suspended from a spring with constant 50 N/m. It is set into motion by
raising it 10 cm above its equilibrium position and giving it a velocity of 1 m/s downward.
During the subsequent motion a damping force acts on the mass and the magnitude of this
force is twice the velocity of the mass. If an impulse force of magnitude 2 N is applied
vertically upward to the mass at t = 3 s, find the position of the mass for all time.

Solution The initial-value problem for the position of the mass is

1
10

d2x

dt2
+ 2

dx

dt
+ 50x = 2δ(t − 3), x(0) =

1
10

, x′(0) = −1.

If we multiply the differential equation by 10, and take Laplace transforms,
(
s2X −

s

10
+ 1
)

+ 20
(

sX −
1
10

)
+ 500X = 20e−3s.

Thus,

X(s) =
s/10 + 1

s2 + 20s + 500
+

20e−3s

s2 + 20s + 500

=
1
10

[
s + 10

(s + 10)2 + 400

]
+

20e−3s

(s + 10)2 + 400
.

The inverse transform is

x(t) =
1
10

e−10tL−1

{
s

s2 + 400

}
+ L−1

{
20e−3s

(s + 10)2 + 400

}
.

Since L−1{20/[(s + 10)2 + 400]} = e−10tL−1{20/(s2 + 400)} = e−10t sin 20t, it follows that

x(t) =
1
10

e−10t cos 20t + e−10(t−3) sin 20(t − 3) h(t − 3).

It is straightforward to show that this
solution satisfies the initial conditions
x(0) = 1/10 and x′(0) = −1. A graph
of the function is shown in Figure 16.32.
Due to excessive damping, oscillations
essentially disappear after 1 second,
but the impulse force restores them at
t = 3 seconds. Notice the abrupt change
in slope (velocity) at t = 3 due to the

t1 2 3 4

0.4

0.2

-0.2

-0.4

impulse force. Damping again brings the Figure 16.32
mass essentially to rest after another second.•

When nonhomogeneities are piecewise-continuous functions, we know that solutions
are continuous and have continuous first derivatives. This example illustrates that impulse
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forces, not being piecewise-continuous, lead to solutions with discontinuous first derivatives
at the instant of the impulse.

EXERCISES 16.4

In Exercises 1–10 solve the initial-value problem.

1. y′′ + 9y = f(t), y(0) = 1, y′(0) = 2, where f(t) =
{

0, 0 < t < 4
1, t > 4

2. y′′ + 9y = f(t), y(0) = 1, y′(0) = 2, where f(t) =
{

2, 0 < t < 4
0, t > 4

3. y′′ + 4y′ + 4y = f(t), y(0) = 0, y′(0) = −1, where f(t) =
{

t, 0 < t < 1
1, t > 1

4. y′′ + 4y′ + 4y = f(t), y(0) = −1, y′(0) = 0, where f(t) =
{

2 − t, 0 < t < 2
t − 2, t > 2

5. y′′ + 4y′ + 3y = f(t), y(0) = 1, y′(0) = 2, where f(t) =
{

0, 0 < t < π
sin t, t > π

6. y′′ + 4y′ + 3y = f(t), y(0) = 1, y′(0) = 2, where f(t) =
{

sin t, 0 < t < π
0, t > π

7. y′′ + 2y′ + 5y = f(t), y(0) = 0, y′(0) = 0, where f(t) =
{

3, 0 < t < 1
−3, t > 1

8. y′′ + 2y′ + 5y = f(t), y(0) = 0, y′(0) = 0, where f(t) =

{ 4, 0 < t < 1
−4, 1 < t < 2
0, t > 2

9. y′′ + 16y = f(t), y(0) = 2, y′(0) = 0, where f(t) =
{

t, 0 < t < 1
0, 1 < t < 2 f(t + 2) = f(t)

10. y′′ + 16y = f(t), y(0) = 2, y′(0) = 0, where f(t) =
{

t, 0 < t < 1
2 − t, 1 < t < 2 f(t + 2) = f(t)

11. A 100-gm mass is suspended from a spring with constant 40 N/m. The mass is pulled 10 cm above its
equilibrium position and given velocity 2 m/s downward. If a force of 100 N acts vertically upward for
the first 4 seconds, find the position of the mass as a function of time. Ignore all damping.

12. Repeat Exercise 11 if the force is turned on after 4 seconds.

13. Repeat Exercise 11 if a damping force with constant β = 5 also acts on the mass.

14. Repeat Exercise 12 if a damping force with constant β = 5 also acts on the mass.

15. Repeat Exercise 11 if a damping force with constant β = 1 also acts on the mass.

16. Repeat Exercise 12 if a damping force with constant β = 1 also acts on the mass.

17. A 2-kg mass is suspended from a spring with constant 512 N/m. It is set into motion with a unit impulse
force at time t = 0. Find the position of the mass as a function of time. Ignore all damping.

18. Repeat Exercise 17 if a damping force with constant β = 80 also acts on the mass.

19. Repeat Exercise 18 if β = 8.

20. A 2-kg mass is suspended from a spring with constant 512 N/m. It is set into motion by moving it to
position x0 and then releasing it. If a unit impulse force is applied at t0 > 0, find the position of the
mass for all time.
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21. Repeat Exercise 20 if motion is initiated by giving the mass velocity v0 at time t = 0 and position x = 0.

22. Repeat Exercise 20 if motion is initiated by giving the mass velocity v0 from position x0 at time t = 0.

23. A 1-kg mass is suspended from a spring with constant 100 N/m. It is subjected to a unit impulse force
at t = 0 and again at t = 1. Find the position of the mass as a function of time.

24. Repeat Exercise 23 if unit impulse forces are applied one each second beginning at time t = 0. Express
the solution in sigma notation.

25. Repeat Exercise 24 if unit impulse forces are π/5 seconds apart, the first at time t = 0. Is there
resonance?

ANSWERS

1. cos 3t + (2/3) sin 3t + (1/9)[1− cos 3(t − 4)] h(t − 4)
2. 2/9 + (7/9) cos 3t + (2/3) sin 3t − (2/9)[1− cos 3(t − 4)] h(t − 4)
3. (1/4)(−1 + t + e−2t − 3te−2t) + (1/4)(2− t − te2−2t) h(t − 1)
4. (1/4)(3− t − 7e−2t − 13te−2t) + (1/2)(t − 3 − e4−2t + te4−2t) h(t − 2)
5. (5/2)e−t − (3/2)e−3t + [(1/20)e3π−3t − (1/4)eπ−t + (1/10) sin t − (1/5) cos t] h(t − π)
6. (11/4)e−t − (31/20)e−3t + (1/10) sin t − (1/5) cos t + [(1/4)eπ−t − (1/20)e3π−3t − (1/10) sin t+

(1/5) cos t] h(t − π)
7. (3/10)(2− 2e−t cos 2t − e−t sin 2t) − (3/5)[2− 2e1−t cos (2t − 2) − e1−t sin (2t − 2)] h(t − 1)
8. (2/5)(2− 2e−t cos 2t − e−t sin 2t) + (4/5)[−2 + 2e1−t cos (2t − 2) + e1−t sin (2t − 2)] h(t − 1)+

(2/5)[2− 2e2−t cos (2t − 4) − e2−t sin (2t − 4)] h(t − 2)
9. 2 cos 4t + (1/64)

∑∞
n=0 (−1)n[4(t − n) − sin 4(t − n)] h(t − n)

−(1/16)
∑∞

n=0 [1 − cos 4(t − 2n− 1)] h(t − 2n− 1)
10. 2 cos 4t + (1/64)

∑∞
n=0 (−1)n[4(t − n) − sin 4(t − n)] h(t − n)

+(1/64)
∑∞

n=0 (−1)n+1[4(t − n − 1) − sin 4(t − n − 1)] h(t − n − 1)
11. (1/10) cos20t − (1/10) sin 20t + (5/2)[1− h(t − 4) − cos 20t + cos 20(t − 4)h(t − 4)] m
12. (1/10) cos20t − (1/10) sin 20t + (5/2)[1− cos 20(t − 4)] h(t − 4) m
13. (1/30)(e−40t + 2e−10t) + (5/2)[1− h(t − 4)] + (5/6)(e−40t − 4e−10t) + (5/6)(4e40−10t−

e160−40t) h(t − 4) m
14. (1/30)(e−40t + 2e−10t) + (5/6)(3 − 4e40−10t + e160−40t) h(t − 4) m
15. (1/50)e−5t(5 cos 5

√
15t −

√
15 sin 5

√
15t) + (5/2)[1− h(t − 4)] − (

√
15/6)e−5t(

√
15 cos 5

√
15t+

sin 5
√

15t) + (
√

15/6)e20−5t[
√

15 cos 5
√

15(t − 4) + sin 5
√

15(t − 4)] h(t − 4) m
16. (1/50)e−5t(5 cos 5

√
15t −

√
15 sin 5

√
15t) + (5/2)h(t − 4) − (

√
15/6)e20−5t[

√
15 cos 5

√
15(t − 4)

+ sin 5
√

15(t − 4)] h(t − 4) m
17. (1/32) sin 16t m 18. (1/48)(e−8t − e−32t) m 19. (

√
7/84)e−2t sin 6

√
7t m

20. x0 cos 16t + (1/32) sin 16(t − t0) h(t − t0) m
21. (v0/16) sin 16t + (1/32) sin 16(t− t0) h(t − t0) m
22. x0 cos 16t + (v0/16) sin 16t + (1/32) sin 16(t− t0) h(t − t0) m
23. (1/10) sin 10t + (1/10) sin 10(t− 1) h(t − 1) m
24. (1/10)

∑∞
n=0 sin 10(t− n) h(t − n) m 25. (1/10)

∑∞
n=0 sin 10(t − nπ/5)h(t − nπ/5) m Yes
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16.5 Deflections of Beams

An important application of differential equations in structural engineering is to determine
the shape of a horizontal beam when it is subjected to various loads. By analyzing internal
forces and moments, it can be shown that the shape y(x) of a uniform beam with constant
cross section (Figure 16.33) is governed by the equation

d4y

dx4
=

F (x)
EI

(16.20)

where E is a constant called Young’s modulus of elasticity (depending on the material of
the beam), and I is also a constant (the moment of inertia of the cross section of the beam).
Quantity F (x) is the load placed on the beam; it is the vertical force per unit length in the
x-direction, placed at position x, including the weight of the beam itself. For example, if a
beam has mass 100 kg and length 10 metres (Figure 16.34), then the load due to its weight
is a constant F (x) = −9.81(100/10) = −98.1 N/m at every point of the beam.

x

y

Support Support

Beam x

y

100 kg beam 10

Figure 16.33 Figure 16.34

Suppose a block with mass 40 kg, uniform in cross section, and length 4 metres is centred
on the beam in Figure 16.34 (see Figure 16.35). It adds an additional load of 9.81(10)=98.1
N/m over the interval 3 < x < 7. The total load can be represented in terms of Heaviside
unit step functions as

F (x) = −98.1− 98.1[h(x − 3) − h(x − 7)].

x

y

100 kg beam
10

40 kg block

3 7

Figure 16.35

Accompanying differential equation 16.20 will be four boundary conditions defining the
type of support (if any) at each end of the beam. Three types of supports are common. We
discuss them at the left end of the beam, but they also occur at the right end.

1. Simple Support
The end of a beam is simply-supported when it cannot move vertically, but it is free to

rotate. Visualize that a horizontal pin perpendicular to the xy-plane passes through a hole
in the end of the beam at x = 0 (Figure 16.36). The pin is fixed, but the end of the beam
can rotate on the pin. In this case, y(x) must satisfy the boundary conditions

y(0) = y′′(0) = 0. (16.21a)
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x

y

Pin

x

y

Figure 16.36 Figure 16.37
2. Built-in End
If the end x = 0 of the beam is permanently fixed in a horizontal position (Figure 16.37),
y(x) satisfies

y(0) = y′(0) = 0. (16.21b)

3. Free Support
If the end x = 0 of the beam is not supported (Figure 16.38), y(x) satisfies

y′′(0) = y′′′(0) = 0. (16.21c)

x

y

x

y

10

Figure 16.38 Figure 16.39

When two boundary conditions at each end of a beam accompany differential equation
16.20, we have what is called a boundary-value problem. For example, if the end x = 0
of the beam in Figure 16.35 is horizontally built-in, and the right end is free, just like a
diving board (Figure 16.39), the boundary-value problem for deflections of the beam is

d4y

dx4
=

1
EI

[−98.1− 98.1 h(x − 3) + 98.1 h(x − 7)],

y(0) = y′(0) = 0, y′′(10) = y′′′(10) = 0.

To solve this problem without Laplace transforms we would solve the differential equation
on the intervals 0 < x < 3, 3 < x < 7, 7 < x < 10, and match y(x), y′(x), y′′(x), and y′′′(x)
at x = 3 and x = 7. Try it. Laplace transforms with respect to x are much simpler.

To have a Laplace transform with respect to x, a function must be defined for all x > 0
except perhaps for isolated points. Such is not the case for beam deflections; the deflection
curve y(x) is defined only for the length of the beam. To remedy this in the present problem
(and others), we extend the beam indefinitely to the right, but assign a load of zero beyond
its natural end at x = 10. The −98.1 term in the load is replaced by −98.1[h(x)−h(x−10)].
If we denote the constant −98.1/(EI) by k, the boundary-value problem becomes

d4y

dx4
= k[h(x) − h(x − 3) + h(x − 7) − h(x − 10)],

y(0) = y′(0) = 0, y′′(10) = y′′′(10) = 0.

In this way we can take transforms, and the fact that the load vanishes for x > 10 means
that the beam is unaffected for 0 < x < 10 due to this artificial extension.
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Because we have a boundary-value problem, and not an initial-value problem, it will be
necessary to specify unknown constants for y′′(0) and y′′′(0) in taking the Laplace transform
of d4y/dx4. If we set y′′(0) = A and y′′′(0) = B, and use equation 16.12 with n = 4,

s4Y − s3(0) − s2(0) − As − B =
k

s
(1 − e−3s + e−7s − e−10s).

Solving for Y (s) gives

Y (s) =
A

s3
+

B

s4
+

k

s5
(1 − e−3s + e−7s − e−10s).

Inverse transforms give the deflection curve for the beam

y(x) =
Ax2

2
+

Bx3

6
+

k

24
[
x4 − (x − 3)4h(x − 3) + (x − 7)4h(x − 7)

− (x − 10)4h(x − 10)
]
.

The last term contributes nothing to the curve for 0 < x < 10, and is therefore dropped
from further calculations. To find A and B we use the boundary conditions at x = 10. For
x > 7,

y(x) =
Ax2

2
+

Bx3

6
+

k

24
[
x4 − (x − 3)4 + (x − 7)4

]
,

and therefore

0 = y′′(10) = A + 10B +
k

24
[12(10)2 − 12(7)2 + 12(3)2],

0 = y′′′(10) = B +
k

24
[24(10)− 24(7) + 24(3)].

These can be solved for A = 30k and B = −6k, and hence

y(x) = 15kx2 − kx3 +
k

24
[
x4 − (x − 3)4h(x − 3) + (x − 7)4h(x − 7)

]

=
−9.81
EI

{
15x2 − x3 +

1
24
[
x4 − (x − 3)4h(x − 3) + (x − 7)4h(x − 7)

]}
.

A graph of this function for EI = 104 is shown in Figure 16.40. The deflection at the right
end of the beam is y(10) = −0.80 m. As theory in Chapter 15 suggests, the function and its
derivative (slope) are continuous even at x = 3 and x = 7 where the load is discontinuous.
So also are y′′(x) and y′′′(x), although we cannot see this graphically.

x
y

2 4 6 8 10

-0.4

-0.8

Figure 16.40

In the next example we use the Dirac delta function to represent a point load on a
beam.

Example 16.26 A uniform beam of length L and mass m has both ends fixed horizontally in concrete. A
force of P Newtons acting vertically downward at the centre of the beam is represented as
a load P δ(x − L/2). Find the deflection curve of the beam.
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Solution The boundary-value problem for deflections (Figure 16.41) is

d4y

dx4
= − P

EI
δ(x − L/2) − mg

EIL
[h(x) − h(x − L)],

y(0) = y′(0) = 0, y(L) = y′(L) = 0,

where g = 9.81.

y

x

P

10

Figure 16.41

If we let y′′(0) = A and y′′′(0) = B, and take Laplace transforms of both sides of the
differential equation,

s4Y − AS − B = − P

EI
e−Ls/2 − mg

EILs
(1 − e−Ls).

Thus,

Y (s) =
A

s3
+

B

s4
− P

EIs4
e−Ls/2 − mg

EILs5
(1 − e−Ls),

and

y(x) =
Ax2

2
+

Bx3

6
− P

6EI
(x − L/2)3h(x − L/2)− mgx4

24EIL

+
mg

24EIL
(x − L)4h(x − L).

The last term contributes nothing to the curve for 0 < x < L, and is therefore dropped from
the solution. For y(L) = y′(L) = 0,

0 =
AL2

2
+

BL3

6
− P (L/2)3

6EI
− mgL3

24EI
, 0 = AL +

BL2

2
− P (L/2)2

2EI
− mgL2

6EI
.

These can be solved for A = − PL

8EI
− mgL

12EI
and B =

P

2EI
+

mg

2EI
, and therefore

y(x) = −
L(3P + 2mg)x2

48EI
+

(P + mg)x3

12EI
−

P

6EI
(x − L/2)3h(x − L/2) −

mgx4

24EIL
.

The graph of this function should be symmetric about x = L/2. To verify this we express
the function in the form

y(x) =





−L(3P + 2mg)x2

48EI
+

(P + mg)x3

12EI
− mgx4

24EIL
, 0 ≤ x ≤ L/2

−L(3P + 2mg)x2

48EI
+

(P + mg)x3

12EI
− mgx4

24EIL
− P

6EI
(x − L/2)3, L/2 < x ≤ L

.

If we replace x by L − x in the second part, we obtain

−L(3P + 2mg)
48EI

(L − x)2 +
(P + mg)(L − x)3

12EI
− mg(L − x)4

24EIL
− P

6EI
(L − x − L/2)3,

and this simplifies to
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−L(3P + 2mg)x2

48EI
+

(P + mg)x3

12EI
− mgx4

24EIL
,

thus verifying symmetry about x = L/2.

EXERCISES 16.5

1. (a) A uniform beam with mass m and length L is simply-supported at each end. Find the deflection
curve.

(b) Is the deflection curve symmetric about x = L/2?

2. (a) Repeat Exercise 1 if the end at x = 0 is fixed horizontally and the end at x = L is free.
(b) How far is the end x = L from the horizontal?

3. (a) A uniform beam with mass m and length L has its end at x = 0 fixed horizontally and its end at
x = L is free. An additional mass M is distributed uniformly along the right half of the beam. Find
the deflection curve.

(b) Are right- and left-hand limits of y(x), y′(x), y′′(x), and y′′′(x) at x = L/2 equal?

4. A uniform beam with mass m and length L has its left end horizontally fixed and its right end simply-
supported. An additional mass M is distributed along the left third of the beam. Find the deflection
curve.

5. (a) Repeat Exercise 4 if M is distributed over the middle third.
(b) Is the deflection curve symmetric about x = L/2?

6. (a) A uniform beam of length L has a concentrated force of P Newtons acting vertically downward at
x = L/3. Both ends of the beam are clamped horizontally. If P is so large that the mass of the
beam is negligible in comparison, find the deflection curve.

(b) Where is deflection a maximum?
(c) Compare right- and left-hand limits of y(x), y′(x), y′′(x), and y′′′(x) at x = L/3. Are they the same?

Did you expect them to be the same?

7. (a) A uniform beam with mass m and length L has concentrated forces of P Newtons acting vertically
downward at x = L/3 and x = 2L/3. Both ends of the beam are clamped horizontally. Find the
deflection curve.

(b) What is the maximum deflection?

8. A uniform beam of length L has its left end fixed horizontally and its right end is free. A concentrated
force of P Newtons acts vertically downward at x = L/2. If P is so large that the mass of the beam is
negligible by comparison, find the deflection curve.

9. Repeat Exercise 8 if the mass of the beam is taken into account.

10. Repeat Exercise 8 if both ends of the beam are simply-supported.

11. Repeat Exercise 9 if both ends of the beam are simply-supported.

12. A uniform beam of length L and mass m is simply-supported at x = 0. If the right end is free, what
physically should happen to the beam? Does equation 16.20 with boundary conditions 16.21a at x = 0
and 16.21c at x = L confirm this?

13. A uniform beam extends between x = 0 and x = L on the x-axis. Its left end is fastened in concrete in
such a way that it points upwards making an angle of π/10 radians with the horizontal. A concentrated
force of P Newtons acts vertically downward at x = L/2. If P is so large that the mass of the beam is
negligible by comparison, and the right end of the beam is free, find its deflection curve.

14. A uniform beam of length L and mass m is simply-supported at both ends. What is the maximum value
of m for deflections not to exceed 1% of the length of the beam?
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15. A uniform beam of length L and mass m has both ends fixed horizontally. A concentrated force of P
Newtons is applied vertically downward at its midpoint. What is the maximum value of P if deflections
must not exceed 5% of the length of the beam?

ANSWERS

1.(a) −[mg/(24EIL)](x4 − 2Lx3 + L3x) (b) Yes
2.(a) −[mg/(24EIL)](x4 − 4Lx3 + 6L2x2) (b) −mgL3/(8EI)
3.(a) −[Lg(2m + 3M)/(8EI)]x2 + [g(m + M)/(6EI)]x3 − [mg/(24EIL)]x4 − [Mg/(12EIL)]

(x − L/2)4h(x − L/2) (b) Yes
4. −[gL(25M + 27m)/(432EI)]x2 + [g(205M + 135m)/(1296EI)]x3 − [mg/(24EIL)]x4

−[Mg/(8EIL)]x4 + [Mg/(8EIL)](x− L/3)4h(x − L/3)
5.(a) −[gL(9m + 13M)/(144EI)]x2 + [g(45m + 49M)/(432EI)]x3 − [mg/(24EIL)]x4

−[Mg/(8EIL)](x− L/3)3h(x − L/3) + [Mg/(8EIL)](x− 2L/3)3h(x − 2L/3) (b) No
6.(a) −[P/(6EI)](x − L/3)3h(x − L/3) + 10Px3/(81EI)− 2PLx2/(27EI) (b) x = 3L/7

(c) y′′′(x) is not continuous at x = L/3
7.(a) −[L(8P + 3mg)/(72EI)]x2 + [(2P + mg)/(12EI)]x3 − [mg/(24EIL)]x4 − [P/(6EI)](x−

L/3)3h(x − L/3)− [P/(6EI)](x − 2L/3)3h(x − 2L/3) (b) −L3(27mg + 80P )/(10368EI)
8. −[PL/(4EI)]x2 + [P/(6EI)]x3 − [P/(6EI)](x − L/2)3h(x − L/2)
9. −[L(P + mg)/(4EI)]x2 + [(P + mg)/(6EI)]x3 − [mg/(24EIL)]x4−

[P/(6EI)](x − L/2)3h(x − L/2)
10. −[PL2/(16EI)]x + [P/(12EI)]x3 − [P/(6EI)](x − L/2)3h(x − L/2)
11. −[L2(3P + 2mg)/(48EI)]x + [(P + mg)/(12EI)]x3 − [mg/(24EIL)]x4−

[P/(6EI)](x − L/2)3h(x − L/2)
12. Not a posible situation
13. [tan (π/10)/(EI)]x − [PL/(4EI)]x2 + [P/(6EI)]x3 − [P/(6EI)](x − L/2)3h(x − L/2)
14. 96EI/(125gL2) 15. 48EI/(5L2) − mg/2


